Prediction of Strain in Embedded Rebars for RC Member, Application of Hybrid Learning Approach
Abstract
:1. Introduction
2. Prior Work and Research Need
2.1. Research Description and Significance
2.2. Theoretical Approach in Tensile Behavior of RC Members
2.3. Machine Learning and Approach of Hybrid Learning
3. Operational Principle and Experimental Set-Up for Data Accumulation
3.1. Material and Experimental Procedures
3.2. Instrumentation
3.2.1. Strain Gauges
3.2.2. Surface Preparation (DIC)
3.3. Test Set-Up and Obtained Results
3.3.1. Uniaxial Tension Test
3.3.2. Experimental Results
4. Training ML Regression Models with Hybrid Learning Approach
4.1. Dataset Normalization
4.2. Verification of Trained Models, Hyperparameter Optimization, and Statistical Performance Measures
4.3. Data Improvement and Outlier Removal Using Hampel Identifier
5. Conclusions
- Residuals from the hybrid learning approach were lower than those from algorithms trained by only the experimental dataset.
- Lower reinforcement ratio, which means higher concrete cover, can increase the residual in strain prediction.
- Concrete type did not have much effect on ML regression performance, as long as the collected training dataset was sufficient to optimize the models.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RC | Reinforced concrete | NC | Normal Concrete |
SG | Strain Gauge | HPC | High-Performance Concrete |
FOS | Fiber Optic Sensor | NN | Neural Network |
DIC | Digital Image Correlation | DT | Decision Tree |
ML | Machine Learning | GPR | Gaussian Process Regression |
SHM | Structural Health Monitoring | RMSE | Root-Mean-Square Error |
References
- Hoult, N.A.; Dutton, M.; Hoag, A.; Take, W.A. Measuring crack movement in reinforced concrete using digital image correlation: Overview and application to shear slip measurements. Proc. IEEE 2016, 104, 1561–1574. [Google Scholar] [CrossRef]
- Reu, P. Introduction to digital image correlation: Best practices and applications. Exp. Tech. 2012, 36, 3–4. [Google Scholar] [CrossRef]
- Brault, A.; Hoult, N.A.; Lees, J.M. Development of a relationship between external measurements and reinforcement stress. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems; SPIE: Bellingham, WA, USA, 2015; Volume 9435, pp. 397–407. [Google Scholar]
- Berrocal, C.G.; Fernandez, I.; Rempling, R. Crack monitoring in reinforced concrete beams by distributed optical fiber sensors. Struct. Infrastruct. Eng. 2021, 17, 124–139. [Google Scholar] [CrossRef] [Green Version]
- Mirzazade, A.; Popescu, C.; Blanksvard, T.; Taljsten, B. Predicting strains in embedded reinforcement based on surface deformation obtained by digital image correlation technique. In Proceedings of the IABSE Congress 2021: Structural Engineering for Future Societal Needs, Ghent, Belgium, 22–24 September 2021. [Google Scholar]
- Ruocci, G.; Rospars, C.; Moreau, G.; Bisch, P.; Erlicher, S.; Delaplace, A.; Henault, J.-M. Digital Image Correlation and Noise-filtering Approach for the Cracking Assessment of Massive Reinforced Concrete Structures. Strain 2016, 52, 503–521. [Google Scholar] [CrossRef]
- Carmo, R.; Valenca, J.; Silva, D.; Dias-da-Costa, D. Assessing steel strains on reinforced concrete members from surface cracking patterns. Constr. Build. Mater. 2015, 98, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Massicotte, B.; Elwi, A.E.; MacGregor, J.G. Tension-stiffening model for planar reinforced concrete members. J. Struct. Eng. 1990, 116, 3039–3058. [Google Scholar] [CrossRef]
- Margoldova, J.; Cervenka, V.; Pukl, R. Applied brittle analysis. Concr. Eng. Int. 1998, 4, 1107–1116. [Google Scholar]
- Elfgren, L.; Noghabai, K. Tension of reinforced concrete prisms. Bond properties of reinforcement bars embedded in concrete tie elements. Summary of a RILEM round-robin investigation arranged by TC 147-FMB ‘Fracture Mechanics to Anchorage and Bond’. Mater. Struct. 2002, 35, 318–325. [Google Scholar] [CrossRef]
- Khalfallah, S.; Guerdouh, D. Tension stiffening approach in concrete of tensioned members. Int. J. Adv. Struct. Eng. 2014, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Leonhardt, F. Cracks and crack control in concrete structures. Pci J. 1988, 33, 124–145. [Google Scholar] [CrossRef]
- Borosnyoi, A.; Balazs, G.L. Models for flexural cracking in concrete: The state of the art. Struct. Concr. 2005, 6, 53–62. [Google Scholar] [CrossRef]
- Mazzoleni, P. Uncertainty Estimation and Reduction in Digital Image Correlation Measurements; Politecnico di Milano: Milan, Italy, 2013. [Google Scholar]
- Mahal, M.; Blanksvard, T.; Taljsten, B.; Sas, G. Using digital image correlation to evaluate fatigue behavior of strengthened reinforced concrete beams. Eng. Struct. 2015, 105, 277–288. [Google Scholar] [CrossRef]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; De Freitas, N. Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE 2015, 104, 148–175. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Shah, S.; Jiang, W. On-line outlier detection and data cleaning. Comput. Chem. Eng. 2004, 28, 1635–1647. [Google Scholar] [CrossRef]
Concrete Recipes for Batches 1–3 of NC | HPC Recipe | |||
---|---|---|---|---|
Batch | 1 | 2,3 | Batch | 4 |
Volume [L] | 45 | 30 | Volume [L] | 32 |
Cement [kg] | 17.10 | 11.40 | Cement [kg] | 32 |
Water [kg] | 8.725 | 5.817 | Silica fume [kg] | 6.4 |
Aggregate 0–4 mm [kg] | 58.05 | 38.70 | Quartz [kg] | 9.6 |
Aggregate 4–8 mm [kg] | 19.35 | 12.90 | Water [kg] | 7.36 |
Filler [kg] | 1.800 | 1.200 | Superplasticizer [kg] | 0.48 |
Superplasticizer [kg] | 0.1125 | 0.075 | Sand Type I 1 [kg] | 11.2 |
Sand Type II 1 [kg] | 11.2 |
W/C | ||||
---|---|---|---|---|
Normal Concrete | 0.5 | 50.63 | 2.0 | 35 |
HPC | 0.23 | 115.20 | 4.5 | 70 |
ID | Group | Dimension [mm2] | No. SGs | Type | SG Locations [mm] | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |||||
1N150 | 2 | 150 × 150 | 15 | NC | 51 | 100 | 151 | 200 | 253 | 301 | 352 | 402 | 452 | 502 | 550 | 605 | 655 | 704 | 754 |
2N100 | 1 | 100 × 100 | 15 | NC | 46 | 97 | 146 | 195 | 246 | 299 | 349 | 397 | 447 | 499 | 548 | 598 | 647 | 698 | 748 |
3N150 | 2 | 150 × 150 | 8 | NC | 50 | - | 153 | - | 253 | - | 353 | - | 454 | - | 551 | - | 656 | - | 756 |
4N150 | 2 | 150 × 150 | 8 | NC | 49 | - | 149 | - | 248 | - | 349 | - | 449 | - | 549 | - | 648 | - | 747 |
5N100 | 1 | 100 × 100 | 8 | NC | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
6N100 | 1 | 100 × 100 | 8 | NC | 43 | - | 145 | - | 247 | - | 348 | - | 449 | - | 549 | - | 648 | - | 747 |
7N100 | 1 | 100 × 100 | 8 | NC | 53 | - | 154 | - | 253 | - | 353 | - | 452 | - | 552 | - | 651 | - | 752 |
8U100 | 3 | 100 × 100 | 8 | HPC | 51 | - | 151 | - | 251 | - | 351 | - | 450 | - | 550 | - | 652 | - | 752 |
9U100 | 3 | 100 × 100 | 8 | HPC | 48 | - | 148 | - | 248 | - | 349 | - | 450 | - | 550 | - | 650 | - | 750 |
10U100 | 3 | 100 × 100 | 8 | HPC | 47 | - | 149 | - | 249 | - | 350 | - | 448 | - | 550 | - | 649 | - | 747 |
ID | 1st Crack | 2nd Crack | 3rd Crack | 4th Crack | 5th Crack | 6th Crack | 7th Crack | 8th Crack | |
---|---|---|---|---|---|---|---|---|---|
Normal Concrete | 1N150 | 43.6 | 50.7 | - | - | - | - | - | - |
2N100 | 23.0 | 26.0 | 28.8 | 41.8 | 48.9 | - | - | - | |
3N150 | 49.9 | - | - | - | - | - | - | - | |
4N150 | 38.2 | - | - | - | - | - | - | - | |
5N100 | 25.7 | 27.4 | 33.7 | 44.7 | - | - | - | - | |
6N100 | 19.6 | 20.9 | 25.5 | 29.4 | - | - | - | - | |
7N100 | 23.5 | 25.2 | 41.1 | - | - | - | - | - | |
HPC | 8U100 | 6.8 | 21.6 | 26.8 | 31.0 | 33.9 | 88.5 | - | - |
9U100 | 21.5 | 21.5 | 33.1 | 33.1 | 35.4 | 40.9 | 43.1 | 73.5 | |
10U100 | 20.7 | 26.1 | 26.1 | 33.9 | 31.1 | 38.5 | - | - |
Hyperparameters | RMSE | |||||
---|---|---|---|---|---|---|
SG Dataset | Hybrid Dataset | |||||
No. layers | Size of layers | Activation function | Validation | Test | Validation | Test |
2 | 10/10 | ReLU | 0.12103 | 0.12819 | 0.05591 | 0.055688 |
10/10 | sigmoid | 0.12307 | 0.14326 | 0.05647 | 0.05614 | |
10/10 | tanh | 0.11657 | 0.13889 | 0.055903 | 0.05558 | |
100/100 | ReLU | 0.13841 | 0.14727 | 0.055305 | 0.053617 | |
100/100 | sigmoid | 0.12314 | 0.13028 | 0.058698 | 0.058416 | |
100/100 | tanh | 0.11951 | 0.13182 | 0.056387 | 0.055251 | |
3 | 10/10/10 | ReLU | 0.11806 | 0.1224 | 0.055578 | 0.055638 |
10/10/10 | sigmoid | 0.11567 | 0.13109 | 0.056542 | 0.056549 | |
10/10/10 | tanh | 0.1125 | 0.12234 | 0.055978 | 0.055739 | |
100/100/100 | ReLU | 0.13675 | 0.13626 | 0.054921 | 0.053619 | |
100/100/100 | sigmoid | 0.12083 | 0.12517 | 0.058223 | 0.056089 | |
100/100/100 | tanh | 0.12193 | 0.12869 | 0.056161 | 0.055888 |
Models | Neural Network | GPR | Decision Tree | Ensemble | |||||
---|---|---|---|---|---|---|---|---|---|
Learning approach | SG | Hybrid | SG | Hybrid | SG | Hybrid | SG | Hybrid | |
Validation | 0.120 | 0.055 | 0.108 | 0.053 | 0.112 | 0.057 | 0.104 | 0.053 | |
Test | 0.125 | 0.054 | 0.116 | 0.051 | 0.119 | 0.059 | 0.112 | 0.052 | |
Validation | 0.680 | 0.510 | 0.740 | 0.550 | 0.720 | 0.470 | 0.760 | 0.540 | |
Test | 0.530 | 0.570 | 0.600 | 0.600 | 0.570 | 0.480 | 0.620 | 0.590 | |
Validation | 0.014 | 0.003 | 0.012 | 0.003 | 0.013 | 0.003 | 0.011 | 0.003 | |
Test | 0.015 | 0.003 | 0.013 | 0.003 | 0.014 | 0.003 | 0.012 | 0.003 | |
Validation | 0.088 | 0.042 | 0.078 | 0.040 | 0.080 | 0.043 | 0.076 | 0.041 | |
Test | 0.088 | 0.041 | 0.076 | 0.039 | 0.081 | 0.044 | 0.078 | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzazade, A.; Popescu, C.; Täljsten, B. Prediction of Strain in Embedded Rebars for RC Member, Application of Hybrid Learning Approach. Infrastructures 2023, 8, 71. https://doi.org/10.3390/infrastructures8040071
Mirzazade A, Popescu C, Täljsten B. Prediction of Strain in Embedded Rebars for RC Member, Application of Hybrid Learning Approach. Infrastructures. 2023; 8(4):71. https://doi.org/10.3390/infrastructures8040071
Chicago/Turabian StyleMirzazade, Ali, Cosmin Popescu, and Björn Täljsten. 2023. "Prediction of Strain in Embedded Rebars for RC Member, Application of Hybrid Learning Approach" Infrastructures 8, no. 4: 71. https://doi.org/10.3390/infrastructures8040071
APA StyleMirzazade, A., Popescu, C., & Täljsten, B. (2023). Prediction of Strain in Embedded Rebars for RC Member, Application of Hybrid Learning Approach. Infrastructures, 8(4), 71. https://doi.org/10.3390/infrastructures8040071