Global Significance of Mangrove Blue Carbon in Climate Change Mitigation
Abstract
:1. Introduction
2. Carbon Stocks
3. Carbon Sequestration Rates
4. Carbon Losses
5. Assessment of Global Significance
Supplementary Materials
Funding
Conflicts of Interest
References
- Nelleman, C.; Corcoran, E.; Duarte, C.M.; Valdés, L.; DeYoung, C.; Foseca, L.; Grimsditch, G. (Eds.) Blue Carbon: A Rapid Response Assessment; United Nations Environmental Programme and GRID-Arendal: Arendal, Norway, 2009. [Google Scholar]
- Laffoley, D.d.A.; Grimsditch, G. (Eds.) The Management of Natural Coastal Carbon Sinks; IUCN: Gland, Switzerland, 2009. [Google Scholar]
- Herr, D.; Pidgeon, E.; Laffoley, D. (Eds.) Blue Carbon Policy Framework: Based on the Discussion of the International Blue Carbon Policy Working Group; IUCN: Gland, Switzerland, 2012. [Google Scholar]
- Sifleet, S.; Pendleton, L.; Murray, B.C. State of the Science on Coastal Blue Carbon: A Summary for Policy Makers. In Nicholas Institute for Environmental Policy Solutions Report NIR 11-06; Nicholas Institute, Duke University: Durham, NC, USA, 2011. [Google Scholar]
- IOC. A Blueprint for Ocean and Coastal Sustainability; IOC/UNESCO: Paris, France, 2011. [Google Scholar]
- Alongi, D.M. Blue Carbon: Coastal Sequestration for Climate Change Mitigation; Springer Briefs in Climate Studies, Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marbá, N.; et al. Estimating global “blue carbon: emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huxham, M.; Whitlock, D.; Githaiga, M.; Dencer-Brown, A. Carbon in the coastal seascape: how interactions between mangrove forests, seagrass meadows and tidal marshes influence carbon storage. Curr. Forest Rept. 2018, 4, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Taillardat, P.; Friess, D.A.; Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 2018, 14, 20180251. [Google Scholar] [CrossRef] [PubMed]
- Alongi, D.M.; Murdiyarso, D.; Fourqurean, J.W.; Kauffman, J.B.; Hutahaean, A.; Crooks, S.; Lovelock, C.E.; Howard, J.; Herr, D.; Fortes, M.; et al. Indonesia’s blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon. Wetl. Ecol. Manag. 2016, 24, 3–13. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon sequestration in mangrove forests. Carbon Manag. 2012, 3, 313–322. [Google Scholar] [CrossRef]
- Saderne, V.; Geraldi, N.R.; Macreadie, P.I.; Maher, D.Y.; Middelburg, J.J.; Serrano, O.; Almahasheer, H.; Arias-Ortiz, A.; Cusack, M.; Eyre, B.D.; et al. Role of carbonate burial in blue carbon budgets. Nat. Commun. 2019, 10, 1066. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Jardine, S.L.; Siikamäki, J.V. A global predictive model of carbon in mangrove soils. Environ. Res. Lett. 2014, 9, 104013. [Google Scholar] [CrossRef]
- Hamilton, S.; Friess, D.A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Chang. 2018, 8, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Sanders, C.J.; Maher, D.T.; Tait, D.R.; Williams, D.; Holloway, C.; Sippo, J.Z.; Santos, I.R. Are global mangrove carbon stocks driven by rainfall? J. Geophys. Res. Biogeosci. 2016, 121, 2600–2609. [Google Scholar] [CrossRef]
- Ouyang, X.; Lee, S.Y. Improved estimates on global carbon stock and carbon pools in tidal wetlands. Nat. Commun. 2020, 11, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giri, C.; Ochieng, E.; Tiezen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N.C. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Walcker, R.; Gandois, L.; Proisy, C.; Corenblit, D.; Mougin, E.; Laplanche, C.; Ray, R.; Fromard, F. Control of “blue carbon” storage by mangrove ageing: Evidence from a 66-year old chronosequence in French Guiana. Glob. Chang. Biol. 2018, 6, 2325–2338. [Google Scholar] [CrossRef] [PubMed]
- Hieu, P.V.; Dung, L.V.; Tue, N.T.; Omori, K. Will restored mangrove forests enhance sediment organic carbon and ecosystem carbon storage? Reg. Stud. Mar. Sci. 2017, 14, 43–52. [Google Scholar]
- Ha, T.H.; Marchand, C.; Aimé, J.; Dang, H.N.; Phan, N.H.; Nguyen, X.T.; Nguyen, T.K.C. Belowground carbon sequestration in mature planted mangroves (Northern Viet Nam). For. Ecol. Manag. 2018, 407, 191–199. [Google Scholar] [CrossRef]
- Arif, A.M.; Guntur, G.; Ricky, A.B.; Novianti, P.; Andik, I. Mangrove ecosystem C-stocks of Lamongan, Indonesia and its correlation with forest age. Res. J. Chem. Environ. 2017, 21, 1–8. [Google Scholar]
- Breithaupt, J.L.; Smoak, J.M.; Smith, T.J., III; Sanders, C.J.; Hoare, A. Organic carbon burial rates in mangrove sediments: strengthening the global budget. Glob. Biogeochem. Cycles 2012, 26, GB3011. [Google Scholar] [CrossRef]
- McLeod, E.; Chmura, G.L.; Bouillon, S.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Twilley, R.R.; Chen, R.H.; Hargis, T. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut. 1992, 64, 265–288. [Google Scholar] [CrossRef]
- Jennerjahn, T.C.; Ittekot, V. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissen. 2002, 89, 23–30. [Google Scholar] [CrossRef]
- Duarte, C.M.; Middelburg, J.J.; Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2005, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Almahasheer, H.; Serrano, O.; Duarte, C.M.; Arias-Ortiz, A.; Masque, P.; Irigoien, X. Low carbon sink capacity of Red Sea mangroves. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, A.; Libardoni, B.G.; Sanders, C.J. Factors influencing organic carbon accumulation in mangrove ecosystems. Biol. Lett. 2018, 14, 20180237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.-B.; Chen, P.-H.; Huang, J.-S.; Hsueh, M.-L.; Hsieh, L.-Y.; Lee, C.-L.; Lin, H.-J. Factors regulating carbon sinks in mangrove ecosystems. Glob. Chang. Biol. 2018, 24, 4195–4210. [Google Scholar] [CrossRef]
- Cuellar-Martinez, T.; Ruiz-Fernández, A.C.; Sanchez-Cabeza, J.-A.; Pérez-Bernal, L.; Lopez-Mendoza, P.G.; Carnero-Bravo, V.; Agraz-Hernández, C.M.; van Tussenbroek, B.I.; Sandoval-Gil, J.; Cardoso-Mohedano, J.G.; et al. Temporal records of organic carbon stocks and burial rates in Mexican blue carbon coastal ecosystems throughout the Anthropocene. Glob. Planet. Chang. 2020, 192, 103215. [Google Scholar] [CrossRef]
- Lamont, K.; Saintilan, N.; Kelleway, J.J.; Mazumder, D.; Zawadzki, A. Thirty-year repeat measures of mangrove above- and below-ground biomass reveals unexpectedly high carbon sequestration. Ecosystems 2020, 23, 370–382. [Google Scholar] [CrossRef]
- Salmo, S.G., III; Malapit, V.; Garcia, M.C.A.; Pagkalinawan, H.M. Establishing rates of carbon sequestration in mangroves from an earthquake uplift event. Biol. Lett. 2019, 15, 20180799. [Google Scholar] [CrossRef] [Green Version]
- Bernardino, A.F.; Sanders, C.J.; Bissoli, L.B.; Gomes, L.E.D.O.; Kauffman, J.B.; Ferreira, T.O. Land use impacts on benthic bioturbation potential and carbon burial in Brazilian mangrove ecosystems. Limnol. Oceanogr. 2020. [Google Scholar] [CrossRef]
- Soper, F.M.; MacKenzie, R.A.; Sharma, S.; Cole, T.G.; Litton, C.M.; Sparks, J.P. Non-native mangroves support carbon storage, sediment carbon burial, and accretion of coastal ecosystems. Glob. Chang. Biol. 2019, 25, 4315–4326. [Google Scholar] [CrossRef]
- Pérez, A.; Machado, W.; Gutiérrez, D.; Borges, A.C.; Patchineelam, S.R.; Sanders, C.J. Carbon accumulation and storage capacity in mangrove sediments three decades after deforestation within a eutrophic bay. Mar. Pollut. Bull. 2018, 126, 275–280. [Google Scholar] [CrossRef]
- Shaltout, K.H.; Ahmed, M.T.; Alrumman, S.A.; Ahmed, D.A.; Eid, E.M. Evaluation of the carbon sequestration capacity of arid mangroves along nutrient availability and salinity gradients along the Red Sea coastline of Saudi Arabia. Oceanologia 2020, 62, 56–69. [Google Scholar] [CrossRef]
- Cusack, M.; Saderne, V.; Arias-Ortiz, A.; Masqué, P.; Krishnakumar, P.K.; Rabaoui, L.; Qurban, M.A.; Qasem, A.M.; Prihartato, P.; Loughland, R.A.; et al. Organic carbon sequestration and storage in vegetated coastal habitats along the western coast of the Arabian Gulf. Environ. Res. Lett. 2018, 13, 074007. [Google Scholar] [CrossRef]
- Sasmito, S.D.; Kuzyakov, Y.; Lubis, A.A.; Murdiyarso, D.; Hutley, L.B.; Bachri, S.; Friess, D.A.; Martius, C.; Borchard, N. Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. Catena 2020, 104414. [Google Scholar] [CrossRef]
- Breithaupt, J.L.; Smoak, J.M.; Sanders, C.J.; Troxler, T.G. Spatial variability of organic carbon, CaCO3 and nutrient burial rates spanning a mangrove productivity gradient in the Coastal Everglades. Ecosystems 2019, 22, 844–858. [Google Scholar] [CrossRef]
- Kusumaningtyas, M.A.; Hutahaean, A.A.; Fischer, H.W.; Pérez-Mayo, M.; Ransby, D.; Jennerjahn, T.C. Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuar. Coast Shelf Sci. 2019, 218, 310–323. [Google Scholar] [CrossRef]
- Hapsari, K.A.; Jennerjahn, T.C.; Lukas, M.C.; Karius, V.; Behling, H. Intertwined effects of climate and land use change on environmental dynamics and carbon accumulation in a mangrove-fringed coastal lagoon in Java, Indonesia. Glob. Chang. Biol. 2019, 26, 1414–1431. [Google Scholar] [CrossRef] [Green Version]
- Afefe, A.A.; Abbas, M.S.; Soliman, A.S.; Khedr, H.A.; Hatab, B.E. Tree biomass and soil carbon stocks of a mangrove ecosystem on the Egyptian—African Red Sea coast. Fund. Appl. Limnol. 2020, 193, 239–251. [Google Scholar] [CrossRef]
- Wilkinson, G.M.; Besterman, A.; Buelo, C.; Gephart, J.; Pace, M.L. A synthesis of modern organic carbon accumulation rates in coastal and aquatic inland ecosystems. Sci. Rep. 2018, 8, 15736. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Hanggara, B.B.; Lubis, A.A. Sedimentation and soil carbon accumulation in degraded mangrove forests of North Sumatra, Indonesia. BioRxiv 2018, 32519. [Google Scholar] [CrossRef]
- Marchand, C. Soil carbon stocks and burial rates along a mangrove forest chronosequence (French Guiana). For. Ecol. Manag. 2017, 384, 92–99. [Google Scholar] [CrossRef]
- El-Hussieny, S.A.; Ismail, I.M. Role of Avicennia marina (Forssk.) Vierh. of south Sinai, Egypt in atmospheric CO2 sequestration. Int. J. Sci. Res. 2015, 6, 1935–1946. [Google Scholar]
- Eid, E.M.; Khedher, K.M.; Ayed, H.; Arshad, M.; Moatamed, A.; Mouldi, A. Evaluation of carbon stock in the sediment of two mangrove species, Avicennia marina and Rhizophora mucronata, growing in the Farasan Islands, Saudi Arabia. Oceanologia 2020, 62, 200–213. [Google Scholar] [CrossRef]
- Rosentreter, J.A.; Maher, D.T.; Erler, D.V.; Murray, R.H.; Eyre, B.D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. 2018, 4, eaao4985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, D.T.; Santos, I.R.; Schulz, K.G.; Call, M.; Jacobsen, G.E.; Sanders, C.J. Blue carbon oxidation revealed by radiogenic and stable isotopes in a mangrove system. Geophys. Res. Lett. 2017, 44, 4889–4896. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Bernardino, A.F.; Ferreira, T.O.; Bolton, N.W.; Gomes, L.E.D.O.; Nobrega, G.N. Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves. Ecol. Evol. 2018, 8, 5530–5540. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, J.B.; Arifanti, V.B.; Trejo, H.H.; del Carmen Jesús García, M.; Norfolk, J.; Cifuentes, M.; Hadriyanto, D.; Murdiyarso, D. The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Front. Ecol. Environ. 2017, 15, 183–188. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Ruess, R.W.; Feller, I.C. CO2 efflux from cleared mangrove peat. PLoS ONE 2011, 6, e21279. [Google Scholar] [CrossRef] [Green Version]
- Bulmer, R.H.; Lundquist, C.J.; Schwendenmann, L. Sediment properties and CO2 efflux from intact and cleared temperate mangrove forests. Biogeosciences 2015, 12, 6169–6180. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; MacKenzie, R.A.; Tieng, T.; Soben, K.; Tulyasuwan, N.; Resanond, A.; Blate, G.; Litton, C.M. The impacts of degradation, deforestation and restoration on mangrove ecosystem carbon stocks across Cambodia. Sci. Total Environ. 2020, 706, 135416. [Google Scholar] [CrossRef]
- Sidik, F.; Lovelock, C.E. CO2 efflux from shrimp ponds in Indonesia. PLoS ONE 2013, 8, e66329. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, J.B.; Heider, C.; Norfolk, J.; Payton, F. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 2014, 24, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Elwin, A.; Bukoski, J.J.; Jintana, V.; Robinson, E.J.Z.; Clark, J.M. Preservation and recovery of mangrove ecosystem carbon stocks in abandoned shrimp ponds. Sci. Rep. 2019, 9, 18275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arifanti, V.B.; Kauffman, J.B.; Hadriyanto, D.; Murdiyarso, D.; Diana, R. Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. For. Ecol. Manag. 2019, 432, 17–29. [Google Scholar] [CrossRef]
- Lang’at, J.K.; Kairo, J.G.; Mencuccini, M.; Bouillon, S.; Skov, M.W.; Waldron, S.; Huxham, M. Rapid losses of surface elevation following tree girdling and cutting in tropical mangroves. PLoS ONE 2014, 6, e107868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cahoon, D.R.; Hensel, P.; Rybczyk, J.; McKee, K.L.; Proffitt, E.D.; Perez, B.C. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 2003, 91, 1093–1105. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Fourqurean, J.W.; Morris, J.T. Modeled CO2 emissions from coastal wetland transitions to other land uses: Tidal marshes, mangrove forests, and seagrass beds. Front. Mar. Sci. 2017, 4, 143. [Google Scholar] [CrossRef]
- Salmo, S.G., III; Gianan, E.L.D. Post-disturbance carbon stocks and rates of sequestration: Implications on “blue carbon” estimates in Philippine mangroves. Philipp. Sci. Lett. 2019, 12, 122–132. [Google Scholar]
- Peneva-Reed, E.I.; Krauss, K.W.; Bullock, E.L.; Zhu, Z.; Woltz, V.L.; Drexler, J.Z.; Conrad, J.R.; Stehman, S.V. Carbon stock losses and recovery observed for a mangrove ecosystem following a major hurricane in Southwest Florida. Estuar. Coast. Shelf Sci. 2020, 106750. [Google Scholar] [CrossRef]
- Lagomasino, D.; Fatoyinbo, T.; Lee, S.K.; Feliciano, E.; Trettin, C.; Shapiro, A.; Mangora, M.M. Measuring mangrove carbon loss and gain in deltas. Environ. Res. Lett. 2019, 14, 025002. [Google Scholar] [CrossRef]
- Duncan, C.; Primavera, J.H.; Pettorelli, N.; Thompson, J.R.; Loma, R.J.A.; Koldewey, H.J. Rehabilitating mangrove ecosystem services: A case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines. Mar. Pollut. Bull. 2016, 109, 772–782. [Google Scholar] [CrossRef]
- Herrera-Silveira, J.A.; Pech-Cardenas, M.A.; Morales-Ojeda, S.M.; Cinco-Castro, S.; Camacho-Rico, A.; Sosa, J.P.C.; Mendoza-Martinez, J.E.; Pech-Poot, E.Y.; Montero, J.; Teutli-Hernandez, C. Blue carbon of Mexico, carbon stocks and fluxes: a systematic review. PeerJ 2020, 8, e8790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhand, A.; Mukhopadhyay, A.; Chanda, A.; Mukherjee, S.; Das, A.; Das, S.; Hazra, S.; Mitra, D.; Choudhury, S.B.; Rao, K.H. Potential CO2 emission due to loss of above ground biomass from the Indian Sundarban mangroves during the last four decades. J. Indian Soc. Remote Sens. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Brinck, K.; Fischer, R.; Groeneveld, J.; Lehman, S.; De Paula, M.D.; Pütz, S.; Sexton, J.O.; Song, D.; Huth, A. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 2017, 8, 14855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-T.A. Cross-boundary exchanges of carbon and nitrogen in continental margins. In Carbon and Nutrient Fluxes in Continental Margins; Liu, K.-K., Atkinson, L., Quiñones, R., Talaue-McManus, L., Eds.; Springer: New York, NY, USA, 2010; pp. 561–574. [Google Scholar]
- Alongi, D.M.; Mukhopadhyay, S.K. Contributions of mangroves to coastal carbon cycling in low latitude seas. Agric. For. Meteorol. 2015, 213, 266–272. [Google Scholar] [CrossRef]
- Davidson, N.C.; Finlayson, C.M. Updating global coastal wetland areas presented in Davidson and Finlayson (2018). Mar. Freshw. Res. 2019, 70, 1195–1200. [Google Scholar] [CrossRef]
- Leadley, P.W.; Krug, C.B.; Alkemade, R.; Pereira, H.M.; Sumaila, U.R.; Walpole, M.; Marques, A.; Newbold, T.; Teh, L.S.L.; van Kolck, J.; et al. Progress Towards the Aichi Biodiversity Targets: An Assessment of Biodiversity Trends, Policy Scenarios and Key Actions; CBD Technical Series No. 78; Secretariat of the Convention on Biological Diversity: Montreal, QUE, Canada, 2014; Available online: http://www.cbd.int/doc/publications/1019-1020-cbd-ts-78-en.pdf (accessed on 22 June 2020).
- McKenzie, L.J.; Nordlund, L.M.; Jones, B.L.; Cullen-Unsworth, L.C.; Roelfsema, C.; Unsworth, R.K.F. The global distribution of seagrass meadows. Environ. Res. Lett. 2020. [Google Scholar] [CrossRef]
- Mora, C.; Andréfouët, S.; Costello, M.J. Coral reefs and the global network of marine protected areas. Science 2006, 312, 1750–1751. [Google Scholar] [CrossRef]
- Crossland, C.J.; Hatcher, B.G.; Smith, S.V. Role of coral reefs in global ocean production. Coral Reefs 1991, 10, 55–64. [Google Scholar] [CrossRef]
- Alongi, D.M. Coastal Ecosystem Processes; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Kinsey, D.W.; Hopley, D. The significance of coral reefs as global carbon sinks—Response to Greenhouse. Glob. Planet. Chang. 1991, 3, 363–377. [Google Scholar] [CrossRef]
- Selig, E.R.; Bruno, J.F. A global analysis of the effectiveness of marine protected areas in preventing coral loss. PLoS ONE 2010, 5, e9278. [Google Scholar] [CrossRef] [Green Version]
- Hedges, J.I.; Keil, R.G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 1995, 49, 81–115. [Google Scholar] [CrossRef]
- Spalding, D.; Kendirli, E.; Loiver, C.D. The role of forests in global carbon budgeting. In Managing Forest Carbon in a Changing Climate; Ashton, M.S., Tyrrell, M.L., Spalding, D., Gentry, B., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 165–179. [Google Scholar]
- Phillips, O.L.; Lewis, S.L. Evaluating the tropical forest carbon sink. Glob. Chang. Biol. 2014, 20, 2039–2041. [Google Scholar] [CrossRef] [PubMed]
- Tyrrell, M.L.; Ross, J.; Kelty, M. Carbon dynamics in the temperate forest. In Managing Forest Carbon in a Changing Climate; Ashton, M.S., Tyrrell, M.L., Spalding, D., Gentry, B., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 77–107. [Google Scholar]
- Hansen, M.C.; Stehman, S.V.; Potapov, P.V. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. USA 2010, 107, 8650–8655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milakovsky, B.; Frey, B.; James, T. Carbon Dynamics in the Boreal Forest. In Managing Forest Carbon in a Changing Climate; Ashton, M.S., Tyrrell, M.L., Spalding, D., Gentry, B., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 109–135. [Google Scholar]
- Grace, J.; José, J.S.; Meir, P.; Miranda, H.S.; Montes, R.A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 2006, 33, 387–400. [Google Scholar] [CrossRef]
- Sala, O.E. Temperate grasslands. In Global Biodiversity in a Changing Environment; Chapin, F., Sala, O.E., Huber-Sannwald, E., Eds.; Springer: New York, NY, USA, 2001; pp. 121–137. [Google Scholar]
- Dean, C.; Kirkpatrick, J.B.; Harper, R.J.; Eldridge, D.J. Optimising carbon sequestration in arid and semiarid rangelands. Ecol. Eng. 2015, 74, 148–163. [Google Scholar] [CrossRef]
- Jenkins, C.N.; Joppa, L. Expansion of the global terrestrial protected area system. Biol. Conserv. 2009, 142, 2166–2174. [Google Scholar] [CrossRef]
- Gibbon, A.; Silman, M.R.; Mahli, Y.; Fisher, J.B.; Meir, P.; Zimmermann, M.; Dargie, G.C.; Farfan, W.R.; Garcia, K.C. Ecosystem carbon storage across the grassland-forest transition in the High Andes of Manu National Park, Peru. Ecosystems 2010, 13, 1097–1111. [Google Scholar] [CrossRef]
- Mekonnen, A.; Tolera, M. Carbon stock estimation along altitudinal gradient in Sekele-Mariam dry evergreen montane forest, North-Western Ethiopia. Agric. For. Fish. 2019, 8, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Angonese, J.G.; Grau, H.R. Assessment of swaps and persistence in land cover changes in a subtropical periurban region, NW Argentina. Landsc. Urban Plan 2014, 127, 83–93. [Google Scholar] [CrossRef]
- Martínez, M.L.; Pérez-Maqueo, O.; Vázquez, G.; Castillo-Campos, G.; García-Franco, J.; Mehltreter, K.; Equihua, M.; Landgrave, R. Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. For. Ecol. Manag. 2009, 258, 1856–1863. [Google Scholar] [CrossRef]
- Ray, D.K.; Nair, U.S.; Lawton, R.O.; Welch, R.M.; Pielke, R.A., Sr. Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of orographic cloud formation to deforestation in the plains. J. Geophys. Res. 2006, 111, D02108. [Google Scholar] [CrossRef] [Green Version]
- Kidane, Y.; Stahlmann, R.; Beierkuhnlein, C. Vegetation dynamics, and land use and land cover change in the Bale Mountains, Ethiopia. Environ. Monit. Assess. 2012, 184, 7473–7489. [Google Scholar] [CrossRef] [PubMed]
- Hailemariam, S.N.; Soromessa, T.; Teketay, D. Land use and land cover change in the Bale Mountain eco-region of Ethiopia during 1985–2015. Land 2016, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Kintz, D.B.; Young, K.R.; Crews-Meyer, K.A. Implications of land use/land cover change in the buffer zone of a national park in the tropical Andes. Environ. Manag. 2006, 38, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change 1982–2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Evrendilek, F.; Berberoglu, S.; Taskinsu-Meydan, S.; Yilmaz, E. Quantifying carbon budgets of conifer Mediterranean forest ecosystems, Turkey. Environ. Monit. Assess. 2006, 119, 527–543. [Google Scholar] [CrossRef]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; Lopez-Senespleda, E.; Bravo, F.; del Rio, M. Forest management and carbon sequestration in the Mediterranean region: A review. For. Syst. 2017, 26, eR04S. [Google Scholar] [CrossRef]
- Bravo, F.; Bravo-Oviedo, A.; Diaz-Balteiro, L. Carbon sequestration in Spanish Mediterranean forests under two management alternatives: A modelling approach. Eur. J. For. Res. 2008, 127, 225–234. [Google Scholar] [CrossRef]
- Del Rio, M.; Barbeito, I.; Bravo-Oviedo, A.; Calama, R.; Cañellas, I.; Herrero, C.; Montero, G.; Moreno-Fernández, D.; Ruíz-Peinado, R.; Bravo, F. Mediterranean pine forests: management effects on carbon stocks. In Managing Forest Ecosystems: The Challenge of Climate Change; Bravos, F., Le May, V., Jandl, R., Eds.; Springer: Cham, Switzerland, 2017; pp. 301–327. [Google Scholar]
- Cañellas, I.; Sánchez-González, M.; Bogino, S.M.; Adame, P.; Herrero, C.; Roig, S.; Tomé, M.; Paulo., J.A.; Bravo, F. Silviculture and carbon sequestration in Mediterranean oak forests. In Managing Forest Ecosystems: The Challenge of Climate Change; Bravos, F., Le May, V., Jandl, R., Gadow, K., Eds.; Springer: Cham, Switzerland, 2008; pp. 315–336. [Google Scholar]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; Lopez-Senespleda, E.; Montero, G.; Río, M. Do thinnings influence biomass and soil carbon stocks in Meriterranean maritime pinewoods? Eur. J. For. Res. 2013, 132, 253–262. [Google Scholar] [CrossRef]
- Ylänne, H.; Olofsson, J.; Oksanen, L.; Stark, S. Consequences of grazer-induced vegetation transitions on ecosystem carbon storage in the tundra. Funct. Ecol. 2018, 32, 1091–1102. [Google Scholar] [CrossRef]
- Sørensen, M.V.; Strimbeck, R.; Nystuen, K.O.; Kapas, R.E.; Enquist, B.J.; Graae, B.J. Draining the pool? Carbon storage and fluxes in three alpine plant communities. Ecosystems 2017, 21, 316–330. [Google Scholar] [CrossRef]
- Dai, L.; Wu, G.; Zhao, J.; Kong, H.; Shao, G.; Deng, H. Carbon cycling of alpine tundra ecosystems on Changbai Mountain and its comparison with arctic tundra. Sci. China Ser. D Earth Sci. 2002, 45, 903–910. [Google Scholar] [CrossRef]
- Michaelson, G.J.; Ping, C.L.; Kimble, J.M. Carbon storage and distribution in tundra soils of Arctic Alaska, USA. Arct. Alp. Res. 1996, 28, 414–424. [Google Scholar] [CrossRef]
- Mack, M.C.; Schuur, E.A.G.; Bret-Harte, M.S.; Shaver, G.R.; Chapin, F.S., III. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 2004, 431, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Campeau, A.B.; Lafleur, P.M.; Humphreys, E.R. Landscape-scale variability in soil organic carbon storage in the central Canadian Arctic. Can. J. Soil Sci. 2014, 94, 477–488. [Google Scholar] [CrossRef]
- Kaiser, C.; Meyer, H.; Biasi, C.; Rusalimova, O.; Barsukov, P.; Richter, A. Storage and mineralization of carbon and nitrogen in soils of a frost-boil tundra ecosystem in Siberia. Appl. Soil Ecol. 2005, 29, 173–183. [Google Scholar] [CrossRef]
- Sjögersten, S.; Wookey, P.A. The impact of climate change on ecosystem carbon dynamics at the Scadinavian mountain birch forest—Tundra heath ecotone. AMBIO 2009, 38, 2–10. [Google Scholar] [CrossRef]
- Kwon, H.-J.; Oechel, W.C.; Zullueta, R.C.; Hastings, S.J. Effects of climate variability on carbon sequestration among adjacent wet sedge tundra and moist tussock tundra ecosystems. J. Geophys. Res. 2006, 111, G03014. [Google Scholar] [CrossRef]
- Runkle, B.R.K.; Sachs, T.; Wille, C.; Pfeiffer, E.-M.; Kutzbach, L. Bulk partitioning the growing season net ecosystem exchange of CO2 in Siberian tundra reveals the seasonality of its carbon sequestration strength. Biogeosciences 2013, 10, 1337–1349. [Google Scholar] [CrossRef] [Green Version]
- Parmentier, F.J.W.; van der Molen, M.K.; van Huissteden, J.; Karsanaev, S.A.; Kononov, A.V.; Suzdalov, D.A.; Maximov, T.C.; Dolman, A.J. Longer growing seasons do not increase net carbon uptake in the northeastern Siberian tundra. J. Geophys. Res. 2011, 116, G04013. [Google Scholar] [CrossRef] [Green Version]
- Kutzbach, L.; Wille, C.; Pfeiffer, E.-M. The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, northern Siberia. Biogeosciences 2007, 4, 1953–2005. [Google Scholar] [CrossRef] [Green Version]
- Leifeld, J.; Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 2018, 9, 1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Country | AGBCorg | BGBCorg | SCorg | Total Corg Stock |
---|---|---|---|---|
Africa | ||||
Benin | 41.6 | 15.8 | ND | ND |
Cameroon | 102.2 | 38.8 | 1961.1 | 2102.1 |
Congo | 537.7 | 15.1 | 967.4 | 1520.2 |
Gabon | 130.0 | 372.0 | 504.3 | 786.3 |
Ghana | 165.1 | 37.5 | 310.9 | 466.0 |
Guinea | 59.6 | 22.7 | ND | ND |
Ivory Coast | 99.8 | 38.8 | ND | ND |
Kenya | 101.1 | 68.8 | 643.6 | 806.7 |
Liberia | 50.0 | 297.5 | 342.0 | 950.0 |
Nigeria | 69.2 | 26.3 | ND | ND |
Madagascar | 70.6 | 35.8 | 368.3 | 457.3 |
Mozambique | 95.8 | 36.5 | 216.3 | 348.6 |
Senegal | 34.0 | 401.0 | 240.0 | 675.0 |
Sierra Leone | 62.7 | 23.8 | ND | ND |
South Africa | 6.7 | ND | 228.1 | 234.8 |
Tanzania | 55.7 | 50.2 | 293.4 | 397.1 |
Togo | 42.9 | 16.3 | ND | ND |
Southeast Asia | ||||
Cambodia | ND | ND | ND | 657.4 |
Indonesia | 142.0 | 335.9 | 420.1 | 794.9 |
Malaysia | 119.7 | 5.9 | 763.0 | 894.4 |
Myanmar | 20.7 | 18.4 | 167.0 | 206.1 |
Philippines | 161.4 | 63.1 | 450.2 | 549.0 |
Singapore | 105.0 | 39.9 | 307.3 | 452.3 |
Thailand | 68.0 | 108.7 | 604.7 | 754.1 |
Vietnam | 120.0 | 21.8 | 768.0 | 968.7 |
South and East Asia | ||||
Bangladesh | 81.4 | 42.3 | 438.9 | 565.6 |
China | 89.5 | 30.3 | 380.1 | 499.9 |
India | 88.0 | 33.6 | 81.3 | 248.5 |
Japan | 57.9 | 27.0 | 154.2 | 239.1 |
Pakistan | 93.3 | 39.0 | ND | ND |
Sri Lanka | 151.7 | 30.0 | 362.1 | 543.7 |
Central and North America and Caribbean | ||||
Belize | 42.4 | 725.0 | 333.4 | 738.3 |
Costa Rica | 101.4 | 484.0 | 480.5 | 845.0 |
Dominican Republic | 50.5 | 112.3 | 690.8 | 853.5 |
Honduras | 85.5 | 509 | 794.0 | 1222.4 |
Mexico | 109.1 | 88.8 | 643.1 | 810.7 |
Panama | 33.0 | 365.0 | 531.0 | 929.0 |
USA | 62.7 | 12.6 | 201.4 | 272.5 |
South America | ||||
Brazil | 87.9 | 33.8 | 310.6 | 432.3 |
Colombia | 84.2 | 382.2 | 159.0 | 648.2 |
Ecuador | 100.7 | ND | 407.0 | 507.7 |
French Guiana | 91.2 | 31.8 | 149.2 | 272.1 |
Guyana | 176.5 | ND | ND | ND |
Middle East | ||||
Egypt | ND | ND | 389.4 | ND |
Iran | 46.1 | 65.6 | 227.3 | 339.0 |
Saudi Arabia | ND | ND | 92.0 | ND |
United Arab Emirates | 25.4 | 31.7 | 123.2 | 180.4 |
Australia and New Zealand | ||||
Australia | 84.8 | 177.0 | 726.6 | 870.3 |
New Zealand | 17.0 | 21.4 | 73.5 | 103.0 |
Pacific Islands | ||||
Hawaii | 179.3 | 78.3 | 197.1 | 464.0 |
Kosrae | 256.4 | 237.9 | 694.1 | 1188.0 |
Palau | 117.9 | 100.0 | 522.1 | 739.9 |
Yap | 249.9 | 201.6 | 714.1 | 1165.7 |
Global Means | ||||
AGBCorg | BGBCorg | SCorg | Total Corg Stock | |
Mean | 109.3 | 80.9 | 565.4 | 738.9 |
±1SE | 5.0 | 9.5 | 25.7 | 27.9 |
n | 274 | 176 | 243 | 224 |
Median | 94.1 | 34.1 | 500.5 | 702.5 |
Min | 1.9 | 0.3 | 37.0 | 46.3 |
Max | 537.7 | 866.0 | 2102.7 | 2205.0 |
Disturbance | Location | Method for Estimating CO2 Emission | Years Since Disturbance | CO2 eq Emission | Reference |
---|---|---|---|---|---|
Deforestation | Belize | Flux chambers | 1 | 106 | [53] |
20 | 30 | ||||
New Zealand | 0.1–8 | 21.4 | [54] | ||
Cambodia | 10–15 | 48 | [55] | ||
Conversion to aquaculture and/or cattle pastures | Indonesia | 25 | 16 | [56] | |
Indonesia | 25 | 44 | |||
Dominican Republic | Change in SCorg | 29 | 82 | [57] | |
NE Brazil | Change in ecosystem Corg stock | 8–12 | 1392 a | [51] | |
Mexico | 7–30 | 2610 a | [52] | ||
Honduras | ND | 1068.4 a | |||
Costa Rica | ND | 1811.9 a | |||
Indonesia | ND | 2544.0 a | |||
Dominican Republic | ND | 2781.5 a | |||
Thailand | 10 | 179 | [58] | ||
Mahakam delta, Borneo | 16 | 120 | [59] | ||
Tree mortality | Kenya | Change in soil volume and gas flux | 2 | 25.3–35.6 | [60] |
Hurricane/typhoon damage | Honduras | Difference in C inventory between disturbed and undisturbed mangroves | 2 | 18.7 | [61] |
Global data | 30 | 33.9 | |||
30 | 27.2 | [62] | |||
30 | 20.4 | ||||
Vietnam | Difference in C inventory between disturbed and undisturbed mangroves | 14 | 106.3 | [63] | |
SW Florida | Loss total ecosystem Corg | 14 | 25.7–216.5 a | [64] | |
Natural erosion, conversion to agriculture | Rufiji delta | C inventory and remote sensing | 16 | 119.7 | [65] |
Zambezi delta | 16 | 98.9 | |||
Ganges delta | 16 | 98.6 | |||
Mekong delta | 16 | 88.4 | |||
Abandoned fishponds | Philippines | ∆in C inventory abandoned and natural mangroves | 11–15 | 407.9 a | [66] |
Various land use changes | Mexico | ∆in C inventory, loss of mangroves | 20 | 14.8 | [67] |
Sundarbans, India | 38 | 3.7 b | [68] |
Ecosystem | Area (106 ha) | Mean C Stock (Mg Corg ha−1) | Global Mean C Stock (Pg Corg) | Mean C Sequestration (g Corg m−2 a−1) | Global C Sequestration (Tg Corg a−1) | Current Conversion Rate (% a−1) | Carbon Emissions (Pg CO2-eq a−1) |
---|---|---|---|---|---|---|---|
Mangrove | 8.34 [6] | 738.9 a | 6.17 a | 179.6 a | 14.98 | 0.16 [13,15] | 0.088 b (0.036) |
Salt Marsh | 5.50 [72] | 317.2 [6] | 1.74 | 212.0 [6] | 11.66 | 1.32 [73] | 0.084 |
Seagrass | 16.0 [74] | 163.3 [6] | 2.61 | 220.7 [6] | 35.31 | 1.5 [7] | 0.144 |
Coral Reef | 52.7 [75] | 0.6 [76,77] | 0.03 | 5.69 [78] | 3.0 | 0.43 [79] | 0.0005 |
Tropical coastal ocean | 710.0 [71] | 50.7 [80] | 36.0 | 0.55 [71] | 3.9 | 0.93 c | 0.5 |
Tropical forest | 1760 [81] | 314.2 [81] | 553.0 | 62.5 | 1100.0 [82] | 0.53 [83] | 10.8 |
Temperate forest | 1040 [81] | 280.8 [81] | 292.1 | 28.9 | 300.0 [83] | 0.70 [84] | 7.5 |
Boreal forest | 1370 [81] | 288.3 [85] | 395.0 | 18.0 [85] | 246.6 | 0.80 [84] | 11.6 |
Tropical grassland/savanna | 2250 [81] | 202.4 [86] | 455.4 | 14.0 [86] | 315.0 | 0.70 [86] | 11.7 |
Temperate grassland | 1250 [81] | 181.1 [86] | 226.4 | 16.8 | 210.0 [86] | 0.55 [87] | 4.6 |
Desert and xericshrub land | 4550 [81] | 26.3 [88] | 119.7 | 9.5 [88] | 432.3 | 0.3 [88] | 1.3 |
Montane grasslands/forests | 519 [89] | 173.9 [90,91] | 90.3 | ND | ND | 0.49 [92,93,94,95,96,97,98] | 1.6 |
Mediterraneanforest | 322 [89] | 271.4 [99,100,101,102,103,104] | 87.4 | 65.8 [101,102,103] | 212.8 | ND | ND |
Tundra | 835 [89] | 1779.6 [105,106,107,108,109,110,111] | 1486.0 | 63.2 [112,113,114,115,116] | 528.0 | ND | ND |
Boreal peatlands | 361 [117] | 1182.8 | 427.0 [117] | 53.1 [117] | 191.7 | ND | 0.26 [117] |
Tropical peatlands | 58.7 [117] | 2030.7 | 119.2 [117] | 54.2 [117] | 31.8 | ND | 1.48 [117] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alongi, D.M. Global Significance of Mangrove Blue Carbon in Climate Change Mitigation. Sci 2020, 2, 67. https://doi.org/10.3390/sci2030067
Alongi DM. Global Significance of Mangrove Blue Carbon in Climate Change Mitigation. Sci. 2020; 2(3):67. https://doi.org/10.3390/sci2030067
Chicago/Turabian StyleAlongi, Daniel M. 2020. "Global Significance of Mangrove Blue Carbon in Climate Change Mitigation" Sci 2, no. 3: 67. https://doi.org/10.3390/sci2030067
APA StyleAlongi, D. M. (2020). Global Significance of Mangrove Blue Carbon in Climate Change Mitigation. Sci, 2(3), 67. https://doi.org/10.3390/sci2030067