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Abstract: The Hellenic Naval Academy (HNA) reports the latest results from a medium-range, near-
maritime, free-space laser-communications-testing facility, between the lighthouse of Psitalia Island
and the academy’s laboratory building. The FSO link is established within the premises of Piraeus
port, with a path length of 2958 m and an average altitude of 35 m, mainly above water. Recently, the
facility was upgraded through the addition of a BLS450 scintillometer, which is co-located with the
MRV TS5000/155 FSO system and a WS-2000 weather station. This paper presents the preliminary
optical turbulence measurements, collected from 24 to 31 of May 2022, alongside the macroscopic
meteorological parameters. Four machine-learning algorithms (random forest (RF), gradient boosting
regressor (GBR), single layer (ANN), and deep neural network (DNN)) were utilized for refractive-
index-structural-parameter regression modeling. Additionally, another DNN was used to classify
the strength level of the optical turbulence, as either strong or weak. The results showed very good
prediction accuracy for all the models. Specifically, the ANN algorithm resulted in an R-squared
of 0.896 and a mean square error (MSE) of 0.0834; the RF algorithm also gave a highly acceptable
R-squared of 0.865 and a root mean square error (RMSE) of 0.241. The Gradient Boosting Regressor
(GBR) resulted in an R-squared of 0.851 and a RMSE of 0.252 and, finally, the DNN algorithm resulted
in an R-squared of 0.79 and a RMSE of 0.088. The DNN-turbulence-strength-classification model
exhibited a very acceptable classification performance, given the highly variability of our target value
(C2

n), since we observed a predictive accuracy of 87% with the model.

Keywords: free-space optical communication; refractive-index structural parameter; machine learning;
deep learning

1. Introduction

The use of LASER communication technology allows the transmission of information
within the atmosphere via the propagation of an electromagnetic wave, usually in the near
IR band. The proliferation of this technology has been significant in the last decade; it will
definitely comprise a key constituent of communications in the future, since the bandwidth
requirements will be excessively high to be accommodated by traditional radio-frequency
(RF) devices. In contrast with the latter, free-space optical (FSO) communications have
(i) smaller size, weight, and power (SWaP) requirements; (ii) high-gain concentrated energy
delivered due to the LASER’s narrow beam; and (iii) no licensing limitations, owing to
their working wavelength [1]. However, numerous deleterious factors affect the quality of
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the transmitted signal of an FSO system, such as the system, geometry, misalignment, and
atmospheric losses. A significant phenomenon that causes fading to the optical channel is
atmospheric turbulence along the path as a result of inhomogeneities in temperature and
pressure due to solar heating and wind [2].

Over the last three years, the Hellenic Naval Academy, in collaboration with the
Directed Energy group of the Naval Postgraduate School, has conducted a series of experi-
mental research campaigns focused on the modeling of the performance of a free-space
optical link in a maritime environment, as well as modeling the optical turbulence such
environments through the refractive-index structural parameter (C 2

n). In [3], a new model
was proposed that allows FSO-link-performance estimation over sea and leverages point
measurements of environmental parameters. We measured the received-signal-strength
indicator (RSSI) of the FSO system and constructed a second-order polynomial using re-
gression modeling to quantify its relation with macroscopic environmental parameters
collected by a weather station. In [4], the same experimental setup was utilized to im-
prove the aforementioned model and validate it against real meteorological data. The
predicted RSSI values exhibited a reasonably strong correlation with the measurements.
Additionally, the Navy Surface Layer Model (NAVSLaM) was used to predict atmospheric
turbulence based on the same meteorological data and, thus, it demonstrated a statistical
correlation between the refractive-index structural parameter and the RSSI. The NAVS-
LaM model was developed by the Meteorology department of the NPS and predicts the
refractive-index structural parameter based upon mean atmospheric layer properties, with
an emphasis on the air–sea temperature difference. In [5], we used an information theoreti-
cal method—namely, the so-called Jensen–Shannon divergence, a symmetrization of the
Kullback–Leibler divergence—to measure the similarity of RSSI measurements with several
probability distributions based on the strength of atmospheric turbulence. Furthermore, the
Pearson family of continuous probability distributions was also employed to determine the
best fit according to the mean, standard deviation, skewness, and kurtosis of the modeled
data. Finally, the Monterey Bay experimental setup of NPS was utilized in [6] to measure
the atmospheric turbulence over water and compare the results with the predictions of
the NAVSLaM model, as well as to conduct a regression analysis for turbulence predictive
modeling based on environmental parameters.

The propagation of LASER beams through the atmosphere suffers from temporal and
spatial irradiance fluctuations, known as the phenomenon of scintillation, which can cause
severe degradation in laser-link performance. The quantitative method to determine the
reliability of such links is through a probability density function (PDF) for these fluctuations,
which is related to the turbulence regime (which is either weak or strong). The most
common metric of scintillation is the scintillation index (σ2

I ), defined as [7]:

σ2
I =

〈
I2〉− 〈I〉2
〈I〉2

=

〈
I2〉
〈I〉2

− 1 (1)

where I the irradiance of the optical wave and 〈· · · 〉 is its ergodic value. According to the
weak fluctuation theory, the σ2

I is proportional to the Rytov variance [7],

σ2
1 = 1.23C2

nk7/6L11/6 (2)

where C2
n the refractive-index structural parameter, a metric for the strength of the tur-

bulence, k = 2π/λ is the optical wavenumber, and L is the path length of the link. A
representative model for C2

n prediction is the Hufnagel–Valley (HV5/7), where the values
of 5 and 7 refer to the atmospheric coherence length (r0) in cm and the isoplanatic angle (θ0)
in µrads, respectively, for a wavelength of 0.55 µm,

C2
n(h) = 0.00594(u/27)2(10−5h)10exp(−h/1000) + 2.7× 10−16exp(−h/1500) + Aexp(−h/100) (3)
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where A is the level of C2
n at the ground level, h the height above sea level and u is the rms

value of the wind speed. The shortfall of this model is that it is not considered appropriate
for maritime environments [7]. Other models reported in the literature are applicable for
turbulence prediction in maritime environments. In this paper, we utilize two such models
to estimate the value of C2

n in a maritime environment and compare it with the values
obtained by using a BLS450 scintillometer.

Although atmospheric turbulence is modeled using micrometeorology, Sadot and
Kopeika developed a macrometeorology-based model for turbulence predictions [8]. This
model requires standard meteorological measurements obtained from a weather station
and was used for experimentally derived C2

n (m−2/3) predictions in previous papers [3,9].
The model accounts for the following: the wind speed (m/s), W; the relative humidity
(hPa), RH; the solar flux (Cal/(cm2 × min)), SF; the temperature (Kelvin), T; and the
cross-sectional area of the particles (cm2/m3), TCSA. It is given by [3]:

C2
n = 5.9× 10−15 W(t) + 1.6× 10−15T − 3.7× 10−15RH + 6.7× 10−17RH2 − 3.9× 10−19RH3

−3.7× 10−15WS + 1.3× 10−15WS2 − 8.2× 10−17WS3 + 2.8× 10−14SF− 1.8× 10−14TCSA
+1.4× 10−14TCSA2 − 3.9× 10−13

(4)

where W(t) is a weight function related to the daytime and promotes higher values around
midday and lower values around sunrise and sunset. The weight function is based upon
the temporal hour, which relates the times of sunrise and sunset to the actual time [9].

Another model that is applicable to maritime environments and has been extensively
validated is the Navy Atmospheric Vertical Surface Layer Model (NAVSLaM), developed
by the Meteorology department of the Naval Postgraduate School [10]. The NAVSLaM
is based on the Monin–Obukhov similarity (MOS) theory and provides C2

n estimations
along a vertical profile, from sea level up to 100 m. The MOS theory assumes horizontally
homogeneous and stationary conditions, as well as constant turbulent fluxes in momentum
and sensible and latent heat with regard to the height [11]. In this model, emphasis is
placed on the temperature difference between the air and the sea (ASTD). The required
inputs for this model are the wind speed, the air and sea temperature, the humidity, and
the pressure. The wavelength range within which the model is valid is 0.3–14 µm. The
expression for C2

n used by NAVSLaM is given by [12]

C2
n =

f (ξ)k2[A2∆T2 + 2ABrTq∆T∆q + B2∆q2]
z2/3

[
ln
(

z
zoT

)
−ΨT(ξ)

]2 (5)

where A and B are the partial derivatives of the refractive index with respect to the tem-
perature and specific humidity, respectively, k is the von Kármán constant (≈0.4), Ψ is
the integrated form of the respective dimensionless profile function, f (ξ) is an empirically
determined dimensionless function, z is the height above the surface, g is the gravitational
acceleration, zoT is the height at which the log-z profile T reaches its surface value, rTq is the
temperature-specific humidity-correlation coefficient, and ξ a universal parameter given
by ([11], Equation (17)):

ξ =
zg(∆T + 0.61T∆q)

[
ln
(

z
zoU

)
−ΨU(ξ)

]2

θu∆U2
[
ln
(

z
zoT

)
−ΨT(ξ)

] (6)

where θu the virtual potential temperature and zoU the height where the log-z profile of U
reaches its surface value. The C2

n is estimated by iteratively solving Equations (5) and (6).
For many years, independent studies have been conducted on atmospheric character-

ization by modeling and forecasting the refractive-index structural parameter inside the
surface layer, particularly with regard to its effects on laser-beam propagation in free space.
The Naval Research Laboratory (NRL) of the United States has been the leading research
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organization throughout all these years by executing extensive experimental atmospheric
turbulence studies in a laser-communications-testing facility (LCTF) across Chesapeake Bay.
Beyond the various demonstrations of laser-communications links at very high data rates,
atmospheric characterization has also been investigated [13–15]. These studies included
both passive (spotlight) and active (laser beam) intensity and angle-of-arrival-based tur-
bulence monitoring. To facilitate their asymmetric studies, the NRL developed a multiple
quantum well (MQW) modulating retroreflector, which supports high-rate data transfer
with very low power requirements [16]. A second approach is the cat’s eye (CEMRR),
which consists of a series of modulators. Both devices are suitable for mobile platforms
due to their very small size and weight. A unique analogue FM ship-to-shore optical
communications system was utilized in a series of marine-laser-communications trials
conducted by the Defense Science and Technology Organization of the Australian DoD
to show video and bi-directional voice transmission up to 3 km. During these trials, the
previously mentioned MRR devices, loaned by the NRL, were validated [17]. The MIT
Lincoln Laboratory deployed an experimental link to assess its performance against various
atmospheric conditions. An extensive database of measured refractive-index structural
parameter distributions was collected and compared with standard PDFs, such as log-
normal and gamma–gamma distributions [18]. In [19], the outcomes of an 11.8-km optical
connection were used to study how a laser beam’s strength fluctuated as it traveled through
turbulence in the atmosphere. Studies on PDF, fade statistic, and high-frequency spectra
were conducted based on the analysis of the measured experimental data. The broadening
effect of atmospheric turbulence on a propagating laser beam was studied experimentally
in [20]. A laboratory setup with altering parameters, such as temperature, wind speed, and
pressure, were used to measure this effect. Finally, a significant number of other research
papers present results from experimental turbulence studies on various kinds of terrain,
optical path lengths, season of the year, and analysis methods [21–24].

This paper provides the preliminary results of the HNA’s study for the modeling of the
refractive-index structural parameter (C2

n) over a maritime environment, in collaboration
with the NPS and the NIWC Pacific. The initial collected dataset of six macroscopic
meteorological parameters and C2

n values, acquired during the last week of May 2022,
as utilized to model the refractive-index structural parameter by employing regression-
machine-learning algorithms. In this way, three types of machine-learning algorithm
were employed: a random forest (RF), a gradient boosting regressor (GBR), and two
neural networks (a single layer and a deep network). The data were split for training
and validation, with 80% of the data used for model training and the remaining 20% for
testing the model’s prediction accuracy, using root-mean-squared error (RMSE) and R2

parameters as the performance metrics. The respective percentages of each subset for the
single-layer NN were 80%, 10%, and 10%, which correspond to the training, validation, and
testing of the model, respectively. The performance results of all algorithms appeared to be
very promising (R2 > 0.80). Additionally, a DNN was developed to classify the turbulence
strength as either strong or weak.

The remainder of this work is organized as follows. Section 2 provides the background
for the statistical learning. Section 3 describes the experimental set-up for the data collec-
tion. Section 4 presents the results of the regression analysis and classification using ML
algorithms, and Section 5 concludes the paper.

2. Statistical Learning Background

Statistical learning refers to the collection of tools used to understand a certain set of
data. Usually, we have some input variables (features, Xi), based upon which we seek to
make a prediction or obtain an output (response, Y). Statistical learning assumes that there
is some kind of relationship between data that can be modeled [25],

Y = f(X) + ε (7)
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where ε is an error term that is independent of X and has a mean value of zero. The majority
of statistical learning methods are categorized either as parametric, where the form of f is
known, or non-parametric, where it is not known. Another important consideration is
data overfitting, which can lead to misleading results. Finally, most statistical problems
are divided into two types, supervised and unsupervised learning. The former type
possesses known response values while training the model, whereas the latter does not.
This paper follows a supervised statistical learning method using three non-parametric
models, i.e., random forest (RF), a gradient boosting regressor (GBR), and two neural
networks (NN), involving a single layer and a deep network.

2.1. Tree-Based Methods

The first two algorithms, namely RF and GBR, are tree-based methods and are suitable
both for regression and classification problems. These types of algorithm segment the
predictor space of the data into small regions and use the mean or mode value of these
regions to make the final prediction of the response value. Since the splitting rules of
these regions can be summed up in a tree, these algorithms are known as decision-tree
methods [25]. Simple decision-tree methods have proven to be relatively ineffective in
terms of accuracy; therefore, more advanced methods exist to deal with more complex
data. These include random forests and boosting. The advantages of decision-tree methods
include: (1) ease of explanation, (2) better mimicking of the human decision-making process,
(3) ease of depiction in graph form, and (4) the ability to handle of qualitative predictors
without requiring dummy variables [25].

One method of improvement on simple decision-tree methods is ensemble bagging,
in which the training dataset is split into subsets, a decision-tree model is created for each
of these subsets, and the overall response is an average of responses from the ensemble of
models. An improvement on bagging is random forest, which decorrelates ensembles of
trees by making them more independent from each other. Instead of considering the whole
set of p predictors for each split criterion, random forest methods select a random subset
of m predictors. This random selection is repeated in each split step. Another general
approach to improving prediction accuracy is boosting. In contrast with bagging, this
approach follows a sequential procedure to train the model by using information from a
previously trained tree [25].

2.2. Neural-Network-Based Methods

Neural networks mimic the functionality of the human brain, where human neurons
are represented by the nodes and the various connections between them by adjusting
weights among the nodes [26]. The node is the fundamental component of a neural
network; it receives several xi input signals with a corresponding wi weight and b applied
bias, a factor associated with the storage of information. The sum of these signals enters
the node, where a certain activation function takes place, and processes the information
according to the type of the function. A NN structure is defined in two dimensions, namely
the number of layers and the number of nodes in each layer. A NN with only one layer
is called a single-perceptron model, whereas a network with multiple layers is called a
multiple-layer-perceptron model, or a deep neural network. The best number for each
dimension is a matter of research [27].

2.3. ML-Based FSO Predictive Modeling

In order to effectively exploit the capabilities of machine-learning algorithms for
scientific applications, it is necessary to possess domain knowledge of the area under
research. The optical communications community in general, and the free-space optical
communications community in particular, have already utilized ML in a variety of related
contexts [28–35]. In collaboration with NPS, the HNA has been extensively engaged in ML-
based FSO-performance prediction utilizing the existing experimental setup both locations.
In [36], we collected a large data set of local atmospheric parameters and analyzed their
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effects on the received signal strength of the link by measuring the RSSI parameter. The ML
algorithms that we used included a k-nearest-neighbor, a decision tree, a random forest, a
gradient boosting regressor, and an artificial neural network. These models were compared
using the root-mean-square error (RMSE) and the coefficient of determination (R2) of each
model. The analysis revealed an excellent fit for all ML algorithms and indicated that
they can significantly improve the prediction of the performance of an FSO compared to
traditional regression models. While all five machine-learning techniques had good RSSI
prediction accuracy, the ANN approach produced the most accurate model in terms of R2,
i.e., 0.94867, while the RF produced the best RMSE values, i.e., 7.37, out of all the techniques.
While the three other approaches produced their findings with far less training time, ANN
and GBR required a significant amount of computing time. Overall, this work gave a
full understanding of the accuracy of RSSI prediction utilizing several machine-learning
techniques, which were remarkably accurate in modeling such a connection of intricate
systems. In [37], a new approach to the modeling and prediction of the performance of a
high-energy laser weapon was proposed, which elaborated on the NPS laser-performance-
code scheme. This new approach leveraged artificial neural networks (ANNs) for the
prediction of optical turbulence strength. This development made it possible to estimate
the performance of HEL weapons in close-to-real time, regardless of location. Finally,
in [38], six ML algorithms were compared in terms of C2

n prediction. In particular, we used
a single neural network, a random forest, a decision tree, a gradient boosting regressor, a
k-nearest neighbor, and a deep neural network. This study also investigated the influence
of atmospheric turbulence in the availability of a notional FSOC link by calculating the
outage probability (Pout) assuming a gamma–gamma (GG)-modeled turbulent channel.

3. Measurement-Systems Overview

The experimental setup used for this research is located on the HNA premises in
Piraeus, Greece. A laser-communications link is established across the entrance of the
Piraeus port, between the roof of the laboratory building of the HNA and the lighthouse on
Psitalia island, as shown in Figure 1. The total length of the link is 2958 m, most of which is
over sea, with a mean value of height above sea level of 35 m.
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Figure 1. The laser-communications link located across the entrance to Piraeus port.

An important pitfall of the setup location is the availability of the link due to the
lack of a line of sight whenever a cruise ship is harbored in Piraeus port. The FSO system
utilized for the measurements of the received signal was an TS5000/155 model, manu-
factured by MRV, Israel. The setup consisted of two terminals, one in each location. The
operational characteristics of the MRV are available in [3]. Intensity modulation/direct
detection (IM/DD) is the system’s scheme, and it operates at a data rate of 155 Mbps. Each
FSO terminal measures and indicates the RSSI parameter of the link, which can be stored
and exported for further analysis. Beside the MRV system, an Ambient Weather (WS-2000)
weather station developed in USA, is located to measure several macroscopic meteorologi-
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cal parameters, including wind speed, wind direction, air temperature, relative humidity,
air pressure, dew point, solar radiation, and rainfall rate. Finally, a BLS450 scintillometer,
developed by Scintec (Germany), is also located in the vicinity of the MRV and WS-2000 to
measure the atmospheric turbulence and heat flux over the path length. A scintillometer
measures turbulence along the path between an optical transmitter and a receiver, resulting
in a path-integrated Cn2 measurement. Its working theory is based on the scintillation phe-
nomenon, which is the modification of light by changes in atmospheric refractive index. A
scintillometer collects spatially representative findings more quickly and with less statistical
scatter than traditional turbulence measurements using point sensors. As a double-ended
remote-sensing system, the BLS450, also allows access to such terrain (i.e., over water)
without the need to install in situ sensors. Figure 2 shows the MRV TS5000/155 FSO system,
co-located with the BLS450 scintillometer and the ambient-weather WS-2000, the weather
station on the roof of the laboratory building of the Hellenic Naval Academy.
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4. Results and Discussion

This paper presents the preliminary results of the experimental measurements that
took place during the last week of May 2022 and comprise the first complete dataset from
the upgraded instrumentation setup of the HNA experimental site. An initial period of one
week (24 to 31 May) was devoted to the data collection and analysis and the ML-based-
model construction and validation. Furthermore, the observed meteorological data were
used for C2

n predictions based on two theoretical models. The main goals of this research
analysis were (i) the regression modeling of the refractive-index structural parameter
(C2

n) using ML algorithms and the assessment of their prediction accuracy, and (ii) the
application of ML algorithms for the classification modeling of the strength level of the C2

n
parameter (i.e., low or high).

4.1. Dataset

During the aforementioned period, the observed C2
n parameter values from the BLS450

scintillometer were logged once per minute. The same time interval was used for the
atmospheric data collection and storage from the WS-2000 weather station in order to
accurately match them with the C2

n measurements and compile them in an .xlsx file. A few
technical issues, such as system resets and line-of-sight link blockages due to maritime
traffic, resulted in a few missed measurements. The meteorological conditions during the
experiment were quite stable, with air-temperature values ranging from 20 ◦C to 29 ◦C,
relative humidity within the range of 45–85%, and a very low average wind speed. A key
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parameter of the meteorological data was the air–sea temperature difference (ASTD). To
extract this parameter, we used the online weather statistics database [38]. The entire dataset
was screened and redundant recorded data excluded to produce a clean dataset including
8055 rows and eight columns with the meteorological parameters and the respective output
value of C2

n for the same date/time. As a result, a single approachable file was assembled
for additional processing and analysis.

4.2. Regression-Modeling Results

The first part of the analysis was devoted to the modeling of the refractive-index
structural parameter by using four machine-learning-based regression algorithms, namely
a single-layer neural network, applied in the Neural Fitting application of MATLAB, and
a deep neural network, a gradient boosting regressor, and a random forest applied in a
Jupyter notebook in the Anaconda environment using the Python language. Two different
software-application approaches were followed to compare the prediction accuracy of a
built-in model with a user-defined model, which allows much more flexibility.

The Neural Fitting application allows data selection and creation, the training of a
network, and performance evaluation according to the mean square error and regression
analysis. A single hidden-layer feed-forward network with sigmoid hidden neurons
and linear output neurons was created in order to fit the seven meteorological parameters
(inputs) to the logC2

n (output). The network was trained either with a Levenberg–Marquardt
backpropagation algorithm or with a Bayesian regularization algorithm. The first requires
more memory but less time to train the model. As shown by the mean square error of
the validation samples, the training automatically ended when the generalization stopped
improving. The second technique takes longer, but it can produce strong generalization
for challenging, constrained, or noisy datasets. Training stops according to adaptive
weight minimization. The network was trained several times using different training
algorithms (Levenberg–Marquardt and Bayesian regularization) and numbers of nodes.
The best outcome came from a network with 70 nodes, trained with a Levenberg–Marquardt
algorithm, which resulted in an R-squared of 0.896 and a mean square error (MSE) of 0.0834.
The R-squared measures the correlation between outputs and target values. The closer its
value to 1, the closer their relationship. The MSE is the average of the summation of the
squared difference between the actual output value and the predicted output value. The
goal is to minimize the MSE as much as possible. The data followed an 80/10/10 split
for the training, validation, and testing. The results of the network fitting are shown in
Figure 3.
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To develop the random forest model, we used the sklearn module and, specifically,
the RandomForestRegressor function. Several different parameters can be selected for
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a RF model. In our case, after executing a grid search and cross-validation, we found
the optimal set of the following parameters, the number of decision trees that run in
the model (n_estimators = 80), the criterion (loss function) used to determine the model
outcome (criterion = MSE), the maximum possible depth of each tree (default value allows
leaves’ expansion until they are all pure) and the maximum number of features under
consideration in each split (equal to the number of estimators). The results showed a very
good agreement between model predictions and observed values, i.e., an R-squared of
0.865 and a root mean square error (RMSE) of 0.241, which are plotted in Figure 4.
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Gradient boosting (GB) is one of the variants of ensemble methods in which weak
learners are created in series in order to produce a string ensemble model. It makes
use of the residual error for learning. The main training steps for a GB model are as
follows: (i) an initial tree estimates the label value; (ii) subsequently, the residual error is
calculated; (iii) next, another model is created to predict the error based on the previous
model, not the label; and (iv) the label prediction is updated based on the error prediction.
Again, the GB model includes several hyperparameters that can be initially selected and
tuned adequately. The hyperparameters selected for this model were (i) the number
of boosting stages to perform (n_estimators = 1000), (ii) the learning rate of the model
(learning_rate = 0.05), (iii) the maximum depth of the individual regression estimators
(max_depth = 6), and (iv) the minimum number of samples required to split an internal
node (min_samples_split = 12). The results again showed good agreement between the
model predictions and the observed values, i.e., an R-squared of 0.851 and a root mean
square error (RMSE) of 0.252. These are plotted in Figure 5.

The last algorithm explored was a deep neural network, the evolution of a single-layer
network in order to overcome inherent limitations. Practically, a deep neural network is
a single neural network with added hidden layers. The number of hidden layers and the
number of nodes in each layer control the neural network model’s capacity and depend on
the specific problem to be solved. As the dataset was not excessively large, we limited the
number of layers in the deep-learning model in order to save time and avoid overfitting.
For this model, a three-hidden-layer architecture with a sequentially decreasing number of
nodes in each layer (30/20/10) was selected and run over batches of 16 for a total number
of 350 epochs. A ReLU activation function was used to connect the hidden-layer nodes
and a linear function was used for the output node, because this was a regression model.
The ReLU activation outputs the input directly if it is greater than 0; otherwise it returns
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zero. The loss function (Figure 6) was based on the mean squared error with an Adam
optimizer. The line plot shows the expected behavior. The model rapidly learned the
problem, decreasing the loss function down to about 0.01 in about 75 epochs, and remained
quite stable thereafter. The line plot also shows that the training and testing performances
remained comparable during the training, whereas the training line was slightly bumpy.
Figure 7 presents the scattering and line plots for the DNN algorithm. The results obtained
with this model were R2 = 0.79 and RMSE = 0.088.
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4.3. Turbulence-Classification Modeling

To develop a mathematical model for the probability density function (pdf) of the
received irradiance, several investigations were carried out. The result of these studies
was the development of various statistical models for the scintillation induced by the
atmospheric turbulence for a range of atmospheric conditions. The turbulence strength
was divided into two levels, weak and strong, defined by the value of the Rytov variance,
σ2

R. For σ2
R values less than unity, the statistics of irradiance can be adequately described by

the log-normal model [39]. In cases of higher turbulence strength, the log-normal pdf is
not as accurate; therefore, it is not appropriate for strong-turbulence-level irradiance mod-
eling. For σ2

R higher than unity, the statistics for the received irradiance can be effectively
described by the negative exponential or the gamma–gamma pdf. In addition to these two
models, numerous others exist can sufficiently describe all the irradiance statistics in either
turbulence level or some in both [39].

This section aims to describe the use of a DNN approach to model the turbulence-
strength level, which is either strong or weak. In this way, we can use the applicable
statistical model to describe the channel based on its current status. In order to achieve this,
we used the environmental dataset mentioned in Section 4.1 and created the deep neural
network shown in Figure 8 to categorize the strength of the turbulence as strong or weak.

In the raw dataset described in Section 4.1, we assumed a notional value of refractive-
index structural parameter, C2

n > 5·10−15m−2/3, to characterize it as strong and for
C2

n < 5·10−15m−2/3 weak. Given Equation (2), for C2
n = 5·10−15m−2/3, λ = 850 nm, and

L = 3000 m, σ2
R ≈ 1. Therefore, a “0” was attached to every row in our dataset, with

C2
n < 5·10−15m−2/3 and a “1” for C2

n > 5·10−15m−2/3. The resulting split in our experimen-
tal data was quite balanced and showed that the strong values slightly outnumbered the
weak values, as shown in Figure 9.

There were three hidden layers in the network, each containing 30 neurons, 20 neurons,
and 10 neurons. A dropout rate of 0.5 per layer was utilized using a feed-forward back-
propagation technique. For the three hidden layers, the activation function was a rectifier
(ReLU), but for the output layer, it was a sigmoid function. In order for the algorithm to
monitor the progress of the algorithm fitting, a binary cross-entropy loss function was used
and the Adam optimizer was applied to adapt the gradient descent of the loss function.
The algorithm was trained against 80% of the dataset and tested over the remaining
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20%. We used a total number of 500 training epochs for a batch size of 8. Figure 10
shows the progressive performance of the model throughout the training, measured by
the accuracy and loss function for both the training and the validation set. The model
exhibited significant accuracy early in the epoch iteration. After approximately 200 epochs,
we observed a slight divergence between the training and the validating measurements,
which remained quite constant throughout all the epochs.
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The DNN classification model’s confusion matrix is shown in Figure 11. By definition,
in a confusion matrix C, the number of observations that are both known to belong to group
i and expected to belong to group j is equal to Ci,j. Therefore, in a binary classification, the
counts of true negatives, false negatives, true positives, and false positives are C0, 0, C1, 0,
and C0, respectively. Since we found that the false negatives were only C1,0 = 87 and that
the false positives were C0,1 = 132, which translates to an accuracy value of 0.87, our model
demonstrated a highly acceptable classification performance, given the large variability of
our target value (C2

n). In other words, 87% of the model’s predictions were correct.
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5. Conclusions

This paper was comprised of two parts, which presented a thorough analysis of C2
n

modeling and C2
n strength-level classification by leveraging machine-learning algorithms.

The first part presented the analysis of C2
n regression modeling. Four common ML al-

gorithms were utilized and trained on a preliminary dataset consisting of six experimentally
obtained macroscopic meteorological parameters. The results showed very good prediction
accuracy for every model. Specifically, the ANN algorithm, a single-layer-perceptron model
that included 70 neurons in its hidden layer, with a training-batch size of 32, trained with a
Levenberg–Marquardt algorithm, resulted in an R-squared of 0.896 and a mean square error
(MSE) of 0.0834. The RF algorithm, comprising 80 estimators, also gave a highly acceptable
coefficient of determination, an R-squared of 0.865, and a root mean square error (RMSE) of
0.241. The gradient boosting regressor model, with 1000 boosting stages (n_estimators), a
learning rate of 0.05, a maximum depth of individual regression estimators equal to six,
and a minimum number of samples required to split an internal node equal to twelve,
resulted in an R-squared of 0.851 and a root-mean-square error (RMSE) of 0.252. Finally,
the DNN algorithm, comprising three hidden layers of neurons (first hidden layer = 30,
second hidden layer = 20, and third hidden layer = 10), run over batches of 16 for a total
number of 350 epochs, resulted in R2 = 0.79 and RMSE = 0.088.

The second part described a DNN approach to classify the turbulence-strength level
as either strong or weak utilizing the same data set. A notional value of the refractive-index
structural parameter, C2

n = 5·10−15m−2/3, was set to distinguish between the strong and
weak regions, and the resulting split of the experimental data was quite balanced. The
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network had three hidden layers with 30, 20, and 10 neurons, respectively, and a dropout
rate of 0.5 per layer. The algorithm was trained against 80% of the dataset and tested over
the remaining 20%, for a total number of 500 training epochs and a batch size of 8. The
model exhibited a very acceptable classification performance, given the highly variability
of our target value (C2

n), since we observed an accuracy of 87% in the predictions made by
the model.

Author Contributions: A.L.: conceptualization, methodology, software, validation, data curation,
writing—draft; K.P.: software, formal analysis, review, editing, supervision, project administration;
H.E.N.: formal analysis, review, editing, supervision, project administration; A.T.: formal analysis,
review, editing, resources, supervision, project administration; K.C.: software, formal analysis, review,
editing, supervision; K.R.D.: methodology, formal analysis, review. All authors have read and agreed
to the published version of the manuscript.

Funding: This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Data Availability Statement: Data unavailable due to privacy restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khalingi, M.A.; Uysal, M. Survey on Free Space Optical Communication: A Communications Theory Perspective. IEEE Commun.

Surv. Tutor. 2014, 16, 2231–2258.
2. Doss-Hammel, S.; Tsindikidis, D.; Merritt, D.; Fontana, J. Atmospheric characterization for high energy laser beam propagation in

the maritime environment. In Atmospheric Tracking, Imaging and Compensation, Proceedings of the SPIE 49th Annual Meeting, Denver,
CO, USA, 2–6 August 2004; Valley, M.T., Vorontsov, M., Eds.; SPIE: Bellingham, WA, USA, 2004.

3. Lionis, A.; Peppas, K.; Nistazakis, H.E.; Tsigopoulos, A.D.; Cohn, K. Experimental Performance Analysis of an Optical Communi-
cation Channel over Maritime Environment. Electronics 2020, 9, 1109. [CrossRef]

4. Lionis, A.; Peppas, K.; Nistazakis, H.E.; Tsigopoulos, A.D.; Cohn, K. Statistical Modeling of Received Signal Strength for an FSO
Channel over Maritime Environment. Opt. Commun. 2021, 489, 126858. [CrossRef]

5. Lionis, A.; Peppas, K.; Nistazakis, E.; Tsigkopoulos, A.; Cohn, K. RSSI probability density functions comparison using Jenshen-
Shannon divergence and Pearson distribution. Technologies 2021, 9, 26. [CrossRef]

6. Lionis, A.; Chaskakis, G.; Cohn, K.; Blau, J.; Peppas, K.; Nistazakis, H.E.; Tsigopoulos, A. Optical Turbulence Measurements and
Modeling over Monterey Bay. Opt. Commun. J. 2022, 520, 128508. [CrossRef]

7. Majumdar, A.K. Free-space laser communication performance in the atmospheric channel. J. Opt. Fiber Commun. 2005, 2, 345–396.
[CrossRef]

8. Sabot, D.; Kopeika, N.S. Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: Models and
validation. Opt. Eng. 1992, 31. [CrossRef]

9. Oermann, R.J. Novel Methods for the Quantification of Atmospheric Turbulence Strength in the Atmospheric Surface Layer.
Ph.D. Thesis, School of Chemistry and Physics, University of Adelaide, Adelaide, SA, Australia, 2014.

10. Lionis, A.; Tsigopoulos, A.; Keith, C. An Application of Artificial Neural Networks to Estimate the Performance of High-Energy
Laser Weapons in Maritime Environments. Technologies 2022, 10, 71. [CrossRef]

11. Frederickson, P.A.; Davidson, K.L.; Zeisse, C.R.; Bendall, C.S. Estimating the refractive index structure parameter (Cn2) over the
ocean using bulk methods. J. Appl. Meteorol. 2000, 39, 1770–1783. [CrossRef]

12. Frederickson, P.; Hammel, S.; Tsintikidis, D. Measurements and modeling of optical turbulence in a maritime environment. In
Proceedings of the SPIE Optics + Photonics, San Diego, CA, USA, 13–17 August 2006. [CrossRef]

13. Moore, C.I.; Burris, H.R.; Stell, M.F.; Wasiczko, L.; Suite, M.R.; Mahon, R.; Rabinovich, W.S.; Gilbreath, G.C.; Scharpf, W.J.
Atmospheric turbulence studies of a 16-km maritime path. In Proceedings of the SPIE 5793, Atmospheric Propagation II, Orlando,
FL, USA, 25 May 2005.

14. Burris, H.R.; Moore, C.I.; Swingen, L.A.; Vilcheck, M.J.; Tulchinsky, D.A.; Mahon, R.; Wasiczko, L.M.; Stell, M.F.; Suite, M.R.;
Davis, M.A.; et al. Latest Results from the 32 km Maritime Lasercom Link at the Naval Research Laboratory, Chesapeake Bay
Lasercom Test Facility. In Proceedings of the SPIE 5793, Atmospheric Propagation II, Orlando, FL, USA, 28 March–1 April 2005.
[CrossRef]

15. Wasiczko, L.M.; Moore, C.I.; Burris, H.R.; Suite, M.; Stell, M.; Murphy, J.; Gilbreath, G.C.; Rabinovich, W.; Scharpf, W. Charac-
terization of the Marine Atmosphere for Free-Space Optical Communication. In Proceedings of the SPIE 6215, Atmospheric
Propagation III, Orlando, FL, USA, 17 May 2006.

16. Gilbreath, G.C.; Rabinovich, W.S.; Moore, C.I.; Burris, H.R.; Mahon, R.; Grant, K.J.; Goetz, P.G.; Murphy, J.L.; Suite, M.R.;
Stell, M.F.; et al. Progress in Laser Propagation in a Maritime Environment at the Naval Research Laboratory. In Proceedings of
the SPIE 5892, Free-Space Laser Communications V, San Diego, CA, USA, 31 July–4 August 2005. [CrossRef]

https://doi.org/10.3390/electronics9071109
https://doi.org/10.1016/j.optcom.2021.126858
https://doi.org/10.3390/technologies9020026
https://doi.org/10.1016/j.optcom.2022.128508
https://doi.org/10.1007/s10297-005-0054-0
https://doi.org/10.1117/12.56059
https://doi.org/10.3390/technologies10030071
https://doi.org/10.1175/1520-0450-39.10.1770
https://doi.org/10.1117/12.683017
https://doi.org/10.1117/12.606030
https://doi.org/10.1117/12.633390


Quantum Beam Sci. 2023, 7, 18 15 of 15

17. Grant, K.J.; Mudge, K.A.; Clare, B.A.; Perejma, A.S.; Martinsen, W.M. Maritime Laser Communications Trial 98152-19703. In
Command, Control, Communications and Intelligence Division; DSTO: Edinburgh, SA, Australia, 2012.

18. Michael, S.; Parenti, R.R.; Walther, F.G.; Volpicelli, A.M.; Moores, J.D.; Wilcox, W., Jr.; Murphy, R. Comparison of Scintillation
Measurements from a 5 km Communications Link to Standard Statistical Models. In Proceedings of the SPIE 7324, Atmospheric
Propagation VI, Orlando, FL, USA, 2 May 2009.

19. Jang, Y.; Ma, J.; Tan, L.; Yan, S.; Du, W. Measurement of optical intensity fluctuation over an 11.8 km turbulent path. Opt. Express
2008, 16, 6963–6973. [CrossRef]

20. Ali, R.N.; Jassim, J.M.; Jasim, K.M.; Jawad, M.K. Experimental Study of Clear Atmospheric Turbulence Effects on Laser Beam
Spreading in Free Space. Int. J. Appl. Eng. Res. 2017, 12, 14789–14796.

21. Pan, F.; Han, Q.; Ma, J.; Tan, L. Measurement of scintillation and link margin for laser beam propagation on 3.5-km urbanised
path. Chin. Opt. Lett. 2007, 5, 1–3.

22. Libich, J.; Komanec, M.; Zvanovec, S.; Pesek, P.; Popoola, W.O.; Ghassemlooy, Z. Experimental verification of an all-optical
dual-hop 10 Gbit/s free-space optics link under turbulence regimes. Opt. Lett. 2015, 40, 391–394. [CrossRef]

23. Tunick, A. Statistical analysis of optical turbulence intensity over a 2.33 km propagation path. Opt. Express 2007, 15, 3619–3628.
[CrossRef]

24. van de Boer, A.; Moene, A.F.; Graf, A.; Simmer, C.; Holtslag, A.A.M. Estimation of the refractive index structure parameter from
single-level daytime routine weather. Appl. Opt. 2014, 53, 5944–5960. [PubMed]

25. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R; Springer: New York, NY,
USA; Berlin/Heidelberg, Germany; Dordrecht, The Netherlands; London, UK, 2013.

26. Brownlee, J. Better Deep Learning: Train Faster, Reduce Overfitting, and Make Better Predictions; Machine Learning Mastery:
Victoria, Australia, 2018.

27. Kim, P. MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence; Springer Science+Business
Media: New York, NY, USA, 2017. [CrossRef]

28. Wang, D.; Song, Y.; Li, J.; Qin, J.; Yang, T.; Zhang, M.; Chen, X.; Boucouvalas, A. Data-driven Optical Fiber Channel Modeling: A
Deep Learning Approach. J. Light. Technol. 2020, 38, 4730–4743. [CrossRef]

29. Liu, J.; Wang, P.; Zhang, X.; He, Y.; Zhou, X.; Ye, H.; Li, Y.; Xu, S.; Chen, S.; Fan, D. Deep learning based atmospheric turbulence
compensation for orbital angular momentum beam distortion and communication. Opt. Express 2019, 27, 16671–16688. [PubMed]

30. Amirabadi, M.; Kahaei, M.; Nezamalhosseini, S.A.; Vakili, V.T. Deep Learning for channel estimation in FSO communication
system. Opt. Commun. 2020, 459, 124989. [CrossRef]

31. Lohani, S.; Glasser, R. Turbulence correction with artificial neural networks. Opt. Lett. 2018, 43, 2611–2614. [CrossRef]
32. SLohani; Knutson, E.M.; Glasser, R.T. Generative machine learning for robust free-space communication. Commun. Phys. 2020,

3, 177. [CrossRef]
33. Mishra, P.; Sonali; Dixit, A.; Jain, V.K. Machine Learning Techniques for Channel Estimation in Free Space Optical Communication

Systems. In Proceedings of the 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems
(ANTS), GOA, India, 16–19 December 2019; pp. 1–6. [CrossRef]

34. Jellen, C.; Burkhardt, J.; Brownell, C.; Nelson, C. Machine learning informed predictor importance measures of environmental
parameters in maritime optical turbulence. Appl. Opt. 2020, 59, 6379–6389. [CrossRef] [PubMed]

35. Wang, Y.; Basu, S. Using an artificial neural network approach to estimate surface-layer optical turbulence at Mauna Loa, Hawaii.
Opt. Lett. 2016, 41, 2334–2337. [CrossRef] [PubMed]

36. Lionis, A.; Peppas, K.; Nistazakis, H.E.; Tsigopoulos, A.; Cohn, K.; Zagouras, A. Using Machine Learning Algorithms for Accurate
Received Optical Power Prediction of an FSO Link over a Maritime Environment. Photonics 2021, 8, 212. [CrossRef]

37. Lionis, A.; Sklavounos, A.; Stassinakis, A.; Cohn, K.; Tsigopoulos, A.; Peppas, K.; Aidinis, K.; Nistazakis, H. Experimental
Machine Learning Approach for Optical Turbulence and FSO Outage Performance Modeling. Electronics 2023, 12, 506. [CrossRef]

38. Available online: https://weather-stats.com/greece/athenes/sea_temperature#details (accessed on 1 June 2022).
39. Kaushal, H.; Jain, V.K.; Kar, S. Free Space Optical Communication, Optical Networks; Springer: New Delhi, India, 2017. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1364/OE.16.006963
https://doi.org/10.1364/OL.40.000391
https://doi.org/10.1364/OE.15.003619
https://www.ncbi.nlm.nih.gov/pubmed/25321675
https://doi.org/10.1007/978-1-4842-2845-6
https://doi.org/10.1109/JLT.2020.2993271
https://www.ncbi.nlm.nih.gov/pubmed/31252890
https://doi.org/10.1016/j.optcom.2019.124989
https://doi.org/10.1364/OL.43.002611
https://doi.org/10.1038/s42005-020-00444-9
https://doi.org/10.1109/ANTS47819.2019.9117976
https://doi.org/10.1364/AO.397325
https://www.ncbi.nlm.nih.gov/pubmed/32749303
https://doi.org/10.1364/OL.41.002334
https://www.ncbi.nlm.nih.gov/pubmed/27176996
https://doi.org/10.3390/photonics8060212
https://doi.org/10.3390/electronics12030506
https://weather-stats.com/greece/athenes/sea_temperature#details
https://doi.org/10.1007/978-81-322-3691-7_2

	Introduction 
	Statistical Learning Background 
	Tree-Based Methods 
	Neural-Network-Based Methods 
	ML-Based FSO Predictive Modeling 

	Measurement-Systems Overview 
	Results and Discussion 
	Dataset 
	Regression-Modeling Results 
	Turbulence-Classification Modeling 

	Conclusions 
	References

