Supervised Machine Learning for Refractive Index Structure Parameter Modeling
Abstract
:1. Introduction
2. Statistical Learning Background
2.1. Tree-Based Methods
2.2. Neural-Network-Based Methods
2.3. ML-Based FSO Predictive Modeling
3. Measurement-Systems Overview
4. Results and Discussion
4.1. Dataset
4.2. Regression-Modeling Results
4.3. Turbulence-Classification Modeling
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khalingi, M.A.; Uysal, M. Survey on Free Space Optical Communication: A Communications Theory Perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar]
- Doss-Hammel, S.; Tsindikidis, D.; Merritt, D.; Fontana, J. Atmospheric characterization for high energy laser beam propagation in the maritime environment. In Atmospheric Tracking, Imaging and Compensation, Proceedings of the SPIE 49th Annual Meeting, Denver, CO, USA, 2–6 August 2004; Valley, M.T., Vorontsov, M., Eds.; SPIE: Bellingham, WA, USA, 2004. [Google Scholar]
- Lionis, A.; Peppas, K.; Nistazakis, H.E.; Tsigopoulos, A.D.; Cohn, K. Experimental Performance Analysis of an Optical Communication Channel over Maritime Environment. Electronics 2020, 9, 1109. [Google Scholar] [CrossRef]
- Lionis, A.; Peppas, K.; Nistazakis, H.E.; Tsigopoulos, A.D.; Cohn, K. Statistical Modeling of Received Signal Strength for an FSO Channel over Maritime Environment. Opt. Commun. 2021, 489, 126858. [Google Scholar] [CrossRef]
- Lionis, A.; Peppas, K.; Nistazakis, E.; Tsigkopoulos, A.; Cohn, K. RSSI probability density functions comparison using Jenshen-Shannon divergence and Pearson distribution. Technologies 2021, 9, 26. [Google Scholar] [CrossRef]
- Lionis, A.; Chaskakis, G.; Cohn, K.; Blau, J.; Peppas, K.; Nistazakis, H.E.; Tsigopoulos, A. Optical Turbulence Measurements and Modeling over Monterey Bay. Opt. Commun. J. 2022, 520, 128508. [Google Scholar] [CrossRef]
- Majumdar, A.K. Free-space laser communication performance in the atmospheric channel. J. Opt. Fiber Commun. 2005, 2, 345–396. [Google Scholar] [CrossRef]
- Sabot, D.; Kopeika, N.S. Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: Models and validation. Opt. Eng. 1992, 31. [Google Scholar] [CrossRef]
- Oermann, R.J. Novel Methods for the Quantification of Atmospheric Turbulence Strength in the Atmospheric Surface Layer. Ph.D. Thesis, School of Chemistry and Physics, University of Adelaide, Adelaide, SA, Australia, 2014. [Google Scholar]
- Lionis, A.; Tsigopoulos, A.; Keith, C. An Application of Artificial Neural Networks to Estimate the Performance of High-Energy Laser Weapons in Maritime Environments. Technologies 2022, 10, 71. [Google Scholar] [CrossRef]
- Frederickson, P.A.; Davidson, K.L.; Zeisse, C.R.; Bendall, C.S. Estimating the refractive index structure parameter (Cn2) over the ocean using bulk methods. J. Appl. Meteorol. 2000, 39, 1770–1783. [Google Scholar] [CrossRef]
- Frederickson, P.; Hammel, S.; Tsintikidis, D. Measurements and modeling of optical turbulence in a maritime environment. In Proceedings of the SPIE Optics + Photonics, San Diego, CA, USA, 13–17 August 2006. [Google Scholar] [CrossRef]
- Moore, C.I.; Burris, H.R.; Stell, M.F.; Wasiczko, L.; Suite, M.R.; Mahon, R.; Rabinovich, W.S.; Gilbreath, G.C.; Scharpf, W.J. Atmospheric turbulence studies of a 16-km maritime path. In Proceedings of the SPIE 5793, Atmospheric Propagation II, Orlando, FL, USA, 25 May 2005. [Google Scholar]
- Burris, H.R.; Moore, C.I.; Swingen, L.A.; Vilcheck, M.J.; Tulchinsky, D.A.; Mahon, R.; Wasiczko, L.M.; Stell, M.F.; Suite, M.R.; Davis, M.A.; et al. Latest Results from the 32 km Maritime Lasercom Link at the Naval Research Laboratory, Chesapeake Bay Lasercom Test Facility. In Proceedings of the SPIE 5793, Atmospheric Propagation II, Orlando, FL, USA, 28 March–1 April 2005. [Google Scholar] [CrossRef]
- Wasiczko, L.M.; Moore, C.I.; Burris, H.R.; Suite, M.; Stell, M.; Murphy, J.; Gilbreath, G.C.; Rabinovich, W.; Scharpf, W. Characterization of the Marine Atmosphere for Free-Space Optical Communication. In Proceedings of the SPIE 6215, Atmospheric Propagation III, Orlando, FL, USA, 17 May 2006. [Google Scholar]
- Gilbreath, G.C.; Rabinovich, W.S.; Moore, C.I.; Burris, H.R.; Mahon, R.; Grant, K.J.; Goetz, P.G.; Murphy, J.L.; Suite, M.R.; Stell, M.F.; et al. Progress in Laser Propagation in a Maritime Environment at the Naval Research Laboratory. In Proceedings of the SPIE 5892, Free-Space Laser Communications V, San Diego, CA, USA, 31 July–4 August 2005. [Google Scholar] [CrossRef]
- Grant, K.J.; Mudge, K.A.; Clare, B.A.; Perejma, A.S.; Martinsen, W.M. Maritime Laser Communications Trial 98152-19703. In Command, Control, Communications and Intelligence Division; DSTO: Edinburgh, SA, Australia, 2012. [Google Scholar]
- Michael, S.; Parenti, R.R.; Walther, F.G.; Volpicelli, A.M.; Moores, J.D.; Wilcox, W., Jr.; Murphy, R. Comparison of Scintillation Measurements from a 5 km Communications Link to Standard Statistical Models. In Proceedings of the SPIE 7324, Atmospheric Propagation VI, Orlando, FL, USA, 2 May 2009. [Google Scholar]
- Jang, Y.; Ma, J.; Tan, L.; Yan, S.; Du, W. Measurement of optical intensity fluctuation over an 11.8 km turbulent path. Opt. Express 2008, 16, 6963–6973. [Google Scholar] [CrossRef]
- Ali, R.N.; Jassim, J.M.; Jasim, K.M.; Jawad, M.K. Experimental Study of Clear Atmospheric Turbulence Effects on Laser Beam Spreading in Free Space. Int. J. Appl. Eng. Res. 2017, 12, 14789–14796. [Google Scholar]
- Pan, F.; Han, Q.; Ma, J.; Tan, L. Measurement of scintillation and link margin for laser beam propagation on 3.5-km urbanised path. Chin. Opt. Lett. 2007, 5, 1–3. [Google Scholar]
- Libich, J.; Komanec, M.; Zvanovec, S.; Pesek, P.; Popoola, W.O.; Ghassemlooy, Z. Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes. Opt. Lett. 2015, 40, 391–394. [Google Scholar] [CrossRef]
- Tunick, A. Statistical analysis of optical turbulence intensity over a 2.33 km propagation path. Opt. Express 2007, 15, 3619–3628. [Google Scholar] [CrossRef]
- van de Boer, A.; Moene, A.F.; Graf, A.; Simmer, C.; Holtslag, A.A.M. Estimation of the refractive index structure parameter from single-level daytime routine weather. Appl. Opt. 2014, 53, 5944–5960. [Google Scholar] [PubMed]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Dordrecht, The Netherlands; London, UK, 2013. [Google Scholar]
- Brownlee, J. Better Deep Learning: Train Faster, Reduce Overfitting, and Make Better Predictions; Machine Learning Mastery: Victoria, Australia, 2018. [Google Scholar]
- Kim, P. MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence; Springer Science+Business Media: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Wang, D.; Song, Y.; Li, J.; Qin, J.; Yang, T.; Zhang, M.; Chen, X.; Boucouvalas, A. Data-driven Optical Fiber Channel Modeling: A Deep Learning Approach. J. Light. Technol. 2020, 38, 4730–4743. [Google Scholar] [CrossRef]
- Liu, J.; Wang, P.; Zhang, X.; He, Y.; Zhou, X.; Ye, H.; Li, Y.; Xu, S.; Chen, S.; Fan, D. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication. Opt. Express 2019, 27, 16671–16688. [Google Scholar] [PubMed]
- Amirabadi, M.; Kahaei, M.; Nezamalhosseini, S.A.; Vakili, V.T. Deep Learning for channel estimation in FSO communication system. Opt. Commun. 2020, 459, 124989. [Google Scholar] [CrossRef]
- Lohani, S.; Glasser, R. Turbulence correction with artificial neural networks. Opt. Lett. 2018, 43, 2611–2614. [Google Scholar] [CrossRef]
- SLohani; Knutson, E.M.; Glasser, R.T. Generative machine learning for robust free-space communication. Commun. Phys. 2020, 3, 177. [Google Scholar] [CrossRef]
- Mishra, P.; Sonali; Dixit, A.; Jain, V.K. Machine Learning Techniques for Channel Estimation in Free Space Optical Communication Systems. In Proceedings of the 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), GOA, India, 16–19 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Jellen, C.; Burkhardt, J.; Brownell, C.; Nelson, C. Machine learning informed predictor importance measures of environmental parameters in maritime optical turbulence. Appl. Opt. 2020, 59, 6379–6389. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Basu, S. Using an artificial neural network approach to estimate surface-layer optical turbulence at Mauna Loa, Hawaii. Opt. Lett. 2016, 41, 2334–2337. [Google Scholar] [CrossRef] [PubMed]
- Lionis, A.; Peppas, K.; Nistazakis, H.E.; Tsigopoulos, A.; Cohn, K.; Zagouras, A. Using Machine Learning Algorithms for Accurate Received Optical Power Prediction of an FSO Link over a Maritime Environment. Photonics 2021, 8, 212. [Google Scholar] [CrossRef]
- Lionis, A.; Sklavounos, A.; Stassinakis, A.; Cohn, K.; Tsigopoulos, A.; Peppas, K.; Aidinis, K.; Nistazakis, H. Experimental Machine Learning Approach for Optical Turbulence and FSO Outage Performance Modeling. Electronics 2023, 12, 506. [Google Scholar] [CrossRef]
- Available online: https://weather-stats.com/greece/athenes/sea_temperature#details (accessed on 1 June 2022).
- Kaushal, H.; Jain, V.K.; Kar, S. Free Space Optical Communication, Optical Networks; Springer: New Delhi, India, 2017. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lionis, A.; Peppas, K.; Nistazakis, H.E.; Tsigopoulos, A.; Cohn, K.; Drexler, K.R. Supervised Machine Learning for Refractive Index Structure Parameter Modeling. Quantum Beam Sci. 2023, 7, 18. https://doi.org/10.3390/qubs7020018
Lionis A, Peppas K, Nistazakis HE, Tsigopoulos A, Cohn K, Drexler KR. Supervised Machine Learning for Refractive Index Structure Parameter Modeling. Quantum Beam Science. 2023; 7(2):18. https://doi.org/10.3390/qubs7020018
Chicago/Turabian StyleLionis, Antonios, Konstantinos Peppas, Hector E. Nistazakis, Andreas Tsigopoulos, Keith Cohn, and Kyle R. Drexler. 2023. "Supervised Machine Learning for Refractive Index Structure Parameter Modeling" Quantum Beam Science 7, no. 2: 18. https://doi.org/10.3390/qubs7020018
APA StyleLionis, A., Peppas, K., Nistazakis, H. E., Tsigopoulos, A., Cohn, K., & Drexler, K. R. (2023). Supervised Machine Learning for Refractive Index Structure Parameter Modeling. Quantum Beam Science, 7(2), 18. https://doi.org/10.3390/qubs7020018