Perception to Adaptation of Climate Change in Nepal: An Empirical Analysis Using Multivariate Probit Model
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Determinants of Climate Change Adaptation
3.2. Marginal Effects
3.2.1. Marginal Effect of the Temperature Change Model
3.2.2. Marginal Effect for Precipitation Model
3.2.3. Marginal Effect for the Drought Model
4. Discussion
4.1. Household Characteristics
4.2. Farm Characteristics
4.3. Household Access
4.4. Climate Perception Factors
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNDP Sustainable Development Goals. Available online: http://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-13-climate-action.html (accessed on 3 September 2017).
- Manandhar, S.; Vogt, D.S.; Perret, S.R.; Kazama, F. Adapting cropping systems to climate change in Nepal: A cross-regional study of farmers’ perception and practices. Reg. Environ. Chang. 2011, 11, 335–348. [Google Scholar] [CrossRef]
- MoPE. Nationally Determined Contributions; Ministry of Population and Environment (MoPE), Government of Nepal: Kathamandu, Nepal, 2016.
- Chamling Rai, S.; Gurung, A. Raising awareness of the impacts of climate change: Initial steps in shaping policy in Nepal. Mt. Res. Dev. 2005, 35, 316–320. [Google Scholar]
- UNDP. UNDP Support to the Implementation of Sustainable Development Goal 13; United Nations Development Program (UNDP): New York, NY, USA, 2016. [Google Scholar]
- Gilbert, N. One-Third of Our Greenhouse Gas Emissions Come from Agriculture; Nature: London, UK, 2012. [Google Scholar]
- Howden, S.M.; Soussana, J.-F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19696–19697. [Google Scholar] [CrossRef] [Green Version]
- FAO. High Level Expert Forum—How to Feed the World in 2050; United Nations Food and Agriculture Organization (FAO): Rome, Italy, 2009. [Google Scholar]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travsso, M.I.; Chhetri, N.; Garrett, K.; et al. Food security and food production systems. In Climate Change 2014—Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, T.; von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Singh, R.B. Climate Change and Food Security. In Improving Crop Productivity in Sustainable Agriculture; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; pp. 1–22. [Google Scholar]
- Piya, L.; Maharjan, K.L.; Joshi, N.P. Determinants of adaptation practices to climate change by Chepang households in the rural Mid-Hills of Nepal. Reg. Environ. Chang. 2013, 13, 437–447. [Google Scholar] [CrossRef]
- Smit, B.; Wandel, J. Adaptation, adaptive capacity and vulnerability. Glob. Environ. Chang. 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Deressa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob. Environ. Chang. 2009, 19, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Mulwa, C.; Marenya, P.; Rahut, D.B.; Kassie, M. Response to climate risks among smallholder farmers in Malawi: A multivariate probit assessment of the role of information, household demographics, and farm characteristics. Clim. Risk Manag. 2017, 16, 208–221. [Google Scholar] [CrossRef]
- Nhemachena, C.; Hassan, R.; Chakwizira, J. Analysis of determinants of farm-level adaptation measures to climate change in Southern Africa. J. Dev. Agric. Econ. 2014, 6, 232–241. [Google Scholar]
- Tesfaye, W.; Seifu, L. Climate change perception and choice of adaptation strategies: Empirical evidence from smallholder farmers in east Ethiopia. Int. J. Clim. Chang. Strateg. Manag. 2016, 8, 253–270. [Google Scholar] [CrossRef]
- Yegbeney, R.N.; Yabi, J.A.; Tovignan, S.D.; Gantoli, G.; Kokoye, S.E.H. Farmers’ decisions to adapt to climate change under various property rights: A case study of maize farming in north Benin (West Africa). Land Use Policy 2013, 34, 168–175. [Google Scholar] [CrossRef]
- Ung, M.; Luginaah, I.; Chuenpagdee, R.; Campbell, G. Perceived Self-Efficacy and Adaptation to Climate Change in Coastal Cambodia. Climate 2016, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Gentle, P.; Maraseni, T.N. Climate change, poverty and livelihoods: Adaptation practices by rural mountain communities in Nepal. Environ. Sci. Policy 2012, 21, 24–34. [Google Scholar] [CrossRef]
- CBS. National Climate Change Impact Survey 2016; Central Bureau of Statistics (CBS), Government of Nepal: Kathmandu, Nepal, 2017.
- Mainali, J.; Pricope, N.G. Geospatial datasets in support of high-resolution spatial assessment of population vulnerability to climate change in Nepal. Data Br. 2017, 12, 459–462. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Aryal, R. Climate change in Nepal and its impact on Himalayan glaciers. Reg. Environ. Chang. 2011, 11, 65–77. [Google Scholar] [CrossRef]
- National Adaptation Programme of Action to Climate Change; Government of Nepal, Ministry of Environment: Kathmandu, Nepal, 2010.
- Bhattarai, B.; Beilin, R.; Ford, R. Gender, Agrobiodiversity, and Climate Change: A Study of Adaptation Practices in the Nepal Himalayas. World Dev. 2015, 70, 122–132. [Google Scholar] [CrossRef]
- Chhetri, N.; Subedi, M.; Ghimire, S. Niche-based responses in addressing the climatic constraints to farm production: Analogues to climate-change adaptation in Nepal. Clim. Dev. 2013, 5, 174–181. [Google Scholar] [CrossRef]
- Regmi, B.R.; Star, C.; Leal Filho, W. Effectiveness of the Local Adaptation Plan of Action to support climate change adaptation in Nepal. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 461–478. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, S.; Sedhain, G.K.; Dhakal, S.C. Climate change impact and adaptation practices in agriculture: A case study of Rautahat District, Nepal. Climate 2016, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Dougherty, C. Introduction to Econometrics; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Greene, W.H. Econometric Analysis; Prentice Hall International Inc.: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Lin, C.-T.J.; Jensen, K.L.; Yen, S.T. Awareness of foodborne pathogens among US consumers. Food Q. Prefer. 2005, 16, 401–412. [Google Scholar] [CrossRef]
- Kariuki, I.M.; Loy, J.-P. Contractual Farming Arrangements, Quality Control, Incentives, and Distribution Failure in Kenya’s Smallholder Horticulture: A Multivariate Probit Analysis. Agribusiness 2016, 32, 547–562. [Google Scholar] [CrossRef]
- Koo, Y.; Lim, S.; Kim, K.; Cho, Y. Analysis of user characteristics regarding social network services in South Korea using the multivariate probit model. Technol. Forecast. Soc. Chang. 2014, 88, 232–240. [Google Scholar] [CrossRef]
- Milioti, C.P.; Karlaftis, M.G.; Akkogiounoglou, E. Traveler perceptions and airline choice: A multivariate probit approach. J. Air Transp. Manag. 2015, 49, 46–52. [Google Scholar] [CrossRef]
- Cappellari, L.; Jenkins, S.P. Multivariate Probit Regression using Simulated Maximum Likelihood. Stata J. Promot. Commun. Stat. Stata 2003, 3, 278–294. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Erenstein, O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim. Risk Manag. 2017, 16, 183–194. [Google Scholar] [CrossRef]
- Ahmed, M.H. Climate change adaptation strategies of maize producers of the Central Rift Valley of Ethiopia. J. Agric. Rural Dev. Trop. Subtrop. (JARTS) 2016, 117, 175–186. [Google Scholar]
- Mbata, J.N. Determinants of animal traction adoption in traditional agriculture: An application of the multivariate probit procedure to the case of Lesotho. Dev. S. Afr. 2001, 18, 309–325. [Google Scholar] [CrossRef]
- Ashraf, M.; Routray, J.K.; Saeed, M. Determinants of farmers’ choice of coping and adaptation measures to the drought hazard in northwest Balochistan, Pakistan. Nat. Hazards 2014, 73, 1451–1473. [Google Scholar] [CrossRef]
- Fosu-Mensah, B.Y.; Vlek, P.L.; MacCarthy, D.S. Farmers’ perception and adaptation to climate change: A case study of Sekyedumase district in Ghana. Environ. Dev. Sustain. 2012, 14, 495–505. [Google Scholar] [CrossRef]
District | Physiographic Region | Vulnerability Index |
---|---|---|
Mustang | High Mountain | Moderate |
Kaski | Mountain | Moderate |
Rasuwa | Mountain | Moderate |
Dedeldhura | Hill | Moderate |
Rolpa | Hill | Moderate |
Dadhing | Hill | High |
Terhathum | Hill | Low |
Chitwan | Shivalik | High |
Bardiya | Tarai | Low |
Parsa | Tarai | High |
Variable | Description | Mean | Std. Dev. | Expected |
---|---|---|---|---|
Farm Decision | Decision maker on farming (Head of Household (HoH) = 1; otherwise 0) | 0.830 | 0.376 | ± |
HHSize | Household size | 6.021 | 3.101 | ± |
AgeHoH | Age of HoH in year | 50.90 | 12.44 | ± |
GenderHoH | Gender of HoH (Male = 1; Female = 0) | 0.0951 | 0.294 | ± |
EducHoH | Education of HoH in years | 7.173 | 4.937 | + |
Telephone | Access to the telephone (Yes = 1; No = 0) | 0.933 | 0.250 | + |
MorePlot | Having more than one plot (Yes = 1; No = 0) | 0.703 | 0.458 | ± |
FarmArea | Farming area in hectares | 1.068 | 2.363 | ± |
Tenure | Tenure (Own = 1; otherwise 0) | 0.878 | 0.327 | + |
PctOnfarmIncome | Percentage of farm income to total income | 76.65 | 36.728 | ± |
BorrowedYN | Access to the credit (Yes = 1; No = 0) | 0.405 | 0.492 | + |
NumAdultMale | Number of adult males working on the farm | 1.413 | 0.885 | + |
Membership | Having membership to any kind of cooperative (Yes = 1; No = 0) | 0.683 | 0.466 | + |
Distance | Distance to nearest market in kilometers | 4.361 | 8.151 | − |
TempYN | Perceive change in temperature (Yes = 1; No = 0) | 0.920 | 0.272 | ± |
DrghtYN | Perceive change in drought frequency (Yes = 1; No = 0) | 0.663 | 0.473 | ± |
PestYN | Perceive change in incidence of disease pests (Yes = 1; No = 0) | 0.893 | 0.309 | ± |
Precip_DryWet | Direction of rainfall change (Increasing = 1, Decreasing = 0) | 0.190 | 0.393 | ± |
Models | Temperature Model | Precipitation Model | Drought Model | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VARIABLES | Crop_Date | Crop_Type | Crop_Vrty | Crop_Irrig | Crop_Date | Crop_Type | Crop_Vrty | Crop_Irrig | Crop_Date | Crop_Type | Crop_Vrty | Crop_Irrig |
AgeHoH | 0.015 ** | −0.006 | 0.011 | 0.003 | −0.008 | 0.0133 | 0.0187 ** | −0.006 | 0.0145 | −0.00552 | 0.0228 ** | 0.00121 |
(−0.007) | (−0.009) | (−0.009) | (−0.008) | (−0.007) | (−0.010) | (−0.008) | (−0.007) | (−0.010) | (−0.011) | (−0.010) | (−0.010) | |
GenderHoH | 0.474 * | −0.251 | −0.497 * | −0.138 | 0.19 | −4.827 *** | −1.070 *** | −0.706 ** | −0.0813 | −0.063 | −1.422 ** | −0.406 |
(−0.271) | (−0.375) | (−0.293) | (−0.323) | (−0.277) | (−0.577) | (−0.365) | (−0.350) | (−0.408) | (−0.524) | (−0.586) | (−0.520) | |
Tenure | 0.156 | 0.172 | 0.638 ** | 0.295 | 0.312 | −0.541 * | 0.517 * | −0.285 | 0.539 * | −0.0639 | 0.542 * | −0.171 |
(−0.246) | (−0.290) | (−0.281) | (−0.217) | (−0.253) | (−0.282) | (−0.269) | (−0.266) | (−0.311) | (−0.336) | (−0.327) | (−0.287) | |
BorrowedYN | 0.444 ** | −0.054 | 0.719 *** | 0.445 *** | 0.346 * | 0.281 | 0.3 | 0.360 * | 0.151 | 0.216 | 0.397 * | 0.436 ** |
(−0.174) | (−0.193) | (−0.175) | (−0.172) | (−0.182) | (−0.244) | (−0.187) | (−0.190) | (−0.210) | (−0.261) | (−0.221) | (−0.205) | |
FarmAdultMales | 0.014 | 0.224 * | 0.091 | −0.019 | −0.007 | −0.067 | −0.121 | 0.047 | −0.196 ** | −0.0511 | −0.298 *** | −0.0413 |
(−0.094) | (−0.133) | (−0.105) | (−0.099) | (−0.072) | (−0.083) | (−0.075) | (−0.079) | (−0.096) | (−0.094) | (−0.099) | (−0.095) | |
Membership | 0.005 | 0.294 | 0.481 ** | 0.626 *** | −0.048 | 0.351 | 0.407 * | 0.485 ** | − | − | − | − |
(−0.185) | (−0.231) | (−0.192) | (−0.190) | (−0.191) | (−0.281) | (−0.229) | (−0.216) | − | − | − | − | |
PctOnfarmIncome | −0.002 | 0.009 ** | 0.005 ** | 0.008 *** | −0.001 | 0.005 | 0.009 *** | 0.005 * | −0.002 | −0.001 | −0.003 | 0.005 |
(−0.003) | (−0.004) | (−0.002) | (−0.003) | (−0.003) | (−0.004) | (−0.003) | (−0.003) | (−0.003) | (−0.004) | (−0.003) | (−0.003) | |
Distance | 0.005 | 0.002 | −0.009 | −0.01 | −0.011 | −0.012 | −0.042 ** | −0.019 | 0.00226 | −0.0165 | −0.0294 | −0.0290 * |
(−0.010) | (−0.010) | (−0.008) | (−0.009) | (−0.008) | (−0.015) | (−0.019) | (−0.014) | (−0.013) | (−0.028) | (−0.018) | (−0.016) | |
FarmArea | 0.255 ** | 0.178 | 0.194 * | 0.159 | 0.351 *** | 0.024 | 0.242 ** | 0.079 | 0.464 *** | 0.0272 | 0.290 * | 0.148 |
(−0.123) | (−0.112) | (−0.110) | (−0.103) | (−0.134) | (−0.154) | (−0.105) | (−0.116) | (−0.129) | (−0.153) | (−0.151) | (−0.146) | |
EducHoH | 0.016 | −0.01 | 0.039 * | 0.015 | 0.005 | −0.005 | 0.003 | 0.013 | 0.007 | 0.043 * | 0.0003 | 0.006 |
(−0.017) | (−0.018) | (−0.022) | (−0.019) | (−0.017) | (−0.016) | (−0.019) | (−0.016) | (−0.018) | (−0.023) | (−0.018) | (−0.019) | |
iRainfed | 0.435 ** | −0.116 | −0.028 | 0.254 | 0.112 | −0.447 * | 0.142 | 0.362 * | 0.227 | −0.0758 | 0.442 * | 0.926 *** |
(−0.179) | (−0.200) | (−0.179) | (−0.182) | (−0.183) | (−0.231) | (−0.190) | (−0.200) | (−0.238) | (−0.265) | (−0.235) | (−0.239) | |
WeatherInfo | −0.220 | −0.329 * | −0.458 ** | −0.297 | −0.291 * | −0.521 ** | −0.112 | −0.089 | − | − | − | − |
(−0.177) | (−0.198) | (−0.180) | (−0.183) | (−0.175) | (−0.232) | (−0.193) | (−0.185) | − | − | − | − | |
HHSize | −0.015 | −0.149 ** | 0.013 | −0.004 | − | − | − | − | − | − | − | − |
(−0.040) | (−0.059) | (−0.042) | (−0.041) | − | − | − | − | − | − | − | − | |
MorePlot | −0.041 | 0.04 | −0.144 | −0.317 * | − | − | − | − | − | − | − | − |
(−0.190) | (−0.211) | (−0.191) | (−0.187) | − | − | − | − | − | − | − | − | |
Telephone | − | − | − | − | 0.544 | −0.168 | 0.754 ** | 0.601 | 0.854 * | 0.139 | 0.555 | 0.295 |
− | − | − | − | (−0.354) | (−0.451) | (−0.325) | (−0.394) | (−0.469) | (−0.527) | (−0.396) | (−0.416) | |
TempYN | − | − | − | − | 0.129 | 0.167 | −0.767 ** | −0.45 | − | − | − | − |
− | − | − | − | (−0.335) | (−0.382) | (−0.311) | (−0.305) | − | − | − | − | |
DrghtYN | − | − | − | − | 0.032 | 0.148 | 0.619 ** | 0.297 | − | − | − | − |
− | − | − | − | (−0.198) | (−0.263) | (−0.250) | (−0.224) | − | − | − | − | |
PestYN | − | − | − | − | (0.004) | (0.000) | (−0.022) | (−0.150) | − | − | − | − |
− | − | − | − | (−0.294) | (−0.384) | (−0.333) | (−0.329) | − | − | − | − | |
Precip_DryWet | − | − | − | − | −0.454 ** | −0.014 | −0.573 *** | −0.479 ** | − | − | − | − |
− | − | − | − | (−0.184) | (−0.223) | (−0.215) | (−0.209) | − | − | − | − | |
FarmDecisions | − | − | − | − | 0.166 | −0.232 | −0.151 | −0.572 ** | − | − | − | − |
− | − | − | − | (−0.249) | (−0.309) | (−0.273) | (−0.256) | − | − | − | − | |
Constant | −1.712 *** | −1.213 * | −2.364 *** | −1.844 *** | −1.015 | −1.405 | −2.803 *** | −0.69 | −2.839 *** | −1.284 | −2.472 *** | −1.859 ** |
(−0.533) | (−0.684) | (−0.618) | (−0.575) | (−0.823) | (−0.936) | (−0.881) | (−0.842) | (−0.796) | (−0.896) | (−0.748) | (−0.789) | |
Rho1 | Rho2 | Rho3 | Rho1 | Rho2 | Rho3 | Rho1 | Rho2 | Rho3 | ||||
Rho2 | 0.373 *** | 0.015 | 0.163 | |||||||||
Rho3 | 0.408 *** | 0.524 *** | 0.274 ** | 0.661 *** | 0.597 *** | 0.426 ** | ||||||
Rho4 | 0.308 *** | 0.309 *** | 0.956 *** | 0.065 | 0.620 *** | 0.856 *** | 0.275 ** | 0.225 | 0.896 *** | |||
Observations | 261 | 251 | 189 | |||||||||
Draws | 100 | 100 | 100 | |||||||||
Log pseudo likelihood | −515.304 | −449.23 | −328.835 | |||||||||
Wald chi2(56) | 182.73 | 1120.69 | 112.09 | |||||||||
Prob > chi2 | 0.000 | 0.000 | 0.000 | |||||||||
Likelihood ratio test of rho21 = rho31 = rho41 = rho32 = rho42 = rho43 = 0: chi2(6) = 87.9323 Prob > chi2 = 0.000 Robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1 | Likelihood ratio test of rho21 = rho31 = rho41 = rho32 = rho42 = rho43 = 0: chi2(6) = 72.666 Prob > chi2 = 0.000 | Likelihood ratio test of rho21 = rho31 = rho41 = rho32 = rho42 = rho43 = 0: chi2 (6) = 56.6392 Prob > chi2 = 0.0000 Robust standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1 |
y = Linear Prediction (Predict) = −0.38318332 | |||||||
---|---|---|---|---|---|---|---|
Variable | dy/dx | Std. Err. | z | P > z | 95% | C.I. | X |
AgeHoH | 0.015 | 0.007 | 2.14 | 0.033 | 0.001 | 0.028 | 50.536 |
GenderHoH * | 0.474 | 0.271 | 1.75 | 0.081 | −0.058 | 1.005 | 0.01 |
EducHoH | 0.016 | 0.017 | 0.95 | 0.343 | −0.017 | 0.048 | 7.215 |
FarmArea | 0.255 | 0.123 | 2.08 | 0.037 | 0.015 | 0.496 | 0.933 |
Tenure * | 0.156 | 0.246 | 0.64 | 0.525 | −0.325 | 0.637 | 0.866 |
PctOnfarmIncome | −0.002 | 0.003 | −0.94 | 0.35 | −0.008 | 0.003 | 70.876 |
BorrowYN * | 0.445 | 0.174 | 2.56 | 0.011 | 0.104 | 0.785 | 0.399 |
HHSize | −0.016 | 0.04 | −0.38 | 0.702 | −0.095 | 0.064 | 5.927 |
Membership * | 0.005 | 0.185 | 0.02 | 0.98 | −0.359 | 0.368 | 0.69 |
Distance | 0.005 | 0.01 | 0.44 | 0.661 | −0.016 | 0.025 | 4.308 |
Weatherinfo * | −0.220 | 0.177 | −1.24 | 0.214 | −0.567 | 0.127 | 0.667 |
iRainfed * | 0.435 | 0.18 | 2.42 | 0.015 | 0.083 | 0.786 | 0.628 |
MorePlot * | −0.041 | 0.19 | −0.22 | 0.829 | −0.413 | 0.331 | 0.694 |
FarmAdultMales | 0.014 | 0.094 | 0.15 | 0.881 | −0.170 | 0.198 | 2.157 |
y = Linear Prediction (Predict) = −0.265 | |||||||
---|---|---|---|---|---|---|---|
Variable | dy/dx | Std. Err. | Z | P > z | 95% | C.I. | X |
TempYN * | 0.129 | 0.335 | 0.39 | 0.699 | −0.525 | 0.785 | 0.928 |
DrghtYN * | 0.032 | 0.198 | 0.16 | 0.872 | −0.357 | 0.421 | 0.725 |
PestYN * | 0.004 | 0.294 | 0.01 | 0.989 | −0.571 | 0.58 | 0.896 |
Precipitation * | −0.454 | 0.184 | −2.47 | 0.013 | −0.814 | −0.094 | 0.367 |
FarmDecison * | 0.166 | 0.249 | 0.67 | 0.506 | −0.323 | 0.654 | 0.849 |
AgeHoH | −0.008 | 0.007 | −1.06 | 0.288 | −0.022 | 0.007 | 51.147 |
GenderHoH * | 0.19 | 0.278 | 0.68 | 0.495 | −0.354 | 0.733 | 0.096 |
Tenure * | 0.312 | 0.253 | 1.23 | 0.218 | −0.184 | 0.807 | 0.861 |
BorrowedYN * | 0.346 | 0.182 | 1.9 | 0.058 | −0.011 | 0.702 | 0.43 |
NumAdultMale | −0.007 | 0.072 | −0.1 | 0.918 | −0.148 | 0.133 | 2.151 |
Membership * | −0.048 | 0.191 | −0.25 | 0.801 | −0.422 | 0.326 | 0.705 |
PctOnfarmIncome | −0.001 | 0.003 | −0.37 | 0.713 | −0.006 | 0.004 | 70.711 |
Telephone * | 0.544 | 0.354 | 1.54 | 0.124 | −0.150 | 1.238 | 0.936 |
Distance | −0.011 | 0.008 | −1.36 | 0.174 | −0.028 | 0.005 | 4.279 |
FarmArea | 0.351 | 0.134 | 2.63 | 0.009 | 0.089 | 0.613 | 0.93 |
EducHoH | 0.005 | 0.015 | 0.29 | 0.774 | −0.028 | 0.037 | 6.932 |
iRainfed* | 0.112 | 0.183 | 0.61 | 0.54 | −0.247 | 0.471 | 0.63 |
Weatherinfo* | −0.291 | 0.175 | −1.66 | 0.097 | −0.635 | 0.053 | 0.649 |
y = Linear Prediction (Predict) = −0.692 | |||||||
---|---|---|---|---|---|---|---|
Variable | dy/dx | Std. Err. | Z | P > z | 95% | C.I. | X |
AgeHoH | 0.015 | 0.01 | 1.52 | 0.129 | −0.004 | 0.033 | 50.624 |
GenderHoH * | −0.081 | 0.408 | −0.2 | 0.842 | −0.880 | 0.718 | 0.069 |
EducHoH | 0.007 | 0.018 | 0.4 | 0.689 | −0.029 | 0.044 | 7.074 |
Tenure * | 0.539 | 0.312 | 1.73 | 0.084 | −0.072 | 1.149 | 0.868 |
BorrowedYN * | 0.151 | 0.21 | 0.72 | 0.472 | −0.261 | 0.562 | 0.429 |
NumAdultMale | −0.196 | 0.096 | −2.04 | 0.041 | −0.384 | −0.008 | 2.148 |
PctOnfarmIcome | −0.002 | 0.003 | −0.6 | 0.548 | −0.008 | 0.005 | 69.606 |
Telephone * | 0.854 | 0.469 | 1.82 | 0.069 | −0.065 | 1.773 | 0.931 |
iRainfed * | 0.227 | 0.238 | 0.95 | 0.34 | −0.239 | 0.692 | 0.667 |
Distance | 0.002 | 0.013 | 0.17 | 0.865 | −0.024 | 0.028 | 4.352 |
FarmArea | 0.464 | 0.129 | 3.59 | 0 | 0.211 | 0.718 | 0.929 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
GC, A.; Yeo, J.-H. Perception to Adaptation of Climate Change in Nepal: An Empirical Analysis Using Multivariate Probit Model. Sci 2020, 2, 87. https://doi.org/10.3390/sci2040087
GC A, Yeo J-H. Perception to Adaptation of Climate Change in Nepal: An Empirical Analysis Using Multivariate Probit Model. Sci. 2020; 2(4):87. https://doi.org/10.3390/sci2040087
Chicago/Turabian StyleGC, Arun, and Jun-Ho Yeo. 2020. "Perception to Adaptation of Climate Change in Nepal: An Empirical Analysis Using Multivariate Probit Model" Sci 2, no. 4: 87. https://doi.org/10.3390/sci2040087
APA StyleGC, A., & Yeo, J. -H. (2020). Perception to Adaptation of Climate Change in Nepal: An Empirical Analysis Using Multivariate Probit Model. Sci, 2(4), 87. https://doi.org/10.3390/sci2040087