Advancements and Challenges in Colloidal Quantum Dot Infrared Photodetectors: Strategies for Short-Wave Infrared, Mid-Wave Infrared, and Long-Wave Infrared Applications
Abstract
1. Introduction
2. Characterization of QDs
2.1. Fundamentals of QDs
2.2. Solution Process of QDs
3. QD Infrared Photodetectors
3.1. Mechanisms of QD Photodetectors
3.2. States-of-the-Art for QD Infrared Photodetectors
3.2.1. SWIR Applications
3.2.2. MWIR Applications
3.2.3. For LWIR Applications
4. Conclusions and Prospects
- (1)
- Wavelength Range Limitations: Currently, the commercial applications of colloidal quantum dot infrared detectors are mainly concentrated in the near-infrared and short-wave bands. There remains a significant gap in their effectiveness for medium- and long-wave band applications. While focal plane detectors have been reported for the medium-wave band, current research primarily focuses on HgTe quantum dots. To achieve a long-wavelength response, quantum dots must be of considerable size, even approaching the Bohr radius. Consequently, such large quantum dots typically exhibit poor stability. The relatively low stability of HgTe quantum dots poses challenges for their application of colloidal quantum dots in the long-wave band, and there are few reports on long-wave application. Perhaps doping strategies or hybrid material designs are feasible solutions to extend the detection wavelength.
- (2)
- Material Limitations: Research on colloidal quantum dots has predominantly focused on lead- and mercury-based quantum dots, both of which contain heavy metals. Although there are reports on environmentally friendly quantum dot materials, their performance remains at a relatively low level. Therefore, there is a need to actively search for new materials that offer non-toxic and high-performance quantum dots. InP quantum dots and other materials that do not contain heavy metals (Hg, Pb, etc.) have gradually entered people’s field of vision due to their excellent optical properties.
- (3)
- Future Developments: The future development of colloidal quantum dot infrared detectors should focus on large arrays and small pixels. Scalable and precise fabrication methods, such as 3D nanoprinting and roll-to-roll manufacturing, have great potential for applications in low-cost, large-scale CQD production. Many challenges remain, such as ensuring compatibility between the quantum dot and the readout circuit and realizing the process realization; the inherent complexity of the deposition process often affects the quality of the film. Recent advancements in encapsulation and passivation techniques can improve the lifespan of photodetectors. For instance, studies employing atomic layer deposition (ALD) coatings or surface functionalization would be valuable additions.
Author Contributions
Funding
Conflicts of Interest
References
- Herschel, W., II. Experiments on the refrangibility of the invisible rays of the sun. Philos. Mag. 1800, 8, 9–15. [Google Scholar] [CrossRef]
- Guyot-Sionnest, P.; Ackerman, M.M.; Tang, X. Colloidal quantum dots for infrared detection beyond silicon. J. Chem. Phys. 2019, 151, 060901. [Google Scholar] [CrossRef]
- Rogalski, A. Recent progress in infrared detector technologies. Infrared Phys. Technol. 2011, 54, 136–154. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Gao, Y.; Luo, P.; Su, J.; Han, W.; Liu, K.; Li, H.; Zhai, T. 2D Metal Chalcogenides for IR Photodetection. Small 2019, 15, 1901347. [Google Scholar] [CrossRef]
- Bianconi, S.; Mohseni, H. Recent advances in infrared imagers: Toward thermodynamic and quantum limits of photon sensitivity. Rep. Prog. Phys. 2020, 83, 044101. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Li, Q.; Zhang, W.; Yang, Y.; Qiu, M. Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers. IEEE Photonics J. 2015, 7, 1–8. [Google Scholar] [CrossRef]
- Gul, H.Z.; Sakong, W.; Ji, H.; Torres, J.; Yi, H.; Ghimire, M.K.; Yoon, J.H.; Yun, M.H.; Hwang, H.R.; Lee, Y.H.; et al. Semimetallic Graphene for Infrared Sensing. ACS Appl. Mater. Interfaces 2019, 11, 19565–19571. [Google Scholar] [CrossRef]
- Rogalski, A.; Martyniuk, P.; Kopytko, M. Challenges of small-pixel infrared detectors: A review. Rep. Prog. Phys. 2016, 79, 046501. [Google Scholar] [CrossRef]
- Yu, X.; Ji, Y.; Shen, X.; Le, X. Progress in Advanced Infrared Optoelectronic Sensors. Nanomaterials 2024, 14, 845. [Google Scholar] [CrossRef]
- Konstantatos, G.; Sargent, E.H. Colloidal quantum dot photodetectors. Infrared Phys. Technol. 2011, 54, 278–282. [Google Scholar] [CrossRef]
- Nozik, A.J.; Beard, M.C.; Luther, J.M.; Law, M.; Ellingson, R.J.; Johnson, J.C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 2010, 110, 6873–6890. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, Z.; Liang, G.; Li, Y.; Lai, R.; Ding, T.; Wu, K. Observation of a phonon bottleneck in copper-doped colloidal quantum dots. Nat. Commun. 2019, 10, 4532. [Google Scholar] [CrossRef]
- Kilina, S.V.; Neukirch, A.J.; Habenicht, B.F.; Kilin, D.S.; Prezhdo, O.V. Quantum zeno effect rationalizes the phonon bottleneck in semiconductor quantum dots. Phys. Rev. Lett. 2013, 110, 180404. [Google Scholar] [CrossRef] [PubMed]
- Ren, A.; Yuan, L.; Xu, H.; Wu, J.; Wang, Z. Recent progress of III–V quantum dot infrared photodetectors on silicon. J. Mater. Chem. C 2019, 7, 14441–14453. [Google Scholar] [CrossRef]
- Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F.H.; Konstantatos, G. Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors. Adv. Mater. 2015, 27, 176–180. [Google Scholar] [CrossRef]
- Nakotte, T.; Luo, H.; Pietryga, J. PbE (E = S, Se) Colloidal Quantum Dot-Layered 2D Material Hybrid Photodetectors. Nanomaterials 2020, 10, 172. [Google Scholar] [CrossRef]
- Rossetti, R.; Nakahara, S.; Brus, L.E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79, 1086–1088. [Google Scholar] [CrossRef]
- Lin, P.-H.; Ghosh, S.; Chang, G.-E. Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications. Sensors 2024, 24, 1263. [Google Scholar] [CrossRef]
- Sargent, E.H. Colloidal quantum dot solar cells. Nat. Photonics 2012, 6, 133–135. [Google Scholar] [CrossRef]
- Weidman, M.C.; Beck, M.E.; Hoffman, R.S.; Prins, F.; Tisdale, W.A. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 2014, 8, 6363–6371. [Google Scholar] [CrossRef]
- Sharma, A.; Mahajan, C.; Rath, A.K. Reduction of Trap and Polydispersity in Mutually Passivated Quantum Dot Solar Cells. ACS Appl. Energy Mater. 2020, 3, 8903–8911. [Google Scholar] [CrossRef]
- Wang, X.; Xu, K.; Yan, X.; Xiao, X.; Aruta, C.; Foglietti, V.; Ning, Z.; Yang, N. Amorphous ZnO/PbS Quantum Dots Heterojunction for Efficient Responsivity Broadband Photodetectors. ACS Appllied Mater. Interfaces 2020, 12, 8403–8410. [Google Scholar] [CrossRef]
- Tang, X.; Ackerman, M.M.; Shen, G.; Guyot-Sionnest, P. Towards Infrared Electronic Eyes: Flexible Colloidal Quantum Dot Photovoltaic Detectors Enhanced by Resonant Cavity. Small 2019, 15, e1804920. [Google Scholar] [CrossRef]
- Tang, X.; Chen, M.; Kamath, A.; Ackerman, M.M.; Guyot-Sionnest, P. Colloidal Quantum-Dots/Graphene/Silicon Dual-Channel Detection of Visible Light and Short-Wave Infrared. ACS Photonics 2020, 7, 1117–1121. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z.; Ding, Y.; Chen, Z. Flexible Broadband Photodetectors Enabled by MXene/PbS Quantum Dots Hybrid Structure. IEEE Electron. Device Lett. 2021, 42, 1814–1817. [Google Scholar] [CrossRef]
- Böberl, M.; Kovalenko, M.V.; Gamerith, S.; List, E.J.W.; Heiss, W. Inkjet-Printed Nanocrystal Photodetectors Operating up to 3 μm Wavelengths. Adv. Mater. 2007, 19, 3574–3578. [Google Scholar] [CrossRef]
- Cook, B.; Gong, M.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J. Inkjet Printing Multicolor Pixelated Quantum Dots on Graphene for Broadband Photodetection. ACS Appl. Nano Mater. 2019, 2, 3246–3252. [Google Scholar] [CrossRef]
- Tang, X.; Chen, M.; Ackerman, M.M.; Melnychuk, C.; Guyot-Sionnest, P. Direct Imprinting of Quasi-3D Nanophotonic Structures into Colloidal Quantum-Dot Devices. Adv. Mater. 2020, 32, e1906590. [Google Scholar] [CrossRef]
- García de Arquer, F.P.; Armin, A.; Meredith, P.; Sargent, E.H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100. [Google Scholar] [CrossRef]
- Rogalski, A. Scaling infrared detectors—Status and outlook. Rep. Prog. Phys. 2022, 85, 126501. [Google Scholar] [CrossRef]
- Billaha, M.A.; Das, M.K. Performance analysis of AlGaAs/GaAs/InGaAs-based asymmetric long-wavelength QWIP. Appl. Phys. A 2019, 125, 457. [Google Scholar] [CrossRef]
- Cellek, O.O.; Ozer, S.; Besikci, C. High responsivity InP-InGaAs quantum-well infrared photodetectors: Characteristics and focal plane array performance. IEEE J. Quantum Electron. 2005, 41, 980–985. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhattacharyya, A.; Sen, G.; Mukhopadhyay, B. Optimization of different structural parameters of GeSn/SiGeSn Quantum Well Infrared Photodetectors (QWIPs) for low dark current and high responsivity. J. Comput. Electron. 2021, 20, 1224–1233. [Google Scholar] [CrossRef]
- Ghosh, S.; Mukhopadhyay, B.; Sen, G.; Basu, P.K. Performance analysis of GeSn/SiGeSn quantum well infrared photodetector in terahertz wavelength region. Phys. E Low-Dimens. Syst. Nanostructures 2020, 115, 113692. [Google Scholar] [CrossRef]
- Guériaux, V.; Nedelcu, A.; Coulibaly, A.; Marcadet, X.; March, K.; Enouz-Vedrenne, S. Structural and chemical study of AlGaAs/InGaAs based QWIPs. Infrared Phys. Technol. 2011, 54, 199–203. [Google Scholar] [CrossRef]
- Mahmodi, H.; Hashim, M.R.; Allahyarzadeh, G. Design and study of a GeSn-SiGeSn single quantum well structure for infrared photodetection. In Proceedings of the 2012 International Conference on Enabling Science and Nanotechnology, Johor Bahru, Malaysia, 5–7 January 2012; pp. 1–2. [Google Scholar]
- Wang, Y.; Herron, N. Photoconductivity of CdS nanocluster-doped polymers. Chem. Phys. Lett. 1992, 200, 71–75. [Google Scholar] [CrossRef]
- Guyot-Sionnest, P.; Wang, C. Fast Voltammetric and Electrochromic Response of Semiconductor Nanocrystal Thin Films. J. Phys. Chem. B 2003, 107, 7355–7359. [Google Scholar] [CrossRef]
- Rauch, T.; Böberl, M.; Tedde, S.F.; Fürst, J.; Kovalenko, M.V.; Hesser, G.; Lemmer, U.; Heiss, W.; Hayden, O. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photonics 2009, 3, 332–336. [Google Scholar] [CrossRef]
- Kobayashi, N.P.; Talin, A.A.; Islam, M.S.; Davydov, A.V.; Pimpinella, R.E.; Ciani, A.; Guyot-Sionnest, P.; Grein, C. HgTe colloidal quantum dot LWIR infrared photodetectors. In Low-Dimensional Materials and Devices; SPIE: Bellingham, WA, USA, 2015; pp. 73–79. [Google Scholar]
- Shen, T.; Li, F.; Zhang, Z.; Xu, L.; Qi, J. High-Performance Broadband Photodetector Based on Monolayer MoS2 Hybridized with Environment-Friendly CuInSe2 Quantum Dots. ACS Appl. Mater. Interfaces 2020, 12, 54927–54935. [Google Scholar] [CrossRef]
- Garcia, D.A.; Mendoza, L.; Vizuete, K.; Debut, A.; Arias, M.T.; Gavilanes, A.; Terencio, T.; Avila, E.; Jeffryes, C.; Dahoumane, S.A. Sugar-Mediated Green Synthesis of Silver Selenide Semiconductor Nanocrystals under Ultrasound Irradiation. Molecules 2020, 25, 5193. [Google Scholar] [CrossRef]
- Jeong, H.; Song, J.H.; Jeong, S.; Chang, W.S. Graphene/PbS quantum dot hybrid structure for application in near-infrared photodetectors. Sci. Rep. 2020, 10, 12475. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, J.; Wei, Y.; Wang, Y.; Cheng, L.; Feng, Z.; Yang, Y.; Wang, Z.L.; Sun, Q. Ambipolar tribotronic transistor of MoTe2. Nano Res. 2023, 16, 11907–11913. [Google Scholar] [CrossRef]
- Kim, J.; Baik, S.S.; Ryu, S.H.; Sohn, Y.; Park, S.; Park, B.-G.; Denlinger, J.; Yi, Y.; Choi, H.J.; Kim, K.S. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 2015, 349, 723–726. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, Y.; Li, X.; Liu, Y.; Liu, F.; Wu, W. Recent Progress of Quantum Dot Infrared Photodetectors. Adv. Opt. Mater. 2023, 11, 2300970. [Google Scholar] [CrossRef]
- Sashchiuk, A.; Langof, L.; Chaim, R.; Lifshitz, E. Synthesis and characterization of PbSe and PbSe/PbS core–shell colloidal nanocrystals. J. Cryst. Growth 2002, 240, 431–438. [Google Scholar] [CrossRef]
- Keuleyan, S.; Lhuillier, E.; Guyot-Sionnest, P. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection. J. Am. Chem. Soc. 2011, 133, 16422–16424. [Google Scholar] [CrossRef]
- Greboval, C.; Chu, A.; Goubet, N.; Livache, C.; Ithurria, S.; Lhuillier, E. Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration. Chem. Rev. 2021, 121, 3627–3700. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Li, C.; Chen, X.; Wang, Q. Controlled Synthesis of Ag2S Quantum Dots and Experimental Determination of the Exciton Bohr Radius. J. Phys. Chem. C 2014, 118, 4918–4923. [Google Scholar] [CrossRef]
- Yu, M.-X.; Ma, J.-J.; Wang, J.-M.; Cai, W.-G.; Zhang, Z.; Huang, B.; Sun, M.-Y.; Cheng, Q.-Y.; Zhang, Z.-L.; Pang, D.-W.; et al. Ag2Te Quantum Dots as Contrast Agents for Near-Infrared Fluorescence and Computed Tomography Imaging. ACS Appl. Nano Mater. 2020, 3, 6071–6077. [Google Scholar] [CrossRef]
- Hu, J.; Yang, S.; Zhang, Z.; Li, H.; Perumal Veeramalai, C.; Sulaman, M.; Saleem, M.I.; Tang, Y.; Jiang, Y.; Tang, L.; et al. Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures. J. Mater. Sci. Technol. 2021, 68, 216–226. [Google Scholar] [CrossRef]
- Liu, Y.; Gibbs, M.; Puthussery, J.; Gaik, S.; Ihly, R.; Hillhouse, H.W.; Law, M. Dependence of Carrier Mobility on Nanocrystal Size and Ligand Length in PbSe Nanocrystal Solids. Nano Lett. 2010, 10, 1960–1969. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liu, H.; Wen, S.; Du, Y.; Gao, F. Optimizing the Infrared Photoelectric Detection Performance of Pbs Quantum Dots through Solid-State Ligand Exchange. Materials 2022, 15, 9058. [Google Scholar] [CrossRef] [PubMed]
- Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J.J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T.; et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 2017, 11, 366–371. [Google Scholar] [CrossRef]
- Mi, L.; Chang, Y.; Zhang, Y.; Xu, E.; Jiang, Y. Hybrid perovskite exchange of PbS quantum dots for fast and high-detectivity visible–near-infrared photodetectors. J. Mater. Chem. C 2020, 8, 7812–7819. [Google Scholar] [CrossRef]
- He, Z.; Liu, H.; Xie, F.; Bai, M.; Wen, S.; Zhao, J.; Liu, W.; Liao, M. Lead Selenium Colloidal Quantum Dots for 400-2600 nm Broadband Photodetectors. J. Nanomater. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- Yang, J.; Lv, Y.; He, Z.; Wang, B.; Chen, S.; Xiao, F.; Hu, H.; Yu, M.; Liu, H.; Lan, X.; et al. Bi2S3 Electron Transport Layer Incorporation for High-Performance Heterostructure HgTe Colloidal Quantum Dot Infrared Photodetectors. ACS Photonics 2023, 10, 2226–2233. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, L.; Schreier, J.; Bi, Y.; Black, A.; Malla, A.; Goossens, S.; Konstantatos, G. Silver telluride colloidal quantum dot infrared photodetectors and image sensors. Nat. Photonics 2024, 18, 236–242. [Google Scholar] [CrossRef]
- Wang, N.; Xue, C.; Wan, F.; Zhao, Y.; Xu, G.; Liu, Z.; Zheng, J.; Zuo, Y.; Cheng, B.; Wang, Q. High-Performance GeSn Photodetector Covering All Telecommunication Bands. IEEE Photonics J. 2021, 13, 1–9. [Google Scholar] [CrossRef]
- Ghosh, S.; Bansal, R.; Sun, G.; Soref, R.A.; Cheng, H.-H.; Chang, G.-E. Design and Optimization of GeSn Waveguide Photodetectors for 2-µm Band Silicon Photonics. Sensors 2022, 22, 3978. [Google Scholar] [CrossRef]
- Ghosh, S.; Mukhopadhyay, B.; Sen, G.; Basu, P.K. Study of Si-Ge-Sn based Heterobipolar Phototransistor (HPT) exploiting Quantum Confined Stark Effect and Franz Keldysh effect with and without resonant cavity. Phys. E Low-Dimens. Syst. Nanostructures 2019, 106, 62–67. [Google Scholar] [CrossRef]
- Cui, J.; Fang, R.; Liu, X.; Wu, Y.; Huang, Q.; Liu, Z.; Yi, F.; Liu, Z.; Zuo, Y.; Cheng, B.; et al. Comprehensive Investigation of GeSn Metasurface Photodetector for Short-Wave Infrared Application. ACS Photonics 2024, 11, 4126–4133. [Google Scholar] [CrossRef]
- Atalla, M.R.M.; Lemieux-Leduc, C.; Assali, S.; Koelling, S.; Daoust, P.; Moutanabbir, O. Extended short-wave infrared high-speed all-GeSn PIN photodetectors on silicon. APL Photonics 2024, 9, 056103. [Google Scholar] [CrossRef]
- Atalla, M.R.M.; Assali, S.; Koelling, S.; Attiaoui, A.; Moutanabbir, O. High-Bandwidth Extended-SWIR GeSn Photodetectors on Silicon Achieving Ultrafast Broadband Spectroscopic Response. ACS Photonics 2022, 9, 1425–1433. [Google Scholar] [CrossRef]
- Dias, S.; Kumawat, K.; Biswas, S.; Krupanidhi, S.B. Solvothermal Synthesis of Cu2SnS3 Quantum Dots and Their Application in Near-Infrared Photodetectors. Inorg. Chem. 2017, 56, 2198–2203. [Google Scholar] [CrossRef]
- Xiao, X.; Xu, K.; Yin, M.; Qiu, Y.; Zhou, W.; Zheng, L.; Cheng, X.; Yu, Y.; Ning, Z. High quality silicon: Colloidal quantum dot heterojunction based infrared photodetector. Appl. Phys. Lett. 2020, 116, 101102. [Google Scholar] [CrossRef]
- Biondi, M.; Choi, M.-J.; Wang, Z.; Wei, M.; Lee, S.; Choubisa, H.; Sagar, L.K.; Sun, B.; Baek, S.-W.; Chen, B.; et al. Facet-Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors. Adv. Mater. 2021, 33, 2101056. [Google Scholar] [CrossRef]
- Grotevent, M.J.; Hail, C.U.; Yakunin, S.; Bachmann, D.; Calame, M.; Poulikakos, D.; Kovalenko, M.V.; Shorubalko, I. Colloidal HgTe Quantum Dot/Graphene Phototransistor with a Spectral Sensitivity Beyond 3 microm. Adv. Sci. 2021, 8, 2003360. [Google Scholar] [CrossRef]
- Shikoh, A.S.; Choi, G.S.; Hong, S.; Jeong, K.S.; Kim, J. High-sensitivity hybrid PbSe/ITZO thin film-based phototransistor detecting from 2100 to 2500 nm near-infrared illumination. Nanotechnology 2022, 33, 165501. [Google Scholar] [CrossRef]
- Leemans, J.; Pejović, V.; Georgitzikis, E.; Minjauw, M.; Siddik, A.B.; Deng, Y.-H.; Kuang, Y.; Roelkens, G.; Detavernier, C.; Lieberman, I.; et al. Colloidal III–V Quantum Dot Photodiodes for Short-Wave Infrared Photodetection. Adv. Sci. 2022, 9, 2200844. [Google Scholar] [CrossRef]
- Xu, Q.; Cheong, I.T.; Song, H.; Van, V.; Veinot, J.G.C.; Wang, X. Heterogeneous Integration of Colloidal Quantum Dot Inks on Silicon Enables Highly Efficient and Stable Infrared Photodetectors. ACS Photonics 2022, 9, 2792–2801. [Google Scholar] [CrossRef]
- Zhang, Y.; Vafaie, M.; Xu, J.; Pina, J.M.; Xia, P.; Najarian, A.M.; Atan, O.; Imran, M.; Xie, K.; Hoogland, S.; et al. Electron-Transport Layers Employing Strongly Bound Ligands Enhance Stability in Colloidal Quantum Dot Infrared Photodetectors. Adv. Mater. 2022, 34, 2206884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, L.; Yang, J.; Liu, J.; Lu, S.; Liang, X.; Zhao, X.; Yang, Y.; Hu, J.; Hu, L.; et al. High-Performance and Stable Colloidal Quantum Dots Imager via Energy Band Engineering. Nano Lett. 2023, 23, 6489–6496. [Google Scholar] [CrossRef]
- Guyot-Sionnest, P.; Roberts, J.A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots. Appl. Phys. Lett. 2015, 107, 253104. [Google Scholar] [CrossRef]
- Hao, Q.; Ma, H.; Xing, X.; Tang, X.; Wei, Z.; Zhao, X.; Chen, M. Mercury Chalcogenide Colloidal Quantum Dots for Infrared Photodetectors. Materials 2023, 16, 7321. [Google Scholar] [CrossRef]
- Melnychuk, C.; Guyot-Sionnest, P. Slow Auger Relaxation in HgTe Colloidal Quantum Dots. J. Phys. Chem. Lett. 2018, 9, 2208–2211. [Google Scholar] [CrossRef] [PubMed]
- Keuleyan, S.; Lhuillier, E.; Brajuskovic, V.; Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photonics 2011, 5, 489–493. [Google Scholar] [CrossRef]
- Razeghi, M.; Temple, D.S.; Brown, G.J.; Buurma, C.; Pimpinella, R.E.; Ciani, A.J.; Feldman, J.S.; Grein, C.H.; Guyot-Sionnest, P. MWIR imaging with low cost colloidal quantum dot films. In Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9933, p. 993303. [Google Scholar]
- Chen, M.; Lan, X.; Tang, X.; Wang, Y.; Hudson, M.H.; Talapin, D.V.; Guyot-Sionnest, P. High Carrier Mobility in HgTe Quantum Dot Solids Improves Mid-IR Photodetectors. ACS Photonics 2019, 6, 2358–2365. [Google Scholar] [CrossRef]
- Xia, K.; Gao, X.D.; Fei, G.T.; Xu, S.H.; Liang, Y.F.; Qu, X.X. High-Performance Visible to Mid-Infrared Photodetectors Based on HgTe Colloidal Quantum Dots under Room Temperature. ACS Appl. Mater. Interfaces 2024, 16, 23717–23723. [Google Scholar] [CrossRef]
- Mu, G.; Tan, Y.; Bi, C.; Liu, Y.; Hao, Q.; Tang, X. Visible to mid-wave infrared PbS/HgTe colloidal quantum dot imagers. Nat. Photonics 2024, 18, 1147–1154. [Google Scholar] [CrossRef]
- Chen, M.; Hao, Q.; Luo, Y.; Tang, X. Mid-Infrared Intraband Photodetector via High Carrier Mobility HgSe Colloidal Quantum Dots. ACS Nano 2022, 16, 11027–11035. [Google Scholar] [CrossRef]
- Kim, J.; Yoon, B.; Kim, J.; Choi, Y.; Kwon, Y.-W.; Park, S.K.; Jeong, K.S. High electron mobility of β-HgS colloidal quantum dots with doubly occupied quantum states. RSC Adv. 2017, 7, 38166–38170. [Google Scholar] [CrossRef]
- Hafiz, S.B.; Al Mahfuz, M.M.; Lee, S.; Ko, D.K. Midwavelength Infrared p-n Heterojunction Diodes Based on Intraband Colloidal Quantum Dots. ACS Appl. Mater. Interfaces 2021, 13, 49043–49049. [Google Scholar] [CrossRef]
- Ackerman, M.M.; Tang, X.; Guyot-Sionnest, P. Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors. ACS Nano 2018, 12, 7264–7271. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Weng, B.; McDowell, L.L.; Shi, Z. Low-cost uncooled MWIR PbSe quantum dots photodiodes. RSC Adv. 2019, 9, 42516–42523. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, S.; Tang, X.; Chen, M. Resonant cavity-enhanced colloidal quantum-dot dual-band infrared photodetectors. J. Mater. Chem. C 2022, 10, 8218–8225. [Google Scholar] [CrossRef]
- Zhang, S.; Bi, C.; Qin, T.; Liu, Y.; Cao, J.; Song, J.; Huo, Y.; Chen, M.; Hao, Q.; Tang, X. Wafer-Scale Fabrication of CMOS-Compatible Trapping-Mode Infrared Imagers with Colloidal Quantum Dots. ACS Photonics 2023, 10, 673–682. [Google Scholar] [CrossRef]
- Xue, X.; Chen, M.; Luo, Y.; Qin, T.; Tang, X.; Hao, Q. High-operating-temperature mid-infrared photodetectors via quantum dot gradient homojunction. Light Sci. Appl. 2023, 12, 2. [Google Scholar] [CrossRef]
- Rogalski, A. Next Decade in Infrared Detectors; SPIE: Bellingham, WA, USA, 2017; Volume 10433, p. 10433OL. [Google Scholar]
- Zhang, H.; Peterson, J.C.; Guyot-Sionnest, P. Intraband Transition of HgTe Nanocrystals for Long-Wave Infrared Detection at 12 μm. ACS Nano 2023, 17, 7530–7538. [Google Scholar] [CrossRef] [PubMed]
- Ramiro, I.; Ozdemir, O.; Christodoulou, S.; Gupta, S.; Dalmases, M.; Torre, I.; Konstantatos, G. Mid- and Long-Wave Infrared Optoelectronics via Intraband Transitions in PbS Colloidal Quantum Dots. Nano Lett. 2020, 20, 1003–1008. [Google Scholar] [CrossRef]
- Xue, X.; Hao, Q.; Chen, M. Very long wave infrared quantum dot photodetector up to 18 μm. Light Sci. Appl. 2024, 13, 89. [Google Scholar] [CrossRef]
- Tang, X.; Ackerman, M.M.; Chen, M.; Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 2019, 13, 277–282. [Google Scholar] [CrossRef]
- Zhao, P.; Mu, G.; Wen, C.; Qi, Y.; Lv, H.; Tang, X. Colloidal Quantum Dots-Based Three-Band Infrared Photodetector with the Bias-Tunable Spectral Response. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2023, 18, 2300121. [Google Scholar] [CrossRef]
Year | Material | Device Structure | Response Band (nm) | Responsivity (A/W) | Detectivity (Jones) | Response Time | Ref. |
---|---|---|---|---|---|---|---|
2017 | PbS | Graphene/PbS | 300–2000 | 107 | / | / | [55] |
2017 | Cu2SnS3 | ITO/Cu2SnS3/Ag | 1550 | 0.9 × 10−3 | 1.86 × 109 | 4.1 s | [66] |
2020 | PbS | Si/ZnO/PbS | 1490 | 0.22 | 4.08 × 1011 | 47.6 μs | [67] |
2020 | PbS | ZnO/PbS | 1310 | 0.47 | 3.39 × 1011 | / | [22] |
2020 | PbS | PbS-QDs + hybrid perovskite | 300–1200 | 2 × 106 | 1015 | 2/24 μs | [56] |
2020 | HgTe | Si/Bi2Se3/Gr/HgTe/Ag2Te/Au | 2400 | 0.9 | 5 × 109 | 13 ns | [24] |
2021 | PbS | ITO/ZnO/PbS/PbS-EDT/Au | 1550 | / | 1.6 × 1012 | 7 ns | [68] |
2021 | HgTe | HgTe/Gr | 2500 | 800 | 6 × 108 | - | [69] |
2022 | PbSe | InSnZnO/PbSe | 2100 | 3.91 × 10−3 | 4.55 × 107 | 0.38 s | [70] |
2022 | In(As,P) | ITO/NiO/In(As,P)/TiO2/Al | 1400 | 7 × 10−3 | 1 × 109 | 1.6 μs | [71] |
2022 | PbS | Si/PbS-EDT/PbS/ZnO | 400–1500 | / | 3.2 × 1011 | 1.9 μs | [72] |
2022 | PbS | ITO/PbS-EDT/PbS/PbS-TFCA/Ag | 1450 | 0.4 | 3 × 1010 | 1.1 μs | [73] |
2022 | PbSe | PbSe | 400–2600 | 0.32 | / | 32 ms | [57] |
2023 | HgTe | Bi2S3/HgTe/Ag:HgTe | 2200 | 0.29 | 1011 | 8 μs | [58] |
2023 | Ag2Te | Ag2Te/AgBiS2/SnO2 | 350–1600 | 0.1 | 1012 | 1.3/3.3 μs | [59] |
2023 | PbS | Au/NiO/PbS-EDT/PbS/C60/SnO2/ITO | 1530 | 0.8 | 4.1 × 1012 | 4.6 μs | [74] |
Year | Material | Response Band (nm) | Responsivity (A/W) | Detectivity (Jones) | Response Time | Ref. |
---|---|---|---|---|---|---|
2011 | HgTe | 5000 | / | 2 × 109 | / | [78] |
2016 | HgTe | 5000 | / | 5.4 × 1010 | 1.3 μs | [80] |
2018 | HgTe | 4800 | 1.3 | 3.3 × 1011 | 0.3 μs | [86] |
2019 | PbSe | 4200 | 0.36 | 8.5 × 108 | / | [87] |
2021 | Ag2Se | 4500 | / | 7.8 × 106 | / | [85] |
2022 | HgSe | 5000 | 0.077 | 1.7 × 109 | / | [83] |
2022 | HgTe | 4000 | 1.6 | 2 × 1011 | / | [88] |
2023 | HgTe | 5500 | / | 8 × 1010 | / | [89] |
2023 | HgTe | 4200 | 2.7 | 2.7 × 1011 | [90] | |
2024 | HgTe | 45–4000 | 0.09 | 6.9 × 107 | 1.9/1.5 μs | [81] |
2024 | PbS/HgTe | 400–4200 | 710 | 3.15 × 1010 | / | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Tian, P.; Liang, K. Advancements and Challenges in Colloidal Quantum Dot Infrared Photodetectors: Strategies for Short-Wave Infrared, Mid-Wave Infrared, and Long-Wave Infrared Applications. Quantum Beam Sci. 2025, 9, 9. https://doi.org/10.3390/qubs9010009
Yu L, Tian P, Liang K. Advancements and Challenges in Colloidal Quantum Dot Infrared Photodetectors: Strategies for Short-Wave Infrared, Mid-Wave Infrared, and Long-Wave Infrared Applications. Quantum Beam Science. 2025; 9(1):9. https://doi.org/10.3390/qubs9010009
Chicago/Turabian StyleYu, Lijing, Pin Tian, and Kun Liang. 2025. "Advancements and Challenges in Colloidal Quantum Dot Infrared Photodetectors: Strategies for Short-Wave Infrared, Mid-Wave Infrared, and Long-Wave Infrared Applications" Quantum Beam Science 9, no. 1: 9. https://doi.org/10.3390/qubs9010009
APA StyleYu, L., Tian, P., & Liang, K. (2025). Advancements and Challenges in Colloidal Quantum Dot Infrared Photodetectors: Strategies for Short-Wave Infrared, Mid-Wave Infrared, and Long-Wave Infrared Applications. Quantum Beam Science, 9(1), 9. https://doi.org/10.3390/qubs9010009