(AI) in Infrastructure Projects—Gap Study
Abstract
:1. Introduction
2. Artificial Intelligence AI Techniques
2.1. Expert System (ES)
2.2. Fuzzy System (FS)
2.3. Artificial Neural Networks (ANN)
2.4. Support Vector Machine (SVM)
2.5. Genetic Algorithm (GA)
2.6. Genetic Programming (GP)
2.7. Particle Swarm Optimization (PSO)
2.8. Hybrid Techniques
3. Applications of AI Techniques in Infrastructure Projects
3.1. Transportation Networks
- Traffic congestion
- Maximum and minimum car speed
- Intelligent transportation system
- Traffic flow
- Risks in construction.
3.1.1. Using Expert System
3.1.2. Using Fuzzy System
3.1.3. Using Genetic Algorithms and Genetic Programing
3.1.4. Using Artificial Neural Networks
3.1.5. Using Particle Swarm Optimization
3.1.6. Using Support Vector Machine
3.2. Electrical Networks
- Maintenance of electrical power network
- Optimal power flow
- Power system controller design
- Power loss reduction
- Solving economic dispatch problems
- Fault detection.
3.2.1. Using Expert System
3.2.2. Using Fuzzy System
3.2.3. Using Genetic Algorithms and Genetic Programing
3.2.4. Using Artificial Neural Networks
3.2.5. Using Particle Swarm Optimization
3.2.6. Using Support Victor Machine
3.3. Water Networks
- Water management
- Water distribution
- Rainfall-runoff
- Water recycling
- Sewage collection.
3.3.1. Using Expert System
3.3.2. Using Fuzzy System
3.3.3. Using Genetic Algorithms and Genetic Programing
3.3.4. Using Artificial Neural Networks
3.3.5. Using Particle Swarm Optimization
3.3.6. Using Support Victor Machine
3.4. Natural Gas Networks
3.5. Communication Networks
3.5.1. Using Expert System
3.5.2. Using Artificial Neural Networks and Fuzzy Systems
3.5.3. Using Artificial Particle Swarm Optimization
3.5.4. Using Other AI Techniques
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ebid, A.M. 35 Years of (AI) in Geotechnical Engineering: State of the Art. Geotech. Geol. Eng. 2021, 39, 637–690. [Google Scholar] [CrossRef]
- Chakraborty, D.; Elhegazy, H.; Elzarka, H.; Gutierrez, L. A novel construction cost prediction model using hybrid natural and light gradient boosting. Adv. Eng. Inform. 2020, 46, 101201. [Google Scholar] [CrossRef]
- Elhegazy, H.; Chakraborty, D.; Elzarka, H.; Ebid, A.M.; Mahdi, I.M.; Aboul Haggag, S.Y.; Abdel Rashid, I. Artificial Intelligence for Developing Accurate Preliminary Cost Estimates for Composite Flooring Systems of Multi-Storey Buildings. J. Asian Archit. Build. Eng. 2021, 21, 120–132. [Google Scholar] [CrossRef]
- Mohammed, A.L.I.A.; Ambak, K.; Mosa, A.M.; Syamsunur, D. Expert System in Engineering Transportation: A Review. J. Eng. Sci. Technol. 2019, 14, 229–252. [Google Scholar]
- Han, S.Y.; Kim, T.J. Can expert systems help with planning? J. Am. Plan. Assoc. 1989, 55, 296–308. [Google Scholar] [CrossRef]
- Dueker, K.J. Bridge Planning Using GIS and Expert System Approach. J. Comput. Civ. Eng. 1995, 9, 91–92. [Google Scholar] [CrossRef]
- Crossley, P. An expert system for the prediction of total vehicle and road operating costs in developing countries. Comput. Electron. Agric. 1998, 21, 169–180. [Google Scholar] [CrossRef]
- Norrman, J. Slipperiness on roads—An expert system classification. Meteorol. Appl. 2000, 36, 27–36. [Google Scholar] [CrossRef]
- Zischg, A.; Fuchs, S.; Keiler, M.; Meißl, G. Modelling the system behaviour of wet snow avalanches using an expert system approach for risk management on high alpine traffic roads. Nat. Hazards Earth Syst. Sci. 2005, 5, 821–832. [Google Scholar] [CrossRef] [Green Version]
- Frantti, T.; Majanen, M. An expert system for real-time traffic management in wireless local area networks. Expert Syst. Appl. 2014, 41, 4996–5008. [Google Scholar] [CrossRef]
- Hoyer, R.; Jumar, U. Fuzzy control of traffic lights. In Proceedings of the 1994 IEEE 3rd International Fuzzy Systems Conference, Orlando, FL, USA, 26–29 June 1994; Volume 3, pp. 1526–1531. [Google Scholar] [CrossRef]
- Krause, B.; Altrock, C.; Pozybill, M. Intelligent highway by fuzzy logic: Congestion detection and traffic control on multi-lane roads with variable road signs. In Proceedings of the IEEE 5th International Fuzzy Systems, New Orleans, LA, USA, 11 September 1996; Volume 3, pp. 1832–1837. [Google Scholar] [CrossRef]
- Cafiso, S.; Lamm, R.; La Cava, G. Fuzzy model for safety evaluation process of new and old roads. Transp. Res. Rec. 2004, 1881, 54–62. [Google Scholar] [CrossRef]
- Pongpaibool, P.; Tangamchit, P.; Noodwong, K. Evaluation of road traffic congestion using fuzzy techniques. In Proceedings of the TENCON 2007-2007 IEEE Region 10 Conference, Taipei, Taiwan, 30 October–2 November 2007; pp. 1–4. [Google Scholar] [CrossRef]
- Moazami, D.; Behbahani, H.; Muniandy, R. Pavement rehabilitation and maintenance prioritization of urban roads using fuzzy logic. Expert Syst. Appl. 2011, 38, 12869–12879. [Google Scholar] [CrossRef]
- Santos, M.; López, V. Fuzzy Decision System for Safety on Roads. Intell. Syst. Ref. Libr. 2012, 33, 171–187. [Google Scholar] [CrossRef]
- Mansourkhaki, A.; Berangi, M.; Haghiri, M. A Neural Network Noise Prediction Model for Tehran Urban Roads. J. Environ. Eng. Landsc. Manag. 2018, 26, 88–97. [Google Scholar] [CrossRef]
- Das, A.; Abdel-Aty, M. A genetic programming approach to explore the crash severity on multi-lane roads. Accid. Anal. Prev. 2010, 42, 548–557. [Google Scholar] [CrossRef]
- Buk, Z.; Koutník, J.; Šnorek, M. NEAT in HyperNEAT substituted with genetic programming. Lect. Notes Comput. Sci. Incl. Subser. Lect. Notes Artif. Intell. Lect. NotesBioinform. 2009, 5495, 243–252. [Google Scholar] [CrossRef]
- Manson, S.M. Agent-based modeling and genetic programming for ´ n modeling land change in the Southern Yucata Peninsular Region of Mexico. Agric. Ecosyst. Environ. 2005, 111, 47–62. [Google Scholar] [CrossRef]
- Zeng, L.; Krallmann, T.; Fiege, A.; Stess, M.; Graen, T.; Nolting, M. Optimization of future charging infrastructure for commercial electric vehicles using a multi-objective genetic algorithm and real travel data. Evol. Syst. 2020, 11, 241–254. [Google Scholar] [CrossRef]
- Xie, F.; Liu, C.; Li, S.; Lin, Z.; Huang, Y. Long-term strategic planning of inter-city fast charging infrastructure for battery electric vehicles. Transp. Res. Part E 2018, 109, 261–276. [Google Scholar] [CrossRef]
- Awasthi, A.; Chandra, D.; Rajasekar, S.; Singh, A.K.; Raj, A.D.V.; Perumal, K.M. Optimal infrastructure planning of electric vehicle charging stations using hybrid optimization algorithm. In Proceedings of the 2016 National Power Systems Conference (NPSC), Bhubaneswar, India, 19–21 December 2016. [Google Scholar] [CrossRef]
- Dhurandher, S.K.; Sharma, D.K.; Woungang, I.; Gupta, R.; Garg, S. GAER: Genetic algorithm-based energy-efficient routing protocol for infrastructure-less opportunistic networks. J. Supercomput. 2014, 69, 1183–1214. [Google Scholar] [CrossRef]
- Dong, J.; Liu, C.; Lin, Z. Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data. Transp. Res. PART C 2014, 38, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Taber, J.T.; Balling, R.; Brown, M.R.; Day, K.; Meyer, G.A. Optimizing transportation infrastructure planning with a multiobjective genetic algorithm model. Transp. Res. Rec. 1999, 1685, 51–56. [Google Scholar] [CrossRef]
- Gültekin Çetiner, B.; Sari, M.; Borat, O. A neural network based traffic-flow prediction model. Math. Comput. Appl. 2010, 15, 269–278. [Google Scholar] [CrossRef]
- Givargis, S.; Karimi, H. A basic neural traffic noise prediction model for Tehran’s roads. J. Environ. Manag. 2010, 91, 2529–2534. [Google Scholar] [CrossRef]
- Sharma, S.C.; Lingras, P.; Liu, G.X.; Xu, F. Estimation of annual average daily traffic on low-volume roads: Factor approach versus neural networks. Transp. Res. Rec. 2000, 1719, 103–111. [Google Scholar] [CrossRef]
- Liu, T.H.; Yoon, Y. Development of enhanced emission factor equations for paved and unpaved roads using artificial neural network. Transp. Res. Part D Transp. Environ. 2019, 69, 196–208. [Google Scholar] [CrossRef]
- Ma, Y.; Zheng, Y.; Cheng, J.; Zhang, Y.; Han, W. A convolutional neural network method to improve efficiency and visualization in modeling driver’s visual field on roads using MLS data. Transp. Res. Part C Emerg. Technol. 2019, 106, 317–344. [Google Scholar] [CrossRef]
- Priambodo, B.; Ahmad, A. Traffic flow prediction model based on neighbouring roads using neural network and multiple regression. J. Inf. Commun. Technol. 2018, 17, 513–535. [Google Scholar] [CrossRef]
- Alshehhi, R.; Marpu, P.R.; Woon, W.L.; Mura, M.D. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2017, 130, 139–149. [Google Scholar] [CrossRef]
- Gopalakrishnan, K. Neural network-swarm intelligence hybrid nonlinear optimization algorithm for pavement moduli back-calculation. J. Transp. Eng. 2010, 136, 528–536. [Google Scholar] [CrossRef]
- Ma, X.; Dai, Z.; He, Z.; Ma, J.; Wang, Y.; Wang, Y. Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction. Sensors 2017, 17, 818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensah, I.; Adjei-Kumi, T.; Nani, G. Duration determination for rural roads using the principal component analysis and artificial neural network. Eng. Constr. Archit. Manag. 2016, 23, 638–656. [Google Scholar] [CrossRef]
- Kirthika, A.; Mookambiga, A. Automated road network extraction using artificial neural network. In Proceedings of the 2011 International Conference on Recent Trends in Information Technology (ICRTIT), Chennai, India, 3–5 June 2011; pp. 1061–1065. [Google Scholar] [CrossRef]
- Wei, R.; Zhang, T.; Tang, H. An improved particle swarm optimization algorithm for vehicle routing problem with simultaneous pickup and delivery. In Proceedings of the International Conference on Information Computing and Applications, Tangshan, China, 15–18 October 2010; Volume 105, pp. 430–436. [Google Scholar] [CrossRef]
- Hazra, J.; Sinha, A.K. Congestion management using multiobjective particle swarm optimization. IEEE Trans. Power Syst. 2007, 22, 1726–1734. [Google Scholar] [CrossRef]
- Tien Bui, D.; Hoang, N.D.; Nhu, V.H. A swarm intelligence-based machine learning approach for predicting soil shear strength for road construction: A case study at Trung Luong National Expressway Project (Vietnam). Eng. Comput. 2019, 35, 955–965. [Google Scholar] [CrossRef]
- Marinakis, Y.; Marinaki, M.; Migdalas, A. Particle Swarm Optimization for the Vehicle Routing Problem: A Survey and a Comparative Analysis. In Handbook of Heuristics; Martí, R., Pardalos, P., Resende, M., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Cheng, S.; Lu, F.; Peng, P.; Wu, S. Multi-task and multi-view learning based on particle swarm optimization for short-term traffic forecasting. Knowl. -Based Syst. 2019, 180, 116–132. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Zoej, M.J.V.; Tavakoli, A. Automatic main road extraction from high resolution satellite imageries by means of particle swarm optimization applied to a fuzzy-based mean calculation approach. J. Indian Soc. Remote Sens. 2009, 37, 173–184. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Z. Two-way road network design problem with variable lanes. J. Syst. Sci. Syst. Eng. 2007, 16, 50–61. [Google Scholar] [CrossRef]
- Ismail, Z.; Loh, S.L. Ant colony optimization for solving solid waste collection scheduling problems. J. Math. Stat. 2009, 5, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q. Dynamic route guidance method based on Particle Swarm Optimization algorithm. In Proceedings of the 2009 Second International Conference on Intelligent Computation Technology and Automation, Changsha, China, 10–11 October 2009; Volume 1, pp. 267–270. [Google Scholar] [CrossRef]
- Kazharov, A.A.; Kureichik, V.M. Ant colony optimization algorithms for solving transportation problems. J. Comput. Syst. Sci. Int. 2010, 49, 30–43. [Google Scholar] [CrossRef]
- Liu, Z.F.; Zhang, W.; Ji, X.; Li, K. Optimal planning of charging station for electric vehicle based on particle swarm optimization. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Tianjin, China, 21–24 May 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Cheng, W.C. PSO algorithm particle filters for improving the performance of lane detection and tracking systems in difficult roads. Sensors 2012, 12, 17168–17185. [Google Scholar] [CrossRef] [Green Version]
- Chuo, H.S.E.; Tan, M.K.; Chong, A.C.H.; Chin, R.K.Y.; Teo, K.T.K. Evolvable traffic signal control for intersection congestion alleviation with enhanced particle swarm optimisation. In Proceedings of the 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS), Kota Kinabalu, Malaysia, 21 October 2017; pp. 92–97. [Google Scholar] [CrossRef]
- Poole, A.; Kotsialos, A. METANET Validation of the Large-Scale Manchester Ring-Road Network Using Gradient-Based and Particle Swarm Optimization. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2055–2065. [Google Scholar] [CrossRef]
- Karballaeezadeh, N.; Mohammadzadeh, S.D.; Shamshirband, S.; Hajikhodaverdikhan, P.; Mosavi, A.; Chau, K. wing Prediction of remaining service life of pavement using an optimized support vector machine (case study of Semnan–Firuzkuh road). Eng. Appl. Comput. Fluid Mech. 2019, 13, 188–198. [Google Scholar] [CrossRef]
- Hao, Z.; Dibo, H.; Zekui, Z. A novel lane detection algorithm based on support vector machine. In Proceedings of the Progress in Electromagnetics Research Symposium 2005, Hangzhou, China, 22–26 August 2005; pp. 390–394. [Google Scholar] [CrossRef] [Green Version]
- Mavroforakis, M.E.; Theodoridis, S. A geometric approach to support vector machine (SVM) classification. IEEE Trans. Neural Netw. 2006, 17, 671–682. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L. Road centreline extraction from high-resolution imagery based on multiscale structural features and support vector machines. Int. J. Remote Sens. 2009, 30, 1977–1987. [Google Scholar] [CrossRef]
- Matkan, A.A.; Hajeb, M.; Sadeghian, S. Road extraction from lidar data using support vector machine classification. Photogramm. Eng. Remote Sens. 2014, 80, 409–422. [Google Scholar] [CrossRef] [Green Version]
- Hadjidemetriou, G.M.; Christodoulou, S.E.; Vela, P.A. Automated detection of pavement patches utilizing support vector machine classification. In Proceedings of the 2016 18th Mediterranean Electrotechnical Conference (MELECON), Lemesos, Cyprus, 18–20 April 2016. [Google Scholar] [CrossRef]
- Zhou, Y.; Su, W.; Ding, L.; Luo, H.; Love, P.E.D. Predicting Safety Risks in Deep Foundation Pits in Subway Infrastructure Projects: Support Vector Machine Approach. J. Comput. Civ. Eng. 2017, 31, 04017052. [Google Scholar] [CrossRef]
- Masino, J.; Pinay, J.; Reischl, M.; Gauterin, F. Road surface prediction from acoustical measurements in the tire cavity using support vector machine. Appl. Acoust. 2017, 125, 41–48. [Google Scholar] [CrossRef]
- Nhu, V.-H.; Zandi, D.; Shahabi, H.; Chapi, K.; Shirzadi, A.; Al-Ansari, N.; Singh, S.K.; Dou, J.; Nguyen, H. Comparison of Support Vector Machine, Bayesian Logistic Regression, and Alternating Decision Tree Algorithms for Shallow Landslide Susceptibility Mapping along a Mountainous Road in the West of Iran. Appl. Sci. 2020, 10, 5047. [Google Scholar] [CrossRef]
- Mnih, V.; Hinton, G.E. Learning to detect roads in high-resolution aerial images. In Proceedings of the European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 210–223. [Google Scholar]
- Markovié, M.L.; Fraissler, W.F. Short-term load forecast by plausibility checking of announced demand: An expert-system approach. Eur. Trans. Electr. Power 1993, 3, 353–358. [Google Scholar] [CrossRef]
- Kezunovic, M.; Spasojevic, P.; Fromen, C.W.; Sevcik, D.R. An expert system for transmission substation event analysis. IEEE Trans. Power Deliv. 1993, 8, 1942–1949. [Google Scholar] [CrossRef]
- Ernesto Vázquez, M.; Oscar, L.; Héctor, J.C.M.; Altuve, F. An on-line expert system for fault section diagnosis in power systems. IEEE Trans. Power Syst. 1997, 12, 357–362. [Google Scholar] [CrossRef]
- Jain, M.B.; Jain, A.; Srinivas, M.B. A web based expert system shell for fault diagnosis and control of power system equipment. In Proceedings of the 2008 International Conference on Condition Monitoring and Diagnosis, Beijing, China, 21–24 April 2008; pp. 1310–1313. [Google Scholar] [CrossRef]
- Kiartzis, S.J.; Bakirtzis, A.G.; Theocharis, J.B.; Tsagas, G. A fuzzy expert system for peak load forecasting. Application to the Greek power system. In Proceedings of the 2000 10th Mediterranean Electrotechnical Conference. Information Technology and Electrotechnology for the Mediterranean Countries. Proceedings. MeleCon 2000 (Cat. No. 00CH37099), Lemesos, Cyprus, 29–31 May 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 3, pp. 1097–1100. [Google Scholar]
- Abdelsalam, A.A.; Eldesouky, A.A.; Sallam, A.A. Classification of power system disturbances using linear Kalman filter and fuzzy-expert system. Int. J. Electr. Power Energy Syst. 2012, 43, 688–695. [Google Scholar] [CrossRef]
- Ma, D.; Liang, Y.; Zhao, X.; Guan, R.; Shi, X. Multi-BP expert system for fault diagnosis of powersystem. Eng. Appl. Artif. Intell. 2013, 26, 937–944. [Google Scholar] [CrossRef]
- Hsu, Y.Y.; Cheng, C.H. Design of fuzzy power system stabilisers for multimachine power systems. IEE Proc. C Gener. Transm. Distrib. 1990, 137, 233–238. [Google Scholar] [CrossRef]
- Song, Y.H.; Johns, A.T. Applications of fuzzy logic in power systems: Part 1. General introduction to fuzzy logic. Power Eng. J. 1997, 11, 219–222. [Google Scholar] [CrossRef]
- Dash, P.K.; Mishra, S.; Salama, M.M.A.; Liew, A.C. Classification of power system disturbances using a fuzzy expert system and a Fourier Linear Combiner. IEEE Trans. Power Deliv. 2000, 15, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.E.; Moustafa, M.S.; Abo-Al-Ez, K.M.; Abdullah, A.A. A hybrid neuro-fuzzy power prediction system for wind energy generation. Int. J. Electr. Power Energy Syst. 2016, 74, 384–395. [Google Scholar] [CrossRef]
- Hussain, S.; Al Alili, A.; Al Qubaisi, A.M. Optimization based fuzzy resource allocation framework for smart grid. In Proceedings of the 2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 17–19 August 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Zhu, J.Z. Optimal reconfiguration of electrical distribution network using the refined genetic algorithm. Electr. Power Syst. Res. 2002, 62, 37–42. [Google Scholar] [CrossRef]
- Almasabi, S.; Mitra, J. Multi-stage optimal PMU placement including substation infrastructure. In Proceedings of the 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, USA, 1–5 October 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Langdon, W.; Treleaven, P. Scheduling maintenance of electrical power transmission networks using genetic programming. Artif. Intell. Tech. Power Syst. 2011, 220–237. [Google Scholar] [CrossRef] [Green Version]
- Kishore, T.S.; Singal, S.K. Optimal economic planning of power transmission lines: A review. Renew. Sustain. Energy Rev. 2014, 39, 949–974. [Google Scholar] [CrossRef]
- Zahra, F.; Jeyasurya, B.; Quaicoe, J.E. High-speed transmission line relaying using artificial neural networks. Electr. Power Syst. Res. 2000, 53, 173–179. [Google Scholar] [CrossRef]
- Coury, D.V.; Jorge, D.C. Artificial neural network approach to distance protection of transmission lines. IEEE Trans. Power Deliv. 1998, 13, 102–108. [Google Scholar] [CrossRef]
- Martín, F.; Aguado, J.A. Wavelet-based ANN approach for transmission line protection. IEEE Trans. Power Deliv. 2003, 18, 1572–1574. [Google Scholar] [CrossRef]
- Dos Santos, R.C.; Senger, E.C. Transmission lines distance protection using artificial neural networks. Int. J. Electr. Power Energy Syst. 2011, 33, 721–730. [Google Scholar] [CrossRef]
- Joorabian, M.; Asl, S.M.A.T.; Aggarwal, R.K. Accurate fault locator for EHV transmission lines based on radial basis function neural networks. Electr. Power Syst. Res. 2004, 71, 195–202. [Google Scholar] [CrossRef]
- Haque, M.T.; Kashtiban, A.M. Application of Neural Networks in Power Systems; A Review. Int. J. Energy Power Eng. 2007, 1, 897–901. [Google Scholar]
- Tayeb, B.E.M. Faults Detection in Power Systems Using Artificial Neural Network. Am. J. Eng. Res. AJER 2013, 2, 69–75. [Google Scholar]
- Hessine, M.B.E.N. Fault Detection and Classification Approaches in Transmission Lines Using Artificial Neural Networks. In Proceedings of the MELECON 2014—2014 17th IEEE Mediterranean Electrotechnical Conference, Beirut, Lebanon, 13–16 April 2014; pp. 13–16. [Google Scholar]
- Bahmanyar, A.R.; Karami, A. Power system voltage stability monitoring using artificial neural networks with a reduced set of inputs. Int. J. Electr. Power Energy Syst. 2014, 58, 246–256. [Google Scholar] [CrossRef]
- Alrashidi, M.R.; El-Hawary, M.E. A survey of particle swarm optimization applications in power system operations. Electr. Power Compon. Syst. 2006, 34, 1349–1357. [Google Scholar] [CrossRef]
- AlRashidi, M.R.; El-Hawary, M.E. A survey of particle swarm optimization applications in electric power systems. IEEE Trans. Evol. Comput. 2009, 13, 913–918. [Google Scholar] [CrossRef]
- Kahouli, O.; Alsaif, H.; Bouteraa, Y.; Ben Ali, N.; Chaabene, M. Power system reconfiguration in distribution network for improving reliability using genetic algorithm and particle swarm optimization. Appl. Sci. 2021, 11, 3092. [Google Scholar] [CrossRef]
- Dutta, S.; Singh, S.P. Optimal rescheduling of generators for congestion management based on particle swarm optimization. IEEE Trans. Power Syst. 2008, 23, 1560–1569. [Google Scholar] [CrossRef]
- Yumbla, P.E.O.; Ramirez, J.M.; Coello Coello, C.A. Optimal power flow subject to security constraints solved with a particle swarm optimizer. IEEE Trans. Power Syst. 2008, 23, 33–40. [Google Scholar] [CrossRef]
- Abido, M.A. Multiobjective particle swarm optimization for environmental/economic dispatch problem. Electr. Power Syst. Res. 2009, 79, 1105–1113. [Google Scholar] [CrossRef]
- Safari, A.; Shayeghi, H. Iteration particle swarm optimization procedure for economic load dispatch with generator constraints. Expert Syst. Appl. 2011, 38, 6043–6048. [Google Scholar] [CrossRef]
- Kumar, D.; Samantaray, S.R.; Kamwa, I.; Sahoo, N.C. Reliability-constrained Based Optimal Placement and Sizing of Multiple Distributed Generators in Power Distribution Network Using Cat Swarm Optimization. Electr. Power Compon. Syst. 2014, 42, 149–164. [Google Scholar] [CrossRef]
- Roch-dupré, D.; Gonsalves, T.; Cucala, A.P.; Pecharromán, R.R.; López-lópez, Á.J.; Fernández-cardador, A. Electrical Power and Energy Systems Determining the optimum installation of energy storage systems in railway electrical infrastructures by means of swarm and evolutionary optimization algorithms. Electr. Power Energy Syst. 2021, 124, 106295. [Google Scholar] [CrossRef]
- Salat, R.; Osowski, S. Accurate fault location in the power transmission line using support vector machine approach. IEEE Trans. Power Syst. 2004, 19, 979–986. [Google Scholar] [CrossRef]
- Dash, P.K.; Samantaray, S.R.; Panda, G. Fault classification and section identification of an advanced series-compensated transmission line using support vector machine. IEEE Trans. Power Deliv. 2007, 22, 67–73. [Google Scholar] [CrossRef]
- Erişti, H.; Demir, Y. Automatic classification of power quality events and disturbances using wavelet transform and support vector machines. IET Gener. Transm. Distrib. 2012, 6, 968–976. [Google Scholar] [CrossRef]
- Ekici, S. Support Vector Machines for classification and locating faults on transmission lines. Appl. Soft Comput. J. 2012, 12, 1650–1658. [Google Scholar] [CrossRef]
- Erişti, H.; Yildirim, Ö.; Erişti, B.; Demir, Y. Optimal feature selection for classification of the power quality events using wavelet transform and least squares support vector machines. Int. J. Electr. Power Energy Syst. 2013, 49, 95–103. [Google Scholar] [CrossRef]
- Yusuff, A.A.; Jimoh, A.A.; Munda, J.L. Fault location in transmission lines based on stationary wavelet transform, determinant function feature and support vector regression. Electr. Power Syst. Res. 2014, 110, 73–83. [Google Scholar] [CrossRef]
- Ma, T.; Niu, D.; Fu, M. Icing forecasting for power transmission lines based on a wavelet support vector machine optimized by a quantum fireworks algorithm. Appl. Sci. 2016, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Saber, A.; Emam, A.; Amer, R. Discrete wavelet transform and support vector machine-based parallel transmission line faults classification. IEEJ Trans. Electr. Electron. Eng. 2016, 11, 43–48. [Google Scholar] [CrossRef]
- McKinney, D.C.; Maidment, D.R.; Tanriverdi, M. Expert Geographic Information System for Texas Water Planning. J. Water Resour. Plan. Manag. 1993, 119, 170–183. [Google Scholar] [CrossRef]
- Mohan, S.; Arumugam, N. Expert system applications in irrigation management: An overview. Comput. Electron. Agric. 1997, 17, 263–280. [Google Scholar] [CrossRef]
- Nasiri, F.; Maqsood, I.; Huang, G.; Fuller, N. Water Quality Index: A Fuzzy River-Pollution Decision Support Expert System. J. Water Resour. Plan. Manag. 2007, 133, 95–105. [Google Scholar] [CrossRef]
- Cretescu, I.; Craciun, I.; Benchea, R.E.; Kovács, Z.; Iavorschi, A.; Sontea, V.; Macoveanu, M. Development of an expert system for surface water quality monitoring in the context of sustainable management of water resources. Environ. Eng. Manag. J. 2013, 12, 1721–1734. [Google Scholar] [CrossRef]
- Hasebe, M.; Nagayama, Y. Reservoir operation using the neural network and fuzzy systems for dam control and operation support. Adv. Eng. Softw. 2002, 33, 245–260. [Google Scholar] [CrossRef]
- Simonovic, S.P. Managing Water Resources: Methods and Tools for a Systems Approach; Routledge: London, UK, 2008; Volume 40, pp. 157–165. [Google Scholar]
- Li, Y.P.; Huang, G.H.; Nie, S.L. Planning water resources management systems using a fuzzy-boundary interval-stochastic programming method. Adv. Water Resour. 2010, 33, 1105–1117. [Google Scholar] [CrossRef]
- Savic, D.A. Genetic Algorithms for Least-Cost Design of Water. J. Water Resour. Plan. Manag. 1997, 123, 67–77. [Google Scholar] [CrossRef]
- Prasad, T.D.; Park, N.-S. Multiobjective genetic algorithms for design of water distribution networks. J. Water Resour. Plan. Manag. 2004, 130, 73–82. [Google Scholar] [CrossRef]
- Sattar, M.A.; Yaseen, Z.M. Genetic programming in water resources engineering: A state-of- the-art review. J. Hydrol. 2018, 566, 643–647. [Google Scholar] [CrossRef]
- Babovic, V.; Keijzer, M. Rainfall Runoff Modelling Based on Genetic Programming. Hydrol. Res. 2002, 33, 331–346. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, Q.; Ma, J.; Blanckaert, K. Optimal pipe replacement strategy based on break rate prediction through genetic programming for water distribution network. J. Hydro-Environ. Res. 2013, 7, 134–140. [Google Scholar] [CrossRef]
- Firat, M.; Yurdusev, M.A.; Turan, M.E. Evaluation of artificial neural network techniques for municipal water consumption modeling. Water Resour. Manag. 2009, 23, 617–632. [Google Scholar] [CrossRef]
- Azamathulla, H.; Asce, M.; Ghani, A.A. Genetic Programming to Predict River Pipeline Scour. J. Pipeline Syst. Eng. Pract. 2010, 1, 127–132. [Google Scholar] [CrossRef]
- Olson, R.S.; Bartley, N.; Urbanowicz, R.J.; Moore, J.H. Evaluation of a tree-based pipeline optimization tool for automating data science. In Proceedings of the GECCO ‘16: Proceedings of the Genetic and Evolutionary Computation Conference 2016, Denver, CO, USA, 20–24 July 2016; pp. 485–492. [CrossRef]
- Suribabu, C.R.; Neelakantan, T.R. Design of water distribution networks using particle swarm optimization. Urban Water J. 2006, 3, 111–120. [Google Scholar] [CrossRef]
- Montalvo, I.; Izquierdo, J.; Pérez, R.; Tung, M.M. Particle Swarm Optimization applied to the design of water supply systems. Comput. Math. with Appl. 2008, 56, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Afshar, M.H. Rebirthing particle swarm optimization algorithm: Application to storm water network design. Can. J. Civ. Eng. 2008, 35, 1120–1127. [Google Scholar] [CrossRef]
- Baltar, A.M.; Fontane, D.G. Use of Multiobjective Particle Swarm Optimization in Water Resources Management. J. Water Resour. Plan. Manag. 2008, 134, 257–265. [Google Scholar] [CrossRef]
- Bansal, J.C.; Deep, K. Optimal design of water distribution networks via particle swarm optimization. In Proceedings of the 2009 IEEE International Advance Computing Conference, Patiala, India, 6–7 March 2009; pp. 1314–1316. [Google Scholar] [CrossRef]
- Azadnia, A.; Zahraie, B. Application of multi-objective particle swarm optimization in operation management of reservoirs with sedimentation problems. In Proceedings of the World Environmental and Water Resources Congress 2010, Providence, RI, USA, 16–20 May 2010; pp. 2260–2268. [Google Scholar] [CrossRef]
- Montalvo, I.; Izquierdo, J.; Schwarze, S.; Pérez-García, R. Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Math. Comput. Model. 2010, 52, 1219–1227. [Google Scholar] [CrossRef]
- Afshar, A.; Kazemi, H.; Saadatpour, M. Particle Swarm Optimization for Automatic Calibration of Large Scale Water Quality Model (CE-QUAL-W2): Application to Karkheh Reservoir, Iran. Water Resour. Manag. 2011, 25, 2613–2632. [Google Scholar] [CrossRef]
- Sedki, A.; Ouazar, D. Hybrid particle swarm optimization and differential evolution for optimal design of water distribution systems. Adv. Eng. Inform. 2012, 26, 582–591. [Google Scholar] [CrossRef]
- Ezzeldin, R.; Djebedjian, B.; Saafan, T. Integer Discrete Particle Swarm Optimization of Water Distribution Networks. J. Pipeline Syst. Eng. Pract. 2014, 5, 04013013. [Google Scholar] [CrossRef]
- Peng, Y.; Peng, A.; Zhang, X.; Zhou, H.; Zhang, L.; Wang, W.; Zhang, Z. Multi-Core Parallel Particle Swarm Optimization for the Operation of Inter-Basin Water Transfer-Supply Systems. Water Resour. Manag. 2017, 31, 27–41. [Google Scholar] [CrossRef]
- Fu, H.; Li, Z.; Liu, Z.; Wang, Z. Research on big data digging of hot topics about recycled water use on micro-blog based on particle swarm optimization. Sustainability 2018, 10, 2488. [Google Scholar] [CrossRef] [Green Version]
- Tikhamarine, Y.; Souag-gamane, D.; Najah, A.; Sh, S. Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization. J. Hydrol. 2020, 589, 125133. [Google Scholar] [CrossRef]
- Xiang, Y.; Jiang, L. Water Quality Prediction Using LS-SVM with Particle Swarm Optimization. In Proceedings of the 2009 Second International Workshop on Knowledge Discovery and Data Mining, Moscow, Russia, 23–25 January 2009; pp. 900–904. [Google Scholar] [CrossRef]
- Geem, Z.W. Particle-swarm harmony search for water network design. Eng. Optim. 2009, 41, 297–311. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Sudheer, C.; Mahammood, V.; Panigrahi, B.K. An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing 2014, 145, 324–335. [Google Scholar] [CrossRef]
- Mohammadpour, R.; Shaharuddin, S.; Chang, C.K.; Zakaria, N.A.; Ab Ghani, A.; Chan, N.W. Prediction of water quality index in constructed wetlands using support vector machine. Environ. Sci. Pollut. Res. 2015, 22, 6208–6219. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Wen, X.; Li, J. Wavelet Analysis-Support Vector Machine Coupled Models for Monthly Rainfall Forecasting in Arid Regions. Water Resour. Manag. 2015, 29, 1049–1065. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Ahmadi, K.; Daneshi, A. Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping. Water Resour. Manag. 2017, 31, 2761–2775. [Google Scholar] [CrossRef]
- Rajaee, T.; Khani, S.; Ravansalar, M. Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review. Chemom. Intell. Lab. Syst. 2020, 200, 103978. [Google Scholar] [CrossRef]
- Chadalawada, J.; Herath, H.M.V.V.; Babovic, V. Hydrologically Informed Machine Learning for Rainfall-Runoff Modeling: A Genetic Programming-Based Toolkit for Automatic Model Induction. Water Resour. Res. 2020, 56, 1–23. [Google Scholar] [CrossRef]
- Ham, J.; Hong, Y.T.; Rural, K.; Corporation, C. Transparent water quality model induction in a reservoir affected by the rainfall-runoff process using a grammar- based genetic programming. Res. Sq. 2021, 1–27. [Google Scholar] [CrossRef]
- Danandeh Mehr, A. An ensemble genetic programming model for seasonal precipitation forecasting. SN Appl. Sci. 2020, 2, 1821. [Google Scholar] [CrossRef]
- Jamei, M.; Ahmadianfar, I.; Chu, X.; Yaseen, Z.M. Prediction of surface water total dissolved solids using hybridized wavelet-multigene genetic programming: New approach. J. Hydrol. 2020, 589, 125335. [Google Scholar] [CrossRef]
- Liu, W.; Hui, L.; Lu, Y.; Tang, J. Developing an evaluation method for SCADA-Controlled urban gas infrastructure hierarchical design using multi-level fuzzy comprehensive evaluation. Int. J. Crit. Infrastruct. Prot. 2020, 30, 100375. [Google Scholar] [CrossRef]
- De, G.; Gao, W. Forecasting China’s natural gas consumption based on adaboost-particle swarm optimization-extreme learning machine integrated learning method. Energies 2018, 11, 2938. [Google Scholar] [CrossRef] [Green Version]
- Yousif, M.; Ai, Q.; Gao, Y.; Wattoo, W.A.; Jiang, Z.; Hao, R. Application of particle swarm optimization to a scheduling strategy for microgrids coupled with natural gas networks. Energies 2018, 11, 3499. [Google Scholar] [CrossRef] [Green Version]
- Farah, A.; Hassan, H.; Kawabe, K.; Nanahara, T. Optimal Planning of Multi-Carrier Energy Hub System Using Particle Swarm Optimization. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; pp. 3820–3825. [Google Scholar] [CrossRef]
- Li, N.; Wang, J.; Wu, L.; Bentley, Y. Predicting monthly natural gas production in China using a novel grey seasonal model with particle swarm optimization. Energy 2021, 215, 119118. [Google Scholar] [CrossRef]
- Askari, S.; Montazerin, N.; Fazel Zarandi, M.H. Modeling energy flow in natural gas networks using time series disaggregation and fuzzy systems tuned by particle swarm optimization. Appl. Soft Comput. J. 2020, 92, 106332. [Google Scholar] [CrossRef]
- Pannu, H.S.; Singh, D.; Malhi, A.K. Improved Particle Swarm Optimization Based Adaptive Neuro-Fuzzy Inference System for Benzene Detection. Clean-Soil Air Water 2018, 46, 1700162. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Wu, Z.; Fu, H.; Shi, Y.; Guo, H. Scenario analysis of natural gas consumption in China based on wavelet neural network optimized by particle swarm optimization algorithm. Energies 2018, 11, 825. [Google Scholar] [CrossRef] [Green Version]
- Hilas, C.S. Designing an expert system for fraud detection in private telecommunications networks. Expert Syst. Appl. 2009, 36, 11559–11569. [Google Scholar] [CrossRef]
- Namiot, D.; Schneps-Schneppe, M. About location-aware mobile messages: Expert system based on WiFi spots. In Proceedings of the 2011 Fifth International Conference on Next Generation Mobile Applications, Services and Technologies, Cardiff, UK, 14–16 September 2011; pp. 48–53. [Google Scholar] [CrossRef]
- Vidović, K.; Mandžuka, S.; Šoštarić, M. Expert System for Urban Multimodal Mobility Estimation Based on Information from Public Mobile Network. In Proceedings of the International Conference on Computational Science and Its Applications, Saint Petersburg, Russia, 1–4 July 2019; Volume 11620, pp. 3–11. [Google Scholar] [CrossRef]
- Chen, M.; Challita, U.; Saad, W.; Yin, C. Machine Learning for Wireless Networks with Artificial Intelligence: A Tutorial on Neural Networks. arXiv 2017, arXiv:1710.02913. [Google Scholar]
- Polshchykov, K.; Zdorenko, Y.; Masesov, M. Neuro-fuzzy system for prediction of telecommunication channel load. In Proceedings of the 2015 Second International Scientific-Practical Conference Problems of Infocommunications Science and Technology (PIC S&T), Kharkiv, Ukraine, 13–15 October 2015; pp. 33–34. [Google Scholar] [CrossRef]
- Torghabeh, N.A.; Totonchi, M.R.A.; Moghaddam, M.H.Y. Mobile base station management using fuzzy logic in wireless sensor networks. In Proceedings of the 2010 2nd International Conference on Computer Engineering and Technology, Chengdu, China, 16–18 April 2010; Volume 2, pp. 352–356. [Google Scholar] [CrossRef]
- Papagianni, C.; Papadopoulos, K.; Pampas, C.; Tselikas, N.D.; Kaklamani, D.T.; Venieris, I.S. Communication network design using particle swarm optimization. In Proceedings of the 2008 International Multiconference on Computer Science and Information Technology, Wisla, Poland, 20–22 October 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 915–920. [Google Scholar]
- Banchs, A.; Gutierrez-Estevez, D.M.; Fuentes, M.; Boldi, M.; Provvedi, S. A 5G Mobile Network Architecture to Support Vertical Industries. IEEE Commun. Mag. 2019, 57, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; He, Q.; Liu, L.; Lan, D.; Chung, H.; Mao, Z. An Artificial Intelligence Perspective on Mobile Edge Computing. In Proceedings of the 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), Tianjin, China, 9–11 August 2019; pp. 100–106. [Google Scholar] [CrossRef]
- Lu, H.; Li, Y. Brain Intelligence: Go beyond Artificial Intelligence. Mob. Netw. Appl. 2018, 23, 368–375. [Google Scholar] [CrossRef]
- Nikravesh, A.Y.; Ajila, S.A.; Lung, C.H.; Ding, W. Mobile network traffic prediction using MLP, MLPWD, and SVM. In Proceedings of the 2016 IEEE International Congress on Big Data (BigData Congress), San Francisco, CA, USA, 27 June–2 July 2016; pp. 402–409. [Google Scholar] [CrossRef]
- Otani, T.; Toube, H.; Kimura, T.; Furutani, M. Application of AI to Mobile Network Operation. ITU J. ICT Discov. 2017, 1, 1–7. [Google Scholar]
- Zheng, K.; Yang, Z.; Zhang, K.; Chatzimisios, P.; Yang, K.; Xiang, W. Big data-driven optimization for mobile networks toward 5G. IEEE Netw. 2016, 30, 44–51. [Google Scholar] [CrossRef]
- Jiang, J.A.; Chuang, C.L.; Wang, Y.C.; Hung, C.H.; Wang, J.Y.; Lee, C.H.; Hsiao, Y.T. A hybrid framework for fault detection, classification, and location-Part I: Concept, structure, and methodology. IEEE Trans. Power Deliv. 2011, 26, 1988–1998. [Google Scholar] [CrossRef]
Year | Transp. | Elec. | Water | Gas | Comm. |
---|---|---|---|---|---|
1989 | [5] | [104] | |||
1990 | [69] | ||||
1993 | [6] | [62,63] | |||
1994 | [11] | ||||
1996 | [12] | ||||
1997 | [64,70,76] | [105,111] | |||
1998 | [7] | [79] | |||
1999 | [26] | ||||
2000 | [8,29] | [66,71,78] | |||
2002 | [74] | [108,114] | |||
2003 | [80] | ||||
2004 | [13] | [82,96] | [112] | ||
2005 | [9,20,53] | ||||
2006 | [54] | [87] | |||
2007 | [14,39,45] | [83,88,97] | [106,119] | ||
2008 | [65,90,91] | [120,121,122] | [157] | ||
2009 | [19,42,44,46,47,55] | [92] | [115,123,124,125] | [151] | |
2010 | [18,27,28,34,38,61] | [110,116,126,127] | [156] | ||
2011 | [15,37] | [81,93,98] | [128] | [152] | |
2012 | [16,48,49] | [67,68,99] | [109,129] | ||
2013 | [84,100] | [107,117] | |||
2014 | [10,24,25,56] | [77,85,86,94,101] | [130,134,135,136] | ||
2015 | [73] | [144] | [155] | ||
2016 | [23,36,57] | [72,102,103] | [118] | [161,163] | |
2017 | [33,35,50,51,58,59] | [75] | [131,137] | [154,160,162] | |
2018 | [17,22,32,40,41] | [113,132] | [145,147,149,150] | ||
2019 | [4,21,30,31,43,52] | [146] | [43,153,158,159] | ||
2020 | [60] | [95] | [133,138,139,140,141,142] | [143,148] | |
2021 | [89] |
Tech. | Transp. | Elec. | Water | Gas | Comm. |
---|---|---|---|---|---|
ES | [4,5,6,7,8,9,10,61] | [62,63,64,65,66,67,68] | [104,105,106,107,138] | [43,151,152,153,158,159,160,161,162,163] | |
FS | [11,12,13,14,15,16,44,61] | [66,67,69,70,71,72,73] | [108,109,110,138] | [149,143] | [43,155,156,158,159,160,161,162,163] |
ANN | [17,27,28,29,30,31,32,33,34,35,36,37,61] | [68,72,78,79,80,81,82,83,84,85,86] | [115,138] | [149,150] | [43,154,155,158,159,160,161,162,163] |
GA | [21,22,23,24,25,26,61] | [74,75] | [111,112,138] | [43,158,159,160,161,162,163] | |
GP | [18,19,20,61] | [76,77] | [113,114,116,117,118,138,139,140,141,142] | [43,158,159,160,161,162,163] | |
SVM | [52,53,54,55,56,57,58,59,60,61] | [96,97,98,99,100,101,102,103] | [134,135,136,137,138] | [158,159,160,161,162,163] | |
PSO | [38,39,40,41,42,43,44,45,46,47,48,49,50,51,61] | [87,88,89,90,91,92,93,94,95] | [119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,138] | [144,145,146,147,148,149,150] | [43,157,158,159,160,161,162,163] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Kader, M.Y.; Ebid, A.M.; Onyelowe, K.C.; Mahdi, I.M.; Abdel-Rasheed, I. (AI) in Infrastructure Projects—Gap Study. Infrastructures 2022, 7, 137. https://doi.org/10.3390/infrastructures7100137
Abdel-Kader MY, Ebid AM, Onyelowe KC, Mahdi IM, Abdel-Rasheed I. (AI) in Infrastructure Projects—Gap Study. Infrastructures. 2022; 7(10):137. https://doi.org/10.3390/infrastructures7100137
Chicago/Turabian StyleAbdel-Kader, Mohamed Y., Ahmed M. Ebid, Kennedy C. Onyelowe, Ibrahim M. Mahdi, and Ibrahim Abdel-Rasheed. 2022. "(AI) in Infrastructure Projects—Gap Study" Infrastructures 7, no. 10: 137. https://doi.org/10.3390/infrastructures7100137
APA StyleAbdel-Kader, M. Y., Ebid, A. M., Onyelowe, K. C., Mahdi, I. M., & Abdel-Rasheed, I. (2022). (AI) in Infrastructure Projects—Gap Study. Infrastructures, 7(10), 137. https://doi.org/10.3390/infrastructures7100137