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Abstract: With the orderly advancement of ‘China’s energy development strategic action plan’,
the natural gas industry has achieved unprecedented development. Currently, it is planned that
by 2020, China’s natural gas consumption will account for at least 10% of the total primary energy
consumption, have an orderly and improved energy structure, and achieved energy-saving and
emission-reduction targets. Therefore, the accurate prediction of natural gas consumption becomes
significantly important. Firstly, based on the research status of forecasting methods and the factors
which affect natural gas consumption, this paper used the particle swarm optimization (PSO)
algorithm to obtain the input layer weight, and used the optimized extreme learning machine (ELM)
algorithm to obtain the hidden layer threshold; by using PSO-ELM as the base predictor and the
AdaBoost algorithm, we have constructed the natural gas consumption integrated learning prediction
model. Secondly, from the perspective of different provinces and industries, we deeply analyze the
current status of natural gas consumption, and the random forest algorithm is used to extract the core
influencing factors of natural gas consumption as the independent variables of the prediction model.
Finally, data on China’s natural gas consumption from 1995 to 2017 are selected, then the feasibility
analysis and comparative analysis with other methods are performed. The results show: 1) Using
the random forest algorithm to extract the core influencing factors, economic growth, population,
household consumption and import dependence degree are significantly representative. 2) Based on
the AdaBoost integrated learning algorithm, transforming the weak predictor with poor prediction
effect into a strong predictor with strong prediction effect, compared with PSO-ELM, AdaBoost-ELM
and ELM algorithm, with R-Square as 0.9999, Mean Square Error (MSE) as 0.8435, Mean Absolute
Error (MAE) as 0.2379, Mean Absolute Percentage Error (MAPE) as 0.0008, effectively validated the
significant effect of the AdaBoost-PSO-ELM prediction model. 3) Based on the AdaBoost-PSO-ELM
prediction model, predict the natural gas core influencing factors and natural gas consumption in the
year of 2018–2030. There is an apparent growth trend in the next 13 years, and the average growth
rate of natural gas consumption has reached 7.68%.

Keywords: Natural gas consumption; AdaBoost-PSO-ELM algorithm; Feature selection; prediction
model

1. Introduction

Because China’s economic development has brought increasing problems of environmental
pollution, China urgently needs to speed up its clean energy supply and adjust the current energy
structure to achieve sustainable development [1]. As a high-quality clean energy, natural gas
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complements nuclear energy and other low-carbon clean energies, further promoting the realization of
China’s energy revolution [2].

Natural gas as a new type of strategic energy consumption; compared with coal and oil, the carbon
emissions of natural gas are about 2/3 that of oil and 3/7 that of coal, basically achieving zero emissions.
As the country pays more and more attention to carbon emissions, it shows that the future has great
development potential [3]. According to the BP World Energy Statistical Yearbook (2017), China’s
natural gas demand and total consumption has strongly grown, from 177.41×108 m3 in 1995 to
2352×108 m3 in 2017, with an average annual growth rate of 12.5% [4]. Furthermore, in the report
of China’s 13th Five-Year Energy Development Plan and China’s Natural Gas Development 13th
Five-Year Plan, the government advocated for accelerating the development of China’s natural gas
industry and increasing the proportion of natural gas in primary energy consumption, providing a
decision-making basis for China’s natural gas industry planning and policy formulation [5,6].

In recent years, many scholars have conducted deep research on the influencing factors and
prediction methods of natural gas consumption. In view of the influencing factors of natural gas
consumption, the existing literature focuses on the factors affecting the commonality of natural
gas, such as economic growth [7–13], population [8,11,14], resident income [11,15], natural gas
per capita consumption ratio [10,13,15], natural gas price [10,11,15,16], urban rate [11,14] and other
factors [10,11,14–16]. Das et al. [7] analyzed natural gas consumption and real Gross Domestic Product
(GDP) in Bangladesh from 1980 to 2010 by Granger causality test, the results show that GDP has
a significant effect on natural gas consumption. Li et al. [8] analyzed the changes of natural gas
consumption status and trends in China by scenario analysis method, and pointed out that GDP
and population are the main influencing factors of natural gas consumption. Wang et al. [15] made
the long-term forecast for the natural gas consumption demand of China’s residents, industry and
commerce by co-integration analysis and error correction model. The research shows that the income
of residents, the proportion of gas using population, natural gas price, alternative energy price and
temperature are the main factors affecting China’s natural gas consumption. Xu et al. [9] used the
logarithmic average discriminant index (LMDI) index decomposition method to analyze the factors
affecting natural gas consumption. The results show that economic growth is the main influencing
factor of China’s natural gas consumption growth. Luo et al. [10] used the improved BP neural
network to point out the various factors affecting natural gas, including GDP, gas price, economic
structure, per-capita gas consumption, and proportion in the energy consumption. On this basis,
Wang et al. [11] conducted further research and found that the factors affecting natural gas, included
economic growth, total amount of gas production, household consumption level, urbanization ratio,
and Gas price. Zhen et al. [12] used factor decomposition to analyze natural gas consumption factors in
economic output industries and non-economic output industries. The results show that rapid economic
growth has promoted natural gas consumption. Aguliera et al. [16] analyzed and summarized the
general factors affecting world natural gas prices and the special factors affecting regional natural
gas. The results show that market demand and replacement prices are the main factors affecting the
Asia-Pacific natural gas market. Apergis et al. [13] conducted further research on the relationship
between natural gas consumption and economic growth, constructed the multi-error correction model
for natural gas consumption of 67 countries during 1992–2005, and a heterogeneous panel cointegration
test was carried out. The results show that there is a long-term equilibrium relationship between
natural gas consumption and real GDP, total investment in real assets and the number of those in
the labor force. Gao et al. [14] analyzed the influencing factors of natural gas in China’s cities by the
logarithmic average discriminant index (LDMI), that is, nine effects (spatial expansion, pipe network
density, population density, population urbanization, residential gasification rate, energy consumption
elasticity, natural gas substitution, economic growth, and pipeline size), and quantitatively analyzed
the contribution rate of the influencing factors on the change of urban natural gas consumption
in China.
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In the study of natural gas consumption prediction methods, it is divided into two different prediction
basic theories. One is based on uncertain information for prediction. They use grey theory [17,18], Bayesian
average model [19], logistic model [20], etc. The other is predicted by a combined intelligent algorithm.
That is, genetic algorithm [17,21], neural network algorithm [5,11,22,23], support vector machine [24–28],
particle swarm algorithm [11,17,25], simulated annealing algorithm [21] and other combinations. In the
research results of natural gas consumption forecasting, considering the prediction of uncertainties in
natural gas consumption, the concepts of grey theory [17,18], Bayesian average model [19], logistic
model [20], etc. are adopted; Intelligent algorithm effectively improves prediction accuracy, namely
genetic algorithm [17,21], neural network algorithm [11,22,23,29], support vector machine [24–28],
particle swarm optimization [11,17,25], simulated annealing algorithm [21] and other combinations.
Jolanta Szoplik et al. [22] used the neural network method and Bai et al. [24] used Support Vector
Machines, constructed the prediction model of natural gas consumption, and calculated the forecast of
daily natural gas consumption. Wang et al. [11] analyzed the main influencing factors of natural gas
consumption of China, constructed the hybrid prediction model based on particle swarm optimization
algorithm and wavelet neural network (PSO-WNN), used the PSO algorithm to optimize the initial
weight and wavelet parameters, and through dynamic learning rate to update, to improve training
speed, prediction accuracy, and reduce WNN fluctuations. Fazil Kaytez et al. [25] proposed the least
squares support vector machine (LS-SVM) prediction model. Yusuf Karadede et al. [21] proposed
Population Genetic algorithm and Seed Hybrid algorithm for simulated annealing algorithm based on
nonlinear regression, and forecasted natural gas consumption with a small error rate. Fan et al. [17]
through use of the grey model (GM (1,1)), the self-adapting intelligent grey model (SIGM) and Genetic
Algorithm (GA), proposed the GM-S-SIGM-GA combination forecasting model for natural gas demand
consumption. P.J. García Nieto et al. [26] optimized the Support Vector Machine (SVM) parameters
and improved prediction accuracy by using particle swarm optimization. Iranmanesh, H. et al. [23]
proposed a hybrid method based on the neuro-fuzzy model for long-term demand forecasting.
Barman, M. et al [27] proposed a hybrid prediction model that combines the grasshopper optimization
algorithm and SVM. Zeng et al. [29] proposed back-propagation neural network (BPNN) supported
by an adaptive differential evolution algorithm, forecasting natural gas consumption. Wu et al. [18]
proposed an improved grey prediction model for predicting China’s natural gas consumption, it has
the ability to reflect the priority of new information. Zhang et al. [19] constructed the Bayesian average
model to predict China’s natural gas consumption, which effectively solves the uncertainty of model
structure and parameters and improves the prediction accuracy. Wei et al. [28] used the factor selection
algorithm and optimized support vector regression to predict natural gas consumption in the short
term. Shaikh, F. et al. [20] used the logistic model coupled with the Levenberg–Marquardt Algorithm
to predict China’s natural gas consumption.

In summary, the current research has achieved rich results in the research on the factors affecting
natural gas consumption and the prediction methods, but it also shows certain defects. First, most of
the current research only considers the general factors affecting energy consumption. According to
the National Development and Reform Commission, as of August 2018, the apparent consumption of
natural gas in China was 180.4 billion cubic meters, and the external dependence reached 40.37% [30].
High external dependence directly affects the sustainable development of China’s natural gas supply
and demand market. Second, the natural gas consumption supply and demand market is a dynamic
system involving the whole society. The existing intelligent combination algorithms in the existing
research show good prediction accuracy, but it is difficult to effectively reflect the uncertainty between
the economic variables. Based on this, the innovation of this paper is mainly reflected in the following
three aspects:

• When analyzing the factors affecting China’s natural gas, this paper considers the factors
of previous research and combines the current development status of China’s natural gas
consumption, focusing on the unique influencing factors of natural gas consumption, namely
import dependence. At the same time, in order to avoid problems such as multi-collinearity
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and over-fitting, the random forest algorithm is used to calculate the Gini Importance of each
factor, and the core factors of China’s natural gas are extracted as the independent variables of the
established prediction model.

• Based on the advantages of the combined prediction method, this paper uses the PSO algorithm to
optimize the input weight matrix and hidden layer deviation of the ELM method, which leads to
improvement of the generalization ability of the ELM algorithm. At the same time, the AdaBoost
algorithm is used to integrate several weak predictors into a high-precision strong predictor,
and the Chinese natural gas consumption prediction model is constructed to further improve the
prediction accuracy.

• This paper verifies the superiority of the AdaBoost-PSO-ELM method by comparing the relative
error and prediction accuracy of PSO-ELM, AdaBoost-ELM and ELM. Then combined with the
prediction model training parameters and the time series prediction results of each core influencing
factors, the trend of natural gas consumption in 2018–2030 is predicted, which provides a reference
for future policy formulation.

The reminder of the paper is organized as follows. In Section 2, we explain the theory of Random
Forest algorithm, AdaBoost algorithm, optimizing PSO and improving ELM, and construct the
natural gas consumption prediction model based on AdaBoost-PSO-ELM. In Section 3, we analyze the
development status of China’s natural gas consumption from different regions and industries, and use
the random forest method to extract the core influencing factors of natural gas consumption. Section 4
contains the empirical research and Section 5 summarizes the conclusions of the study.

The flow chart of this study is shown in Figure 1.
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2. Methodology

The main methods used for this paper are the Random Forest Algorithm, Extreme Learning
Machine, Particle Warm Optimization and AdaBoost algorithm; here, we briefly describe it as follows.

2.1. Random Forest Algorithm

The random forest algorithm was proposed by scholars Leo Breiman and Adele Cutler in
2001 [31,32]. Compared with other methods, it overcomes the problems of local optimal solution
and over-fitting. The core idea of the algorithm is to use the bootstrap resampling technique to
repeatedly extract some samples from the original training sample set to generate a new training
sample set, and then generate multiple decision trees according to the self-service sample set to form
a random forest. The decision result of the data is determined by the score formed by the decision
tree voting.
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In addition, the random forest algorithm has an important feature that can calculate the
importance value of each variable. When all training samples are not used, some samples will
be left for each sample, called Out of Bag (OOB) [31], which is used to obtain the classification or
prediction accuracy of random forests, simplifying the individual test samples. Therefore, when
calculating the importance value of a certain predictor, first randomly discard the value corresponding
to the variable in the OOB sample set. Then, the accuracy of the random forest before the disorder
and the accuracy of the disorder are obtained respectively. By using the difference between the two,
the replacement importance value of each variable can be obtained.

Assuming that the original sample content is N, and each base variable is x1, x2, · · · , xm, b new
samples are randomly selected by the bootstrap method, and form b classification trees thereby.
Samples that have not been sampled constitute out-of-bag data, which can be used as a test sample to
assess the importance of each variable in prediction or classification. The process is as follows:

1. Using the bootstrap sample to form each decision tree, and predicting or classifying the
corresponding OOB, then obtaining the voting score of each sample in the OOB in the b samples,
recorded as rate1, rate2, · · · , rateb;

2. Randomly change the value of the variable in the OOB sample to form a new OOB test sample,
and then use the established random forest to predict or classify the new OOB. According to the
number of correct samples, the voting score of each sample is obtained, namely:

rate11 rate12 rate13 · · · rate1b
rate21 rate22 rate23 · · · rate2b
rate31 rate32 rate33 · · · rate3b

...
...

...
...

...
ratep1 ratep2 ratep3 · · · ratep4

 (1)

3. Subtracting the i-th row vector corresponding to the matrix (1) by rate1, rate2, · · · , rateb, summing
the average and then dividing by the standard error to obtain the importance score of the variable
Xi, namely:

scorei = (
b

∑
j=1

(ratej − rateij)/b)/SE, (1 ≤ i ≤ p), (2)

2.2. AdaBoost Algorithm

The AdaBoost algorithm was proposed by Schapire and Freund in 1995 and is based on the
machine learning algorithm of Boosting [33]. The basic idea is to obtain the training sample weights by
repeatedly searching the sample feature space, and it is necessary to constantly adjust the weight of
the training samples in the iterative process. The advantage of this algorithm is that it can increase
the sample weight with low prediction accuracy and reduce the sample weight with high prediction
accuracy, and significantly improve the prediction performance of the whole learning algorithm by
linearly combining into a strong predictor [34]. Furthermore, as the AdaBoost algorithm does not have
to acquire the lower precision limit of the weak prediction learning algorithm in advance, it is widely
used in various practical problems. The specific operation is shown in Figure 2.
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2.3. Improved ELM Theory Based on PSO Algorithm

2.3.1. Extreme Learning Machine

ELM, which was proposed by Professor Huang Guangbin, is a fast and efficient single-layer
feedforward neural network algorithm [35]. Compared with other traditional algorithms, it has the
characteristics of small training error, fast learning speed and simple structure, which makes up for the
shortcomings of traditional feedforward neural network and is widely used in many fields [35]. In the
actual extreme learning training process, the ELM only needs to determine the number of neurons in
the hidden layer. Therefore, without adjusting the connection weight between the input layer neurons
and the hidden layer neurons and the bias of the hidden layer neurons, the hidden layer output weight
matrix can be calculated. The algorithm flow is shown in Figure 3.
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Set N initial training sample as (xi, ti), input sample as xi = [xi1, xi2, . . . , xin]
T ∈ Rn, and output

sample as ti = [ti1, ti2, . . . , tim]
T ∈ Rm that contains L(N0 ≥ L) hidden layer nodes and the activation

function g(x), which is

L

∑
i=1

βigi(xi) =
L

∑
i=1

βig
(
wi · xj + bi

)
= oj, j = 1, 2, . . . , N, (3)

wherein, wi = [wi1, wi2, . . . , win]
T is used to connect the input weight vector of hidden layer nodes and

input nodes; βi = [βi1, βi2, . . . , βim]
T is used to connect the output weight vector of hidden layer nodes

and output nodes; bi is bias of the i-th hidden layer node; wi · xj is the inner product of wi and xj.
To minimize the learning outcome output, it needs to meet.

N

∑
j=1

∥∥oj − tj
∥∥ = 0, (4)

Thus, the existence of βi, wi makes the formula (4).

L

∑
i=1

βig
(
wi · xj + bi

)
= tj, j = 1, 2, 3, . . . , N, (5)

Then, the formula (5) can transfer to the formula (6).

Hβ = T, (6)

H(w1, . . . , wL , b1, . . . , bL , x1, . . . , xL) =


g(w1 · x1 + b1) . . . g(wL · x1 + bL)

...
. . .

...
g(w1 · xN + b1) . . . g(wL · xN + bL)


N×L

, β =


βT

1

...
βT

L


L×M

, T =


tT
1

...
tT

N


N×M

, (7)

wherein, H is the output matrix of the neural network hidden layer nodes, and the i-th column
represents the i-th hidden layer node output matrix. And, when the activation function is infinitely
differentiable, the input connection weight wi and the implicit layer bias bi can be randomly initialized
for training and modification, which ensuring the output connection weight β the least squares solution,
the specific is as follows:

min‖Hβ− T‖, (8)

Therefore, in the ELM neural network algorithm, it can randomly input the connection weight
wi and the implicit layer bias bi, and determine the hidden layer output matrix H. Meanwhile,
after training the ELM neural network, it can be transformed into a linear system Hβ = T. Then,
the output weight β can be determined.

β̂ = H+T, (9)

where, H+ is the Moore–Penrose Generalized Inverse of hidden layer output matrix H, and the norm
of β̂ is the smallest and unique. However, when using the ELM algorithm to predict natural gas
consumption, there are two main reasons affecting the fitting error: one is the input layer weight and
the other is the hidden layer threshold.

2.3.2. Particle Swarm Optimization

The PSO algorithm was proposed by Kennedy and Eberhart in 1995, and has the characteristics of
being quickly converging, easily implemented, with great calculation accuracy [36]. By introducing
stochastic searching problems in D dimensional space, objective function maximization and
minimization can be solved effectively [36]. In D dimensional space, there are n populations
X = (X1, X2, . . . , Xn) consisting of particles. Each particle i consists of one position vector



Energies 2018, 11, 2938 8 of 20

xi = (xi1, xi2, . . . , xiD) of the D dimensional space and one velocity vector vi = (vi1, vi2, . . . , viD).
When particle i searching D dimensional space, the best position Pi

best =
(

Pi1
best, Pi2

best, . . . , PiD
best
)T

is the local optimal solution, and the best location searched by the whole particle swarm

gbest =
(

gb1
bsest, gb2

bsest, . . . , gbD
bsest

)T
is the global optimal solution. The velocities and positions of particles

can be obtained by the following formula.

vi(t + 1) = wvi(t) + c1v1

(
Pi

best(t)− xi(t)
)
+ c2v2

(
Pi

best(t)− xi(t)
)

, (10)

xi(t + 1) = xi(t) + vi(t + 1), (11)

where,i = 1, 2, . . . , N, N is the total number of population particles, w is inertia factor. The value of w
is nonnegative. When the value is large, the global search ability is strong and the local search ability
is weak. When the value is small, the global search ability is weak and the local search ability strong.
Dynamic w can get better results. Presently, the most widely used strategy is the linear decreasing
weight strategy:

w(t) = (wini − wend)(itmax − t)/itmax + wend, (12)

where, itmax is the maximum number of iterations, wini is the initial inertia weight, and the typical
value is wini = 0.9. The inertia weight wend is 0.4 when reaching the maximum number of iterations.
The range of value of local and global learning factors c1, c2 is 0 ≤ c1, c2 ≤ 2, usually, c1 = c2 = 2.
r1, r2 are two random numbers, ranging from 0 to 1. In order to increase the randomness of
searching and prevent blind search of particles, the positions and velocities of particles are limited
to [−xmax, xmax], [−vmax, vmax]. Pbesti is the local best position of particle i while gdesti is the global
optimal position.

2.3.3. Calculation Steps of PSO Optimizing ELM Algorithm

In order to effectively improve the prediction accuracy of natural gas consumption in this paper,
we use PSO to optimize the above two main parameters to determine the fitness function, as follows:

Step1: Determine the parameters of PSO. Based on a given training sample, we can determine
population size N, maximum evolutionary iterations M, linear decreasing inertia factor w, and learning
factor c.

Step2: Determine the fitness function. We generally take the mean square error of the training
sample and the simulated fitting value as the fitness function. Since the ELM can approximate
the nonlinear function infinitely, the fitness function will lead to over-fitting, which will reduce the
generalization ability of the model.

Step3: Initialize the population. Each particle in the population represents a solution, and each
particle contains an input weight matrix and threshold vector information. We calculate the initial
fitness value of the population f , and set it as the historical optimal value of the respective particles
Pi

best. Further, we mark the position of the particle i with the smallest fitness function as the global
optimal value. Further, we set the particle position corresponding to the particle i with the smallest
fitness function as Pi

best, and set it as the global optimal value gbest.
Step4: Update the population. The particle position and velocity are updated according to the

particle swarm algorithm. If the particle is in a stagnant state, the particle position and velocity will
be reinitialized.

Step5: Update particle history optimal values and global optimal values. We first calculate a
new fitness value fn of n-th iteration. If i-th particle corresponds to f i

n < Pi
best, then Pi

best = f i
n, and

conversely unchanged. Assume that in this iteration, the particle position corresponding to j-th
particle with the smallest fitness function is Pj

best. If Pi
best < gbest, then Pi

best < gbest, otherwise the global
optimum value remains unchanged.
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Step6: The iteration ends. When the iterative end condition is satisfied, the iteration is stopped.
At this time, the particle corresponding to the global optimal value is the input weight and threshold
of the optimal hidden layer node.

2.4. Establishing Natural Gas Consumption Forecasting Model based on AdaBoost-PSO-ELM
Integrated Learning

The natural gas consumption prediction model includes two stages: In the first phase, we use
PSO to optimize the input layer weight and the hidden layer threshold of ELM to overcome the lack
of generalization ability of the ELM. In the second phase, we use PSO-ELM to build weak predictors.
Then, AdaBoost is used to combine several weak predictors with poor prediction effects into strong
predictors with better prediction effects.

Suppose there are N training samples S = {(xi, yi)|i = 1, 2, . . . , N }, there are T predictors output
function ft(x), t = 1, 2, . . . , T trained by PSO-ELM base predictor. Then we can get a strong predictor
consisting of T base predictors through AdaBoost. The calculation steps are as follows:

Step1: Initialize the weights of N training samples, sample D1 tends to be uniformly distributed:

D1(i) =
1
N

, (13)

where Dt(i) represents the weight assigned to the sample (xi, yi) in the t-th iteration.
Step2: According to the sample distribution Dt, t = 1, 2, . . . , T, we use Bootstrap to sample

training set S and get St. We train the t-th PSO-ELM weak predictor according to the above sample,
and then use the trained PSO-ELM to predict the output value of the training data. The absolute value
of the weak prediction error is as follows,

Ei = ‖ ft(xi)− yi‖, (14)

Step3: Calculate the weight coefficient of the weak predictor wt based on εt,

εt = ∑i:ei>φ
Dt(i), i = 1, 2, . . . , N, (15)

wt =
1
2

ln
1− εt

εt
, (16)

Step4: Adjusting the weight of the next round of training samples according to the weight
coefficient wt,

Dt+1(i) =


exp(wt)×Dt(i)

Zt
, ei > φ

exp(−wt)×Dt(i)
Zt

,ei ≤ φ
, (17)

where, φ is the prediction error threshold and Zt is the normalization factor.
Step5: After training T rounds, we get T weak predictor functions based on PSO-ELM. Then,

we combine them to get strong predictor functions,

F(x) =
T

∑
t=1

wt × ft(x), (18)

In summary, after several weak predictors are repeatedly updated and adjusted in our framework,
a strong predictor is formed, which is natural gas consumption prediction model based on
AdaBoost-PSO-ELM integrated learning. The specific framework and process are shown in Figure 4.
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3. Extraction of Core Factors Affecting Natural Gas Consumption

Based on the study of natural gas consumption in different regions and industries in China,
this paper combines literature analysis, economic meaning and random forest algorithm to extract
the core influencing factors of natural gas consumption as the independent variables of the later
prediction model.

3.1. Analysis of Current Natural Gas Consumption

Along with the changing of China’s clean energy consumption structure, total natural gas
consumption has grown rapidly, and China has gradually constructed the natural gas supply
system of “West-to-East Gas Transmission, North-to-South Gas Transmission, Sea-to-Air Landing and
Liquefaction Point Supply” [5,6]. As natural gas has the characteristics of being high quality, clean,
and highly efficient, its proportion in primary energy consumption is increasing [5,6]. At the same
time, China has entered a stage of high development of industrialization and urbanization, resulting
in rising energy demand. Therefore, according to the China Energy Statistical Yearbook (2017), China’s
natural gas consumption has shown a rapid growth trend from different provinces and different
industries [4].

1. From the perspective of different provinces, natural gas consumption is mainly in North China,
Yangtze River Delta and Pearl River Delta; while Sichuan Province has become the largest
consumer of natural gas, as shown in Figure 5.
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2. From the perspective of different industries, the proportion of industrial consumption in total is
stable at around 60%, the proportion of residential consumption is stable at around 20%, and the
consumption of transportation, storage and post accounts for about 15%; in addition, 5% is used
in other industries, as shown in Figure 6.
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3.2. Extraction of Core Factors Affecting Natural Gas Consumption

Choosing factors affecting natural gas consumption is the basis of this study. Based on literature
analysis and economic implications, we selected eight variables to be further studied, including
population, economic growth, urbanization level, industrial structure, household consumption,
technological advances, import dependence and fixed asset investment, marked as xi, i = 1 ∼ 8.
According to the energy conversion coefficient stipulated by the national standard (GB2589-81), 1 cubic
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meter of natural gas can be converted into 1.2143 kilograms of standard coal, and we use the electric
heating power equivalent calculation method to calculate the natural gas consumption data over
the years.

In order to select the core influencing factors, the random forest is used to calculate the importance
index of each influencing factor. The concept of the algorithm and the calculation formula of the index
have been introduced in Section 2.1. Then, Gini Importance of each independent variable is calculated,
which is shown in Figure 7.
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Figure 7. The Gini Importance value of each influencing factor of natural gas consumption.

Figure 7 is the Gini Importance of each variable calculated from the random forest model.
According to Gini Importance, the order of each variable from big to small is x2 > x1 > x5 >

x7 > x3 > x6 > x8 > x4. Therefore, we choose the four variables with the largest Gini Importance
value as the independent variable, including economic growth, population, household consumption,
and import dependence.

1. Economic growth (x2): Since mankind entered the industrial era, energy has become an important
factor in a country’s economic development and social progress, and it provides the necessary
impetus for economic growth. Economic development is inseparable from energy, so economic
growth will promote the consumption of natural gas.

2. Population (x1): Population is the most fundamental component of the social system, and the
consumption of natural gas is generated by people. In the absence of changes in other conditions,
the population has a positive relationship with the total demand for natural gas, that is, the larger
the population, the greater the demand for natural gas consumption.

3. Household consumption (x5): With the continuous improvement of people’s living and
consumption levels, the demand for clean energy continues to increase, directly driving the
growth of natural gas consumption. At the same time, the negative impact of traditional energy on
the ecological environment has prompted changes in the existing energy consumption structure.
Therefore, the level of household consumption is a core factor in the consumption of natural gas.

4. Import dependence (x7): Import dependence = import quantity/(yield quantity + import quantity
− export quantity), the import dependence of natural gas reflects the contradiction between
supply and demand of natural gas. Since 2017, due to the tightening of China’s environmental
protection policies and the “coal to gas” program, China’s natural gas consumption has been
growing rapidly. In the future, China’s natural gas supply gap will still be large, and imported
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pipeline gas and Liquefied Natural Gas (LNG) will still be important ways to make up for the
tightness of the gas source. Therefore, the index of import dependence can be used as a core
factor affecting natural gas consumption.

Currently, we choose the four variables with the largest Gini Importance value as the independent
variables, the dependent variable is China’s natural gas consumption. At this point, we have chosen
the independent and dependent variables, which provide variables for the later prediction models.

4. Empirical Research

4.1. Database

Data of empirical research includes a dependent variable (natural gas consumption),
four independent variables (economic growth, population, household consumption, import
dependence), and the interval is 1995–2017, as shown in Table 1. This paper uses Matlab R2014a
for programming, and as for the test platform environment, we use the Intel Core i5-6200U, with 8G
memory and the Windows 10 Professional Edition system.

Table 1. Historical data.

Year
Natural Gas

Consumption
(108 Cu.m)

GDP
(108 Yuan)

Population
(104 People)

Household
Consumption per

Person (Yuan)

Import
Dependence

(%)

1995 177.41 61,340 121,121 2318 0.13
1996 184.88 71,814 122,389 2750 0.00
1997 195.44 79,715 123,626 2963 1.43
1998 202.57 85,196 124,761 3112 0.13
1999 214.94 90,564 125,786 3332 0.12
2000 245.03 100,280 126,743 3707 0.01
2001 274.30 110,863 127,627 3973 0.00
2002 291.84 121,717 128,453 4288 0.00
2003 339.08 137,422 129,227 4592 0.00
2004 396.72 161,840 129,988 5123 0.00
2005 467.63 187,319 130,756 5754 0.00
2006 561.41 219,439 131,448 6399 0.47
2007 705.23 270,232 132,129 7553 4.68
2008 812.94 319,516 132,802 8685 5.03
2009 895.20 349,081 133,450 9491 6.75
2010 1069.41 413,030 134,091 10,892 13.56
2011 1305.30 489,301 134,735 13,102 21.01
2012 1463.00 540,367 135,404 14,663 25.64
2013 1705.37 595,244 136,072 16,150 30.91
2014 1868.94 643,974 136,782 17,732 32.86
2015 1931.75 689,052 137,462 19,349 33.35
2016 2078.06 743,586 138,271 21,166 35.60
2017 2373.00 827,122 139,008 22,841 37.80

4.2. Natural Gas Consumption Forecasting Based on AdaBoost-PSO-ELM model

4.2.1. Parameter Setting

We used the data from 1995 to 2009 as the training set, and used the data from 2010 to 2017 as the
test set. Then we built the AdaBoost-PSO-ELM model for the training set and evaluated the model
through the testing set.

The neural network in the PSO-ELM based predictor uses a 4-H-1 type 3-layer structure.
The neuron transfer function is the tansig function, and the network learning rule is the gradient
descent method. After repeated tests, PSO parameters were set as follows: population number M = 100,
local search factor C1 = 2.4, global search factor C2 = 1.6, maximum iteration number T = 50.
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Currently, there is no unified theory to select the ELM number of neurons in the hidden layer H.
In addition, the increase in the number K of the base predictor can improve the prediction accuracy
of the strong predictor, but if K is too large, the time and space cost will increase. Therefore, we use
the empirical formula to select H = 20 to train the neural network, and take K = 5 to construct the
AdaBoost-PSO-ELM strong predictor.

4.2.2. Forecasting Result

Based on the optimal parameters of the model obtained from the training set and the test set,
we use the back substitution method to estimate the training set as well. The comparison between the
predicted value and the actual value based on the AdaBoost-PSO-ELM model is shown in Figure 8.

In order to scientifically reflect the credibility of the predicted value relative to the true value,
we introduce the Relative Error (RE) RE = (ŷt − yt)/yt, which is the ratio of the absolute error to the
true value expressed as a percentage.

We use the back-generation estimation method to estimate the 23 sets in the data set. The contrast
between the predicted value and the actual value is shown in the top of Figure 8; the line marked by
the red box is the real value, and the line of the blue star is the prediction. The value; the relative error
is shown in the bottom of Figure 8, where the blue dashed line indicates the predicted relative error for
each sample.
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Figure 8. Prediction Performance of AdaBoost-PSO-ELM.

The results show that the predicted trend of natural gas consumption and the actual trend of the
AdaBoost-PSO-ELM model are basically consistent. At the same time, as the number of iterations
increases, the prediction effect of the strong predictor is continuously improved. The natural gas
consumption forecasting relative error is controlled within 0.02%, which effectively validates the
prediction accuracy and reliable robustness of AdaBoost-PSO-ELM.
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4.3. Discussion

4.3.1. Relative Error Analysis

Next, we compare the predicted performance of four different models, including a single ELM
model without weight and threshold optimization, and AdaBoost-ELM (with integrated learning),
PSO-ELM (with weight and threshold optimization) and AdaBoost-PSO-ELM (with integrated learning,
weight and threshold optimization).

First, we compare the relative errors between different models, which are shown in Figures 9
and 10.
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It can be seen from Figures 9 and 10 that the prediction trends of the four prediction models are
basically the same, and the relative errors of the various prediction models will gradually decrease
over time. The results show that the improvement effect of PSO on ELM is better than that of AdaBoost
on ELM, which shows that PSO is more significant for weight optimization than simple integrated
learning. The four predictive models are ranked from good to bad: AdaBoost-PSO-ELM> PSO-ELM>
AdaBoost-ELM> ELM.

To show the forecasting accuracy of each model more intuitively, we use the boxplot to compare
the relative errors of each forecasting model. The boxplot displays the following five statistics of the
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relative error for each forecasting model: the minimum, first quartile, the median, third quartile and
the maximum. The boxplot of relative errors for different models are shown in Figure 11.
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As shown in Figure 11, the relative error of the AdaBoost-PSO-ELM model forecasting result is
the smallest, followed by PSO-ELM model, and the relative error of ELM is the largest.

4.3.2. Prediction Accuracy Analysis

In order to further compare the performance of different models, four statistical indicators of the
prediction model were calculated, including, Goodness of Fit (R2), Mean Square Error (MSE), Mean
Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). The calculation equations of the
indexes are as shown in Equations.
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1
N

√√√√ N

∑
t=1

(ŷt − yt)
2, (20)

MAE =
1
N

N

∑
t=1
|ŷt − yt|, (21)

MAPE =
1
N

N

∑
t=1
|(ŷt − yt)/yt|, (22)

The results are shown in Table 2.

Table 2. The calculation results of the four models.

Model R2 MSE MAE MAPE

ELM 0.9637 41.8220 17.4555 0.0467
AdaBoost-ELM 0.9969 29.3581 12.0851 0.0292

PSO-ELM 0.9999 0.8624 0.2470 0.0008
AdaBoost-PSO-ELM 0.9999 0.8435 0.2379 0.0008

The prediction accuracy of AdaBoost-ELM is much better than that of a single ELM, indicating
that AdaBoost can improve the prediction effect through integrated learning. The weight and threshold
optimization through PSO is better than the unoptimized model prediction, which indicates that PSO
can effectively optimize the ELM neural network and improve the prediction effect of the model.
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Through the model comparison, the prediction significance of the AdaBoost-PSO-ELM model is
further verified.

4.4. Prediction of Future Trends

The above shows that the AdaBoost-PSO-ELM model we used has outstanding performance.
If we want to predict the future consumption of natural gas through this model, we must predict the
future trend of the independent variable first. Based on the data from 1995 to 2017, the core influencing
factors of natural gas from 2018 to 2030 are predicted by Autoregressive Integrated Moving Average
Model (ARIMA) in time series forecasting method, as shown in Figure 12. The parameters of the
ARIMA model are selected according to the characteristics of each variables
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Figure 12. Natural gas core influencing factors prediction curve, (a) Forecasting of GDP;
(b) Forecasting of Population; (c) Forecasting of Household Consumption per Person; (d) Forecasting
of Import Dependence.

Based on AdaBoost-PSO-ELM prediction model and using the best parameters trained above,
we forecast the natural gas consumption in the coming 2018–2030, as shown in Figure 13.

With the continuous development of China’s energy revolution, the utilization rate of natural gas
is increasing year by year. At present, China’s natural gas supply and demand market is in a balanced
state, and the growth of natural gas consumption shows a stable development trend. According to our
prediction, the average growth rate of China’s natural gas consumption will reach 7.68% in 2018–2030,
which will provide a basis for the designation of gas-related policies.
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Figure 13. Trends of Natural Gas Consumption in 2018–2030.

5. Conclusions

This paper proposed a natural gas consumption prediction model based on AdaBoost-PSO-ELM
integrated learning, which transformed several weak predictors into strong predictors with strong
prediction effects through the PSO optimizing ELM method. In order to avoid double collinearity
and over-fitting, the random forest algorithm was used to extract the core factors of China’s natural
gas as the independent variables of the prediction model. Finally, the natural gas related data from
1995 to 2017 were selected and the results were as follows: (1) In the process of extracting the core
influencing factors, the combination of economic meaning analysis and random forest was used as
the basis to determine the independent variables needed for the prediction model. (2) Using the PSO
algorithm to optimize the input layer weight and the hidden layer threshold in the ELM algorithm
could effectively improve the prediction performance. (3) Comparing the R2, RSE, MAE and MAPE
values under the PSO-ELM, AdoBoost-ELM and ELM methods, it proved that the AdaBoost-PSO-ELM
integrated learning method had significant advantages; (4) Based on AdaBoost-PSO-ELM forecasting
model, China’s natural gas consumption and the future development of core influencing factors from
2018 to 2020 were further predicted. The above results showed that the AdaBoost-PSO-ELM integrated
learning prediction method proposed in this paper was effective and feasible, which could further
improve the prediction accuracy and provide ideas for subsequent related research.

In reality, the stochastic fluctuations in natural gas consumption are complex and diverse. By using
scientific prediction methods to predict natural gas consumption, it is possible to grasp the growth
trend of natural gas consumption. It will provide a quantitative reference for government departments
to formulate natural gas industry policies and natural gas infrastructure investment plans, and help
government to intervene in advance to balance the contradictions that may arise in the supply and
demand of the market.
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