Molecules to Microbes
Abstract
:1. Introduction
2. To Set the Scene
3. The Origin of Life?
3.1. Metabolism First
3.2. Genetics First
3.3. Vesicles First
4. Gene Transfer
5. Virus System
6. Bio-Signals
7. Space—The Final Frontiers
8. What’s Next?
Funding
Acknowledgments
Conflicts of Interest
References
- Capova, K.A.; Persson, E.; Milligan, T.; Dunér, D. Society, Worldview and Outreach. In Astrobiology and Society in Europe Today; Springer: Cambridge, UK, 2018; pp. 19–24. [Google Scholar]
- Bandyopadhyay, P.S.; Raghavan, R.V.; Dcruz, D.W.; Brittan, G. Truths about Simpson’s Paradox: Saving the paradox from falsity. In ICLA 2015: Logic and Its Applications; Lecture Notes in Computer Science; Banerjee, M., Krishna, S.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 8923. [Google Scholar]
- Bandyopadhyay, P.S.; Beard, T.E.; Greenwood, M.C.; Bertasso, M.P.; Peters, J.W. Why Need a Model? The Debate over the Origin of Life Theories and a Lesson from Simpson’s Paradox. In Proceedings of the Epistemology of Modeling and Simulation Conference, Pittsburgh, PA, USA, 1–3 April 2011; University of Pittsburgh: Pittsburgh, PA, USA. [Google Scholar]
- Westall, F.; Hickman-Lewis, K.; Hinman, N.; Gautret, P.; Campbell, K.A.; Bréhéret, J.G.; Foucher, F.; Hubert, A.; Sorieul, S.; Dass, A.V.; et al. A Hydrothermal-Sedimentary Context for the Origin of Life. Astrobiology 2018, 18, 259–293. [Google Scholar] [CrossRef] [PubMed]
- Kompanichenko, V.N. Thermodynamic Inversion: Origin of Living Systems; Springer: Cham, Switzerland, 2017; 275p. [Google Scholar]
- Kompanichenko, V. The Rise of a Habitable Planet: Four Required Conditions for the Origin of Life in the Universe. Geosciences 2019, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Ball, R.; Brindley, J. The Power Without the Glory: Multiple Roles of Hydrogen Peroxide in Mediating the Origin of Life. Astrobiology 2019, 19, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Ball, R.; Brindley, J. Toy trains, loaded dice and the origin of life: Dimerization on mineral surfaces under periodic drive with Gaussian inputs. R. Soc. Open Sci. 2017, 4, 170141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ball, R.; Brindley, J. The Life Story of Hydrogen Peroxide III: Chirality and Physical Effects at the Dawn of Life. Orig. Life Evol. Biosph. 2016, 46, 81–93. [Google Scholar] [CrossRef]
- Hansma, H.G. Better than Membranes at the Origin of Life? Life 2017, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Hansma, H.G. The Power of Crowding for the Origins of Life. Orig. Life Evol. Biosph. 2014, 44, 307–311. [Google Scholar] [CrossRef]
- Jheeta, S. The Landscape of the Emergence of Life. Life 2017, 7, 27. [Google Scholar] [CrossRef]
- Hansma, H.G. Possible origin of life between mica sheets. J. Theor. Biol. 2010, 266, 175–188. [Google Scholar] [CrossRef]
- Cech, T.R. Self-splicing of group I introns. Annu. Rev. Biochem. 1990, 59, 543–568. [Google Scholar] [CrossRef]
- Ketting, R.F.; Fischer, S.E.J.; Bernstein, E.; Sijen, T.; Hannon, G.J.; Plasterk, R.H.A. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 2001, 15, 2654–2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altman, S. Structural biology. Nature 2000, 7, 827–828. [Google Scholar]
- Cech, T.R.; Zaug, A.J.; Grabowski, P.J. In Vitro splicing of the ribosomal RNA precursor of Tetrahymena: Involvement of a guanosine nucleotides in the excision of the intervening sequence. Cell 1981, 27, 487–496. [Google Scholar] [CrossRef]
- Prosdocimia, F.; Jheeta, S.; Farias, S.T. Conceptual challenges for the emergence of the biological system: Cell theory and self-replication. Med. Hypotheses 2018, 119, 79–83. [Google Scholar] [CrossRef]
- Hordijk, W.; Steel, M. Chasing the tail: The emergence of autocatalytic networks. Biosystems 2017, 152, 1–10. [Google Scholar] [CrossRef]
- Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 1971, 58, 465–523. [Google Scholar] [CrossRef]
- Ameta, S.; Arsene, S.; Lehman, N.; Griffiths, A.D.; Nghe, P. Evolution Using Autocatalytic Sets of RNA, Manuscript under preparation.
- Ameta, S.; Arsene, S.; Lehman, N.; Nghe, P.; Griffiths, A.D. (Conference Abstract) Autocatalytic sets of RNA replicators in origin of life. In Proceedings of the XVIIIth International Conference on the Origin of Life, San Diego, CA, USA, 16–21 July 2017; Volume 1967. [Google Scholar]
- Arsène, S.; Ameta, S.; Lehman, N.; Griffiths, A.D.; Nghe, P. Coupled catabolism and anabolism in autocatalytic RNA sets. Nucleic Acids Res. 2018, 46, 9660–9666. [Google Scholar] [CrossRef] [Green Version]
- Iqubal, M.A.; Sharma, R.; Jheeta, S. Thermal condensation of glycine and alanine on metal ferrite surface: Primitive peptide bond formation scenario. Life 2017, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Iqubal, M.A.; Jheeta, S. Adsorption and Oxidation of Aromatic Amines on Metal(II) Hexacyanocobaltate(III) Complexes: Implication for Oligomerization of Exotic Aromatic Compounds. Inorganics 2017, 5, 18. [Google Scholar] [CrossRef]
- Kotakis, C. Non-coding RNAs’ partitioning in the evolution of photosynthetic organisms via energy transduction and redox signalling. RNA Biol. 2015, 12, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.R. RNA-Seq data: A goldmine for organelle research. Brief. Funct. Genom. 2013, 12, 454–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahana, A.; Lancet, D. Protobiotic Systems Chemistry Analyzed by Molecular Dynamics. Life 2019, 9, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancet, D.; Zidovetzki, R.; Markovitch, O. Systems protobiology: Origin of life in lipid catalytic networks. J. R. Soc. Interface 2018, 15, 20180159. [Google Scholar] [CrossRef] [PubMed]
- Schopf, J.W.; Kitajima, K.; Spicuzza, M.J.; Kudryavtsev, A.B.; Valley, J.W. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proc. Natl. Acad. Sci. USA 2018, 115, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Jheeta, S. The Routes of Emergence of Life from LUCA during the RNA and Viral World: A Conspectus. Life 2015, 5, 1445–1453. [Google Scholar] [CrossRef] [Green Version]
- Koumandou, V.L.; Kossida, S. Evolution of the F0F1 ATP Synthase Complex in Light of the Patchy Distribution of Different Bioenergetic Pathways across Prokaryotes. PLoS Comput. Biol. 2014, 10, e1003821. [Google Scholar] [CrossRef] [Green Version]
- Agioutantis, P.; Koumandou, V.L. Bioenergetic diversity of the human gut microbiome. Meta Gene 2018, 16, 10–14. [Google Scholar] [CrossRef]
- Koumandou, V.L.; Kossida, S. Evolution of b-type cytochromes in prokaryotes. PeerJ Prepr. 2015. [Google Scholar] [CrossRef]
- Lang, A.S.; Westbye, A.B.; Beatty, J.T. The distribution, evolution, and roles of gene transfer agents in prokaryotic genetic exchange. Annu. Rev. Virol. 2017, 4, 87–104. [Google Scholar] [CrossRef]
- Westbye, A.B.; Beatty, J.T.; Lang, A.S. Guaranteeing a captive audience: Coordinated regulation of gene transfer agent (GTA) production and recipient capability by cellular regulators. Curr. Opin. Microbiol. 2017, 38, 122–129. [Google Scholar] [CrossRef]
- Ayre, D.C.C.; Elstner, M.; Smith, N.C.; Moores, E.S.; Hogan, A.M.; Christian, S.L. Dynamic regulation of CD24 expression and release of CD24-containing microvesicles in immature B cells in response to CD24 engagement. Immunology 2015, 146, 217–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayre, D.C.C.; Chute, I.C.; Joy, A.P.; Barnett, D.A.; Hogan, A.M.; Gruel, M.P.; Christian, S.L. CD24 induces changes to the surface receptors of B cell microvesicles with variable effects on their RNA and protein cargo. Sci. Rep. 2017, 7, 8642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabi, R.; Tuller, T. Modelling and measuring intracellular competition for finite resources during gene expression. J. R. Soc. Interface 2019, 16, 20180887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zur, H.; Tuller, T. Predictive biophysical modeling and understanding of the dynamics of mRNA translation and its evolution. Nucleic Acids Res. 2016, 44, 9031–9049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goz, E.; Zafrir, Z.; Tuller, T. Universal evolutionary selection for high dimensional silent patterns of information hidden in the redundancy of viral genetic code. Bioinformatics 2018, 34, 3241–3248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jheeta, S.; Ptasinska, S.; Sivaraman, B.; Mason, N.J. The irradiation of 1:1 mixture of ammonia:carbon dioxide ice at 30 K using 1 kev Electrons. Chem. Phys. Lett. 2012, 543, 208–212. [Google Scholar] [CrossRef]
- Jheeta, S.; Domaracka, A.; Ptasinska, S.; Mason, N.J. The irradiation of pure CH3OH and 1:1 mixture of NH3:CH3OH ices at 30 K using low energy electrons. Chem. Phys. Lett. 2013, 556, 359–364. [Google Scholar] [CrossRef]
- Jheeta, S. Final frontiers: The hunt for life elsewhere in the Universe. Astrophys. Space Sci. 2013, 348, 1–10. [Google Scholar] [CrossRef]
- Le Roy, L.; Briani, G.; Briois, C.; Cottin, H.; Fray, N.; Thirkell, L.; Poulet, G.; Hilchenbach, M. On the prospective detection of polyoxymethylene in comet 67P/Churyumov–Gerasimenko with the COSIMA instrument onboard Rosetta. Planet. Space Sci. 2012, 65, 83–92. [Google Scholar] [CrossRef]
- Kissel, J.; Altwegg, K.; Clark, B.C.; Colangeli, L.; Cottin, H.; Czempiel, S.; Eibl, J.; Engrand, C.; Fehringer, H.M.; Feuerbacher, B.; et al. COSIMA—High Resolution Time-of-Flight Secondary Ion Mass Spectrometer for the Analysis of Cometary Dust Particles onboard Rosetta. Space Sci. Rev. 2007, 128, 823–867. [Google Scholar] [CrossRef]
- Pleyer, H.L.; Strasdeit, H.; Fox, S. A Possible Prebiotic Ancestry of Porphyrin-Type Protein Cofactors. Orig. Life Evol. Biosph. 2018, 48, 347–371. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.; Strasdeit, H. A Possible Prebiotic Origin on Volcanic Islands of Oligopyrrole-Type Photopigments and Electron Transfer Cofactors. Astrobiology 2013, 13, 578–595. [Google Scholar] [CrossRef]
- Fox, S.; Strasdeit, H. Inhabited or Uninhabited? Pitfalls in the Interpretation of Possible Chemical Signatures of Extraterrestrial Life. Front. Microbiol. 2017, 8, 1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwieterman, E.W.; Kiang, N.Y.; Parenteau, M.N.; Harman, C.E.; DasSarma, S.; Fisher, T.M.; Arney, G.N.; Hilairy, E.; Hartnett, H.E.; Reinhard, C.T.; et al. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology 2018, 18, 663–708. [Google Scholar] [CrossRef] [PubMed]
- Battistuzzi, F.U.; Feijao, A.; Hedges, S.B. A genomic timescale of prokaryote evolution: Insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 2004, 4, 44. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, C.D. Functional properties of amino acid side chains as biomarkers of extraterrestrial life. Astrobiology 2018, 18, 1479–1496. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, C.D.; Deamer, D.W. Lipids as universal biomarkers of extra-terrestrial life. Astrobiology 2014, 14, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Mirazo, K.; Briones, C.; de la Escosura, A. Chemical roots of biological evolution: The origins of life as a process of development of autonomous functional systems. Open Biol. 2017, 7, 170050. [Google Scholar] [CrossRef] [Green Version]
- Saitta, M. From Computational Physics to the Origins of Life. In Life Sciences, Information Sciences; Thierry, G., Dominique, L., Marie-Christine, M., Jean-Charles, P., Eds.; Wiley: Hoboken, NJ, USA, 25 March 2018; Chapter 20. [Google Scholar] [CrossRef]
- Uyama, T.; Hashimoto, J.; Kuzuhara, M.; Mayama, S.; Akiyama, E.; Currie, J.L.; Kudo, T.; Kusakabe, N.; Abe, L. The SEEDS High-Contrast Imaging Survey of Exoplanets around Young Stellar Objects. Astron. J. 2017, 153, 106. [Google Scholar] [CrossRef]
- Uyama, T.; Tanigawa, T.; Hashimoto, J.; Tamura, M.; Aoyama, Y.; Brandt, T.D.; Ishizuka, M. Constraining Accretion Signatures of Exoplanets in the TW Hya Transitional Disk. Astron. J. 2017, 154, 90. [Google Scholar] [CrossRef] [Green Version]
- Uyama, T.; Hashimoto, J.; Muto, T.; Akiyama, E.; Dong, R.; de Leon, J.; Sakon, I.; Kudo, T.; Kusakabe, N.; Kuzuhara, M.; et al. Subaru/HiCIAO HKs Imaging of LKHa 330: Multi-band Detection of the Gap and Spiral-like Structures. Astron. J. 2018, 156, 63. [Google Scholar] [CrossRef] [Green Version]
- Wisłocka, A.M.; Kovačević, A.B.; Balbi, A. Comparative analysis of the influence of Sgr A* and nearby active galactic nuclei on the mass loss of known exoplanets. Astron. Astrophys. 2019, 624, A71. [Google Scholar] [CrossRef] [Green Version]
- Luger, R.; Barnes, R.; Lopez, E.; Fortney, J.; Jackson, B.; Meadows, V. Habitable Evaporated Cores: Transforming Mini-Neptunes into Super-Earths in the Habitable Zones of M Dwarfs. Astrobiology 2015, 15, 57–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valencia, D.; Ikoma, M.; Guillot, T.; Nettelmann, N. Composition and fate of short-period super-Earths:The case of CoRoTx7b. Astron. Astrophys. 2010, 516, A20. [Google Scholar] [CrossRef] [Green Version]
- Maccone, C. Energy of Extra-Terrestrial Civilizations according to Evo-SETI Theory. Acta Astronaut. 2018, 144, 202–213. [Google Scholar] [CrossRef]
- Maccone, C. Life Expectancy and Life Energy according to Evo-SETI Theory. Int. J. Astrobiol. 2019, 189, 36–46. [Google Scholar] [CrossRef]
- Lazcano, A.; Miller, S.L. How long did it take for life to begin and evolve to cyanobacteria? J. Mol. Evol. 1994, 39, 546–554. [Google Scholar] [CrossRef]
- Forterre, P. Three RNA cells for ribosomal lineages and three DNAviruses to replicate their genomes: A hypothesis for the origin of cellular domain. Proc. Natl. Acad. Sci. USA 2006, 10, 3669–3674. [Google Scholar] [CrossRef] [Green Version]
- Forterre, P. The two ages of the RNA world, and the transition to the DNA world: A story of viruses and cells. Biochimie 2005, 87, 793–803. [Google Scholar] [CrossRef]
- Jheeta, S.; Joshi, P.C. Prebiotic RNA Synthesis by Montmorillonite Catalysis. Life 2014, 4, 318–330. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jheeta, S. Molecules to Microbes. Sci 2020, 2, 86. https://doi.org/10.3390/sci2040086
Jheeta S. Molecules to Microbes. Sci. 2020; 2(4):86. https://doi.org/10.3390/sci2040086
Chicago/Turabian StyleJheeta, Sohan. 2020. "Molecules to Microbes" Sci 2, no. 4: 86. https://doi.org/10.3390/sci2040086
APA StyleJheeta, S. (2020). Molecules to Microbes. Sci, 2(4), 86. https://doi.org/10.3390/sci2040086