Analysis of Strain, Stress and Texture with Quantum Beams, 2nd Edition
- Nishida, M.; Harjo, S.; Kawasaki, T.; Yamashita, T.; Gong, W. Neutron Stress Measurement of W/Ti Composite in Cryogenic Temperatures Using Time-of-Flight Method. Quantum Beam Sci. 2023, 7, 8. https://doi.org/10.3390/qubs7010008
- Yamazaki, Y.; Shinomiya, K.; Okumura, T.; Suzuki, K.; Shobu, T.; Nakamura, Y. Relationship between Internal Stress Distribution and Microstructure in a Suspension-Sprayed Thermal Barrier Coating with a Columnar Structure. Quantum Beam Sci. 2023, 7, 14. https://doi.org/10.3390/qubs7020014
- Yasue, A.; Kawakami, M.; Kobayashi, K.; Kim, J.; Miyazu, Y.; Nishio, Y.; Mukai, T.; Morooka, S.; Kanematsu, M. Accuracy of Measuring Rebar Strain in Concrete Using a Diffractometer for Residual Stress Analysis. Quantum Beam Sci. 2024, 8, 7. https://doi.org/10.3390/qubs7020015
- Hayashi, Y.; Setoyama, D.; Fukuda, K.; Okuda, K.; Katayama, N.; Kimura H. Scanning Three-Dimensional X-ray Diffraction Microscopy with a Spiral Slit. Quantum Beam Sci. 2023, 7, 16. https://doi.org/10.3390/qubs7020016
- Hayashi, Y.; Kimura H. Scanning Three-Dimensional X-ray Diffraction Microscopy for Carbon Steels. Quantum Beam Sci. 2023, 7, 23. https://doi.org/10.3390/qubs7030023
- Harjo, S.; Gong. W.; Kawasaki, T. Stress Evaluation Method by Neutron Diffraction for HCP-Structured Magnesium Alloy. Quantum Beam Sci. 2023, 7, 32. https://doi.org/10.3390/qubs7040032
- Machiya, S.; Osamura, K.; Hishinuma, Y.; Taniguchi, H.; Harjo, S.; Kawasaki, T. Measurement of Mechanical Behavior of 11B-Enriched Wire Using a Pulsed Neutron Source. Quantum Beam Sci. 2023, 7, 34. https://doi.org/10.3390/qubs7040034
- Miura, Y.; Suzuki, K.; Morooka, S.; Shobu, T. Stress Measurement of Stainless Steel Piping Welds by Complementary Use of High-Energy Synchrotron X-rays and Neutrons. Quantum Beam Sci. 2024, 8, 1. https://doi.org/10.3390/qubs8010001
- Xu, P.; Zhang, S.; Harjo, S.; Vogel, S.C.; Tomoda, Y. Principal Preferred Orientation Evaluation of Steel Materials Using Time-of-Flight Neutron Diffraction. Quantum Beam Sci. 2024, 8, 7. https://doi.org/10.3390/qubs8010007
Conflicts of Interest
References
- Marais, D.; Holden, T.M.; Venter, A.M. (Eds.) Mechanical Stress Evaluation by Neutron and Synchrotron Radiation. In Proceedings of the 9th International Conference on Mechanical Stress Evaluation by Neutron and Synchrotron Radiation, Kruger National Park, South Africa, 19–21 September 2017; Materials Research Forum LLC: Millersville, PA, USA, 2018; Volume 4, pp. 91–96. [Google Scholar]
- MECASENS 2017. Available online: https://na.eventscloud.com/ehome/mecasens/home/ (accessed on 14 December 2024).
- Abstract Book of MECASENS-10. Available online: https://www.mff.cuni.cz/data//web/obsah/kfm/mecasens10/Book-of-Abstracts-FINAL-Mecasens-2021.pdf (accessed on 14 December 2024).
- Curry, N.; VanEvery, K.; Snyder, T.; Markocsan, N. Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier Coatings. Coatings 2014, 4, 630–650. [Google Scholar] [CrossRef]
- Gupta, M.; Li, X.-H.; Markocsan, N.; Kjellman, B. Design of high lifetime suspension plasma sprayed thermal barrier coatings. J. Eur. Ceram. Soc. 2020, 40, 768–779. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Shinomiya, K.; Okumura, T.; Suzuki, K.; Shobu, T.; Nakamura, Y. Relationship between Internal Stress Distribution and Microstructure in a Suspension-Sprayed Thermal Barrier Coating with a Columnar Structure. Quantum Beam Sci. 2023, 7, 14. [Google Scholar] [CrossRef]
- Genzel, C. A self-consistent method for X-ray diffraction analysis of multiaxial residual-stress fields in the near-surface region of polycrystalline materials. I. Theoretical concept. J. Appl. Crystallogr. 1999, 32, 770–778. [Google Scholar] [CrossRef]
- Genzel, C.; Broda, M.; Dantz, D.; Reimers, W. A self-consistent method for X-ray diffraction analysis of multiaxial residual-stress fields in the near-surface region of polycrystalline materials. II. Examples. J. Appl. Crystallogr. 1999, 32, 779–787. [Google Scholar] [CrossRef]
- Poulsen, H.F.; Nielsen, S.F.; Lauridsen, E.M.; Schmidt, S.; Suter, R.M.; Lienert, U.; Margulies, L.; Lorentzen, T.; Jensen, D.J. Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders. J. Appl. Crystallogr. 2001, 34, 751–756. [Google Scholar] [CrossRef]
- Alpers, A.; Knudsen, E.; Poulsen, H.F.; Herman, G.T. Resolving ambiguities in reconstructed grain maps using discrete tomography. Electron. Notes Discret. Math. 2005, 20, 419–437. [Google Scholar] [CrossRef]
- Poulsen, H.F. Three-Dimensional X-Ray Diffraction Microscopy, Mapping Ploycrystals and Their Dynamics; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Poulsen, H.F.; Ludwig, W.; Schmidt, S. 3D X-ray diffraction microscope. In Neutron and Synchrotron Radiation in Engineering Materials Science; Reimers, W., Pyzalla, A.R., Schereyer, A., Clemens, H., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; pp. 335–351. [Google Scholar]
- Poulsen, H.F.; Ludwig, W.; Lauridsen, E.M.; Schmidt, S.; Pantleon, W.; Olsen, U.L.; Oddershede, J.; Reischig, P.; Lyckegaard, A.; Wright, J. 4D characterization of metals by 3DXRD. Proc. 31st RisØ Int. Symp. Mater. Sci. 2010, 31, 101–119. [Google Scholar]
- Hayashi, Y.; Setoyama, D.; Fukuda, K.; Okuda, K.; Katayama, N.; Kimura, H. Scanning Three-Dimensional X-ray Diffraction Microscopy with a Spiral Slit. Quantum Beam Sci. 2023, 7, 16. [Google Scholar] [CrossRef]
- Suzuki, K.; Shobu, T.; Shiro, A.; Toyokawa, H. Evaluation of Internal Stresses Using Rotating-Slit and 2D Detector. Mater. Sci. Forum 2013, 772, 15–19. [Google Scholar] [CrossRef]
- Martines, R.V.; Honkimäki, V. Depth resolved strain and phase mapping of dissimilar friction stir welds using high energy synchrotron radiation. Texture Microstruct. 2003, 35-3/4, 145–152. [Google Scholar] [CrossRef]
- Martins, R.V.; Ohms, C.; Decroos, K. Full 3D spatially resolved mapping of residual strain in a 316L austenitic stainless steel weld specimen. Mater. Sci. Eng. 2010, 527, 4779–4787. [Google Scholar] [CrossRef]
- Miura, Y.; Suzuki, K.; Morooka, S.; Shobu, T. Stress Measurement of Stainless Steel Piping Welds by Complementary Use of High-Energy Synchrotron X-rays and Neutrons. Quantum Beam Sci. 2024, 8, 1. [Google Scholar] [CrossRef]
- Corvasce, F.; Lipinsky, P.; Berveiller, M. Intergranular residual stresses in plastically deformed polycrystals. In Residual Stresses II; Beck, G., Denis, S., Simon, A., Eds.; Elsevier: Amsterdam, The Netherlands, 1989; pp. 535–541. [Google Scholar]
- Holden, T.M. Intergranular stress. J. Neutron Res. 1999, 7, 291–317. [Google Scholar] [CrossRef]
- Hounkpati, V.; Fréour, S.; Gloaguen, D.; Legrand, V.; Kelleher, J.; Kockelman, W.; Kabra, S. In situ neutron measurements and modelling of the intergralular strains in the near-β titanium alloy Ti-β21S. Acta Mater. 2016, 109, 341–352. [Google Scholar] [CrossRef]
- J-PARC. Available online: https://j-parc.jp/c/en/index.html (accessed on 14 December 2024).
- SNS. Available online: https://neutrons.ornl.gov/sns (accessed on 14 December 2024).
- Agnew, S.R.; Duygulu, Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 2005, 21, 1161–1193. [Google Scholar] [CrossRef]
- Sandlöbes, S.; Friák, M.; Neugebauer, J.; Paabe, D. Basal and non-basal dislocation slip in Mg-Y. Mater. Sci. Eng. 2013, 576, 61–68. [Google Scholar] [CrossRef]
- Brown, D.W.; Agnew, S.R.; Bourke, M.A.M.; Holden, T.M.; Vogel, S.C.; Tmomé, C.N. Internal strain and texture evolution during deformation twinning in magnesium. Mater. Sci. Eng. 2005, 399, 1–12. [Google Scholar] [CrossRef]
- Woo, W.; Choo, H.; Prime, M.B.; Feng, Z.; Clausen, B. Microstructure, texture and residual stress in a friction-stir-processed AZ31B magnesium alloy. Acta Mater. 2008, 56, 170–1711. [Google Scholar] [CrossRef]
- Harjo, S.; Gong, W.; Kawasaki, T. Stress Evaluation Method by Neutron Diffraction for HCP-Structured Magnesium Alloy. Quantum Beam Sci. 2023, 7, 32. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, K. Analysis of Strain, Stress and Texture with Quantum Beams, 2nd Edition. Quantum Beam Sci. 2025, 9, 10. https://doi.org/10.3390/qubs9010010
Suzuki K. Analysis of Strain, Stress and Texture with Quantum Beams, 2nd Edition. Quantum Beam Science. 2025; 9(1):10. https://doi.org/10.3390/qubs9010010
Chicago/Turabian StyleSuzuki, Kenji. 2025. "Analysis of Strain, Stress and Texture with Quantum Beams, 2nd Edition" Quantum Beam Science 9, no. 1: 10. https://doi.org/10.3390/qubs9010010
APA StyleSuzuki, K. (2025). Analysis of Strain, Stress and Texture with Quantum Beams, 2nd Edition. Quantum Beam Science, 9(1), 10. https://doi.org/10.3390/qubs9010010