Crumb Rubber in Concrete—The Barriers for Application in the Construction Industry
Abstract
:1. Introduction
- The current construction materials market is rather conservative and there is a need to foresee the alternative solutions since natural aggregates resources are depleting [10];
- Constant flow of available materials and their storage, efficient time frame for the delivery of the materials within the country/countries (for example, secondary streams are very important). Meanwhile, the cost for natural aggregate keeps increasing due to the limited source and long transport distance [5];
- CRC cost analysis and comparison to the traditional concrete vary from country to country due to the limited industrial-scale production of CR [11]. The price of CR ranges from 40 to 320 EUR per ton based on its origin and fineness;
- The end-of-waste (EoW) management is crucial, and recycling is mandatory; however, the profit of recycling is limited by the manufacturing costs; also, it depends on the recycling developments within the countries (which may differ quite a lot from country to country);
- Society reaction to waste usage in construction materials due to lack of sufficient technical information and comprehension may develop certain barriers in application of different recycled materials;
- The recycled rubber products have poor mechanical performances-interfacial bond strength as the main factor which limits the application of CR in construction elements;
- Insufficient investigation of leaching behavior and ecotoxicological impact to the environment;
- Insufficient information on the recyclability of concrete containing CR;
- For the moment, there are no restrictions defined regarding CR application in concrete nor rubberized concrete aggregates.
- Cut tires, with size bigger than 300 mm,
- Shreds, with size ranging between 20 and 400 mm,
- Chips, with size ranging between 10 and 50 mm,
- Rubber granulates, with size ranging between 0.8 and 20 mm,
- Rubber dust, smaller than 0.8 mm (limited application, but can be successfully used in concrete).
2. Review Significance
2.1. CR application in Concrete in Large Research Projects
2.2. Mechanical Properties—The Main Barrier for Application in the Construction Industry
2.3. The Fresh Properties—Improvement of Workability
2.4. Interfacial Bonding between the CR Particles and Cement Matrix
2.5. CR Pre-Treatment
2.6. Usage of Supplementary Cementitious Materials (SCMs) along with CR in Concrete
2.7. CR Application in High-Performance Concrete
2.8. Durability
2.9. Leaching and Ecotoxicology
2.10. Recycling of CRC
3. Discussion
4. Conclusions
- The workability of rubberized concrete decreases with the increase in CR content and particle size. However, it can be improved with the inclusion of admixtures such as superplasticizers, silica fume, SCMs like fly ash, slagand metakaolin.
- The density of rubberized concrete decreases substantially with the increase in CR content or fineness, due to the lower specific gravity and air-entraining capability of CR. This makes rubberized concrete useful for lightweight structures.
- The pre-treatment of CR influences positively on ITZ. If the bond is improved at ITZ by any suitable and economical means then the negative effects of CR on strength properties of normal concrete may be reduced, consequently, it would be possible to effectively use the rubberized concrete in numerous concrete structures by the construction industry.
- The optimal CR replacement range based on the mechanical, physical and durability properties could vary between 10–20% for fine aggregates replacement and 5% for coarse aggregates replacement.
- Within the optimal range and pre-treatment of CR: (1) freeze-thaw resistance, chloride ion penetration resistance, acid resistance and abrasion resistance are enhanced; (2) ASR, drying shrinkage and carbonation will not increase. However, CRC is significantly affected by sulphate attacks.
- The incorporation of CR significantly improves the dampness ratio of concrete. The vibration absorption capacity and increased dampness absorption make CRC an ideal construction material in structures under dynamic load including railways sleepers, seismic prone structures, concrete columns, bridges etc.
- It has been confirmed the surrounding cementitious materials can well confine the trace metals or volatile organics exited in rubber particles based on the TCLP test.
- The cost analysis among various surface treatment methods must be thoroughly studied and the cost-effectiveness of different types of CRC and CRC construction elements production must be provided.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Halsband, C.; Sørensen, L.; Booth, A.M.; Herzke, D. Car tire crumb rubber: Does leaching produce a toxic chemical cocktail in coastal marine systems? Front. Environ. Sci. 2020, 8, 125. [Google Scholar] [CrossRef]
- Song, W.-J.; Qiao, W.-G.; Yang, X.-X.; Lin, D.-G.; Li, Y.-Z. Mechanical properties and constitutive equations of crumb rubber mortars. Constr. Build. Mater. 2018, 172, 660–669. [Google Scholar] [CrossRef]
- Seddik Meddah, M. Recycled aggregates in concrete production: Engineering properties and environmental impact. MATEC Web Conf. 2017, 101, 05021. [Google Scholar] [CrossRef]
- Su, H.; Yang, J.; Ling, T.-C.; Ghataora, G.S.; Dirar, S. Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. J. Clean. Prod. 2015, 91, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Hu, J.; Dai, Q. A critical review on the performance of portland cement concrete with recycled organic components. J. Clean. Prod. 2018, 188, 92–112. [Google Scholar] [CrossRef]
- SMART. Final Report Summary—SMART (Sustainable Moulding of Articles from Recycled Tyres). Available online: https://cordis.europa.eu/project/id/286465/reporting (accessed on 29 April 2021).
- ANAGENNISI. Final Report Summary—ANAGENNISI (Innovative Reuse of All Tyre Components in Concrete). Available online: https://cordis.europa.eu/project/id/603722 (accessed on 29 April 2021).
- RISEN. Periodic Reporting for Period 1—RISEN (Rail Infrastructure systems Engineering Network). Available online: https://cordis.europa.eu/project/id/691135/reporting (accessed on 29 April 2021).
- ARC Linkage Project. Reinforced crumbed Rubber Concrete for Residential Construction. Available online: https://www.unisa.edu.au/research/scarce-resources-and-circular-economy/research-projects/reinforced-crumbed-rubber-concrete-for-residential-construction/ (accessed on 29 April 2021).
- Leal Filho, W.; Hunt, J.; Lingos, A.; Platje, J.; Vieira, L.W.; Will, M.; Gavriletea, M.D. The unsustainable use of sand: Reporting on a global problem. Sustainability 2021, 13, 3356. [Google Scholar] [CrossRef]
- Kazmi, S.M.S.; Munir, M.J.; Wu, Y.-F. Application of waste tire rubber and recycled aggregates in concrete products: A new compression casting approach. Resour. Conserv. Recy. 2021, 167, 105353. [Google Scholar] [CrossRef]
- Sofi, A. Effect of waste tyre rubber on mechanical and durability properties of concrete—A review. Ain Shams Eng. J. 2018, 9, 2691–2700. [Google Scholar] [CrossRef]
- Bisht, K.; Ramana, P.V. Waste to resource conversion of crumb rubber for production of sulphuric acid resistant concrete. Constr. Build. Mater. 2019, 194, 276–286. [Google Scholar] [CrossRef]
- Thomas, B.S.; Gupta, R.C.; Panicker, V.J. Recycling of waste tire rubber as aggregate in concrete: Durability-related performance. J. Clean. Prod. 2016, 112, 504–513. [Google Scholar] [CrossRef]
- Wagner, S.; Hüffer, T.; Klöckner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire wear particles in the aquatic environment—A review on generation, analysis, occurrence, fate and effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Kucinska-Lipka, J.; Janik, H.; Balas, A. Progress in used tyres management in the European Union: A review. Waste Manag. 2012, 32, 1742–1751. [Google Scholar] [CrossRef]
- Lapkovskis, V.; Mironovs, V.; Kasperovich, A.; Myadelets, V.; Goljandin, D. Crumb rubber as a secondary raw material from waste rubber: A short review of end-of-life mechanical processing methods. Recycling 2020, 5, 32. [Google Scholar] [CrossRef]
- ETRMA. European Tyre and Rubber Industry—Statistics; ETRMA: Brussels, Belgium, 2014. [Google Scholar]
- Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste, EUR-Lex, Publications Office of the European Union, Luxembourg, Luxembourg. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01999L0031-20180704&qid=1626971916106 (accessed on 22 July 2021).
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives, EUR-Lex, Publications Office of the European Union, Luxembourg, Luxembourg. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008L0098&qid=1626973255571 (accessed on 22 July 2021).
- PD CEN/TS16637-2:2014. Construction Products—Assessment of Release of Dangerous Substances—Part 2: Horizontal Dynamic Surface Leaching Test; CEN-CENELEC Management Centre: Brussels, Belgium, 2014. [Google Scholar]
- Pilakoutas, K.; Neocleous, K.; Tlemat, H. Reuse of tyre steel fibres as concrete reinforcement. Proc. Inst. Civ. Eng. 2004, 157, 131–138. [Google Scholar] [CrossRef]
- Neocleous, K.; Tlemat, H.; Pilakoutas, K. Design issues for concrete reinforced with steel fibers, including fibers recovered from used tires. J. Mater. Civil. Eng. 2006, 18, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Aiello, M.A.; Leuzzi, F.; Centonze, G.; Maffezzoli, A. Use of steel fibres recovered from waste tyres as reinforcement in concrete: Pull-out behaviour, compressive and flexural strength. Waste Manag. 2009, 29, 1960–1970. [Google Scholar] [CrossRef]
- Barros, J.A.; Zamanzadeh, Z.; Mendes, P.J.; Lourenço, L. Assessment of the potentialities of recycled steel fibres for the reinforcement of cement based materials. In Proceedings of the 3rd Workshop: The New Boundaries of Structural Concrete, Session C—New Scenarios for Concrete, ACI Italy Chapter, Bergamo, Italy, 3–4 October 2013; pp. 1–11. [Google Scholar]
- Caggiano, A.; Xargay, H.; Folino, P.; Martinelli, E. Experimental and numerical characterization of the bond behavior of steel fibers recovered from waste tires embedded in cementitious matrices. Cem. Concr. Comp. 2015, 62, 146–155. [Google Scholar] [CrossRef]
- Martinelli, E.; Caggiano, A.; Xargay, H. An experimental study on the post-cracking behaviour of Hybrid Industrial/Recycled Steel Fibre-Reinforced Concrete. Constr. Build. Mater. 2015, 94, 290–298. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Banthia, N. Durability performance of polymeric scrap tire fibers and its reinforced cement mortar. Mater. Struct. 2017, 50, 158. [Google Scholar] [CrossRef]
- Medina, N.F.; Medina, D.F.; Hernández-Olivares, F.; Navacerrada, M.A. Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling. Constr. Build. Mater. 2017, 144, 563–573. [Google Scholar] [CrossRef]
- Chen, M.; Chen, W.; Zhong, H.; Chi, D.; Wang, Y.; Zhang, M. Experimental study on dynamic compressive behaviour of recycled tyre polymer fibre reinforced concrete. Cem. Concr. Comp. 2019, 98, 95–112. [Google Scholar] [CrossRef]
- Siddique, R.; Naik, T.R. Properties of concrete containing scrap-tire rubber—An overview. Waste Manag. 2004, 24, 563–569. [Google Scholar] [CrossRef]
- Papakonstantinou, C.G.; Tobolski, M.J. Use of waste tire steel beads in Portland cement concrete. Cem. Concr. Res. 2006, 36, 1686–1691. [Google Scholar] [CrossRef]
- Khaloo, A.R.; Dehestani, M.; Rahmatabadi, P. Mechanical properties of concrete containing a high volume of tire–rubber particles. Waste Manag. 2008, 28, 2472–2482. [Google Scholar] [CrossRef] [PubMed]
- Ganjian, E.; Khorami, M.; Maghsoudi, A.A. Scrap-tyre-rubber replacement for aggregate and filler in concrete. Constr. Build. Mater. 2009, 23, 1828–1836. [Google Scholar] [CrossRef]
- Aiello, M.A.; Leuzzi, F. Waste tyre rubberized concrete: Properties at fresh and hardened state. Waste Manag. 2010, 30, 1696–1704. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Wang, R.; Dang, F. Potential use of waste tire rubber as aggregate in cement concrete—A comprehensive review. Constr. Build. Mater. 2019, 225, 1183–1201. [Google Scholar] [CrossRef]
- Barros, J.A.O.; Frazão, C.; Caggiano, A.; Folino, P.; Martinelli, E.; Xargay, H.; Zamanzadeh, Z.; Lourenço, L. Cementitious composites reinforced with recycled fibres. In Recent Advances on Green Concrete for Structural Purposes: The Contribution of the EU-FP7 Project EnCoRe; Barros, J.A.O., Ferrara, L., Martinelli, E., Eds.; Springer: Cham, Switzerland, 2017; pp. 141–195. [Google Scholar] [CrossRef]
- Khatib, Z.K.; Bayomy, F.M. Rubberized Portland cement concrete. J. Mater. Civil. Eng. 1999, 11, 206–213. [Google Scholar] [CrossRef]
- Aslani, F.; Khan, M. Properties of high-performance self-compacting rubberized concrete exposed to high temperatures. J. Mater. Civil. Eng. 2019, 31, 04019040. [Google Scholar] [CrossRef]
- Kaloush, K.E.; Way, G.B.; Zhu, H. Properties of crumb rubber concrete. Transp. Res. Rec. 2005, 1914, 8–14. [Google Scholar] [CrossRef]
- Yang, L.-H.; Han, Z.; Li, C.-F. Strengths and flexural strain of CRC specimens at low temperature. Constr. Build. Mater. 2011, 25, 906–910. [Google Scholar] [CrossRef]
- Loderer, C.; Partl, M.N.; Poulikakos, L.D. Effect of crumb rubber production technology on performance of modified bitumen. Constr. Build. Mater. 2018, 191, 1159–1171. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Anwar Hossain, K.M.; Eng Swee, J.T.; Wong, G.; Abdullahi, M. Properties of crumb rubber hollow concrete block. J. Clean. Prod. 2012, 23, 57–67. [Google Scholar] [CrossRef]
- Yung, W.H.; Yung, L.C.; Hua, L.H. A study of the durability properties of waste tire rubber applied to self-compacting concrete. Constr. Build. Mater. 2013, 41, 665–672. [Google Scholar] [CrossRef]
- Rashad, A.M. A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials. Int. J. Built Environ. Sustain. 2016, 5, 46–82. [Google Scholar] [CrossRef] [Green Version]
- Onuaguluchi, O.; Panesar, D.K. Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume. J. Clean. Prod. 2014, 82, 125–131. [Google Scholar] [CrossRef]
- Najim, K.B.; Hall, M.R. Crumb rubber aggregate coatings/pre-treatments and their effects on interfacial bonding, air entrapment and fracture toughness in self-compacting rubberised concrete (SCRC). Mater. Struct. 2013, 46, 2029–2043. [Google Scholar] [CrossRef]
- Hamdi, A.; Abdelaziz, G.; Farhan, K.Z. Scope of reusing waste shredded tires in concrete and cementitious composite materials: A review. J. Build. Eng. 2021, 35, 102014. [Google Scholar] [CrossRef]
- Zheng, L.; Sharon Huo, X.; Yuan, Y. Experimental investigation on dynamic properties of rubberized concrete. Constr. Build. Mater. 2008, 22, 939–947. [Google Scholar] [CrossRef]
- Youssf, O.; Hassanli, R.; Mills, J.E.; Abd Elrahman, M. An experimental investigation of the mechanical performance and structural application of LECA-Rubcrete. Constr. Build. Mater. 2018, 175, 239–253. [Google Scholar] [CrossRef]
- Zhang, B.; Poon, C.S. Sound insulation properties of rubberized lightweight aggregate concrete. J. Clean. Prod. 2018, 172, 3176–3185. [Google Scholar] [CrossRef]
- Kashani, A.; Ngo, T.D.; Mendis, P.; Black, J.R.; Hajimohammadi, A. A sustainable application of recycled tyre crumbs as insulator in lightweight cellular concrete. J. Clean. Prod. 2017, 149, 925–935. [Google Scholar] [CrossRef]
- El-Gammal, A.; Abdel-Gawad, A.K.; El-Sherbini, Y.; Shalaby, A. Compressive strength of concrete utilizing waste tire rubber. J. Eng. Trends Eng. Appl. Sci. 2010, 1, 96–99. [Google Scholar] [CrossRef]
- Bignozzi, M.C.; Sandrolini, F. Tyre rubber waste recycling in self-compacting concrete. Cem. Concr. Res. 2006, 36, 735–739. [Google Scholar] [CrossRef]
- Najim, K.B.; Hall, M.R. A review of the fresh/hardened properties and applications for plain-(PRC) and self-compacting rubberised concrete (SCRC). Constr. Build. Mater. 2010, 24, 2043–2051. [Google Scholar] [CrossRef]
- Reda Taha, M.M.; El-Dieb, A.S.; Abd El-Wahab, M.A.; Abdel-Hameed, M.E. Mechanical, fracture, and microstructural investigations of rubber concrete. J. Mater. Civil. Eng. 2008, 20, 640–649. [Google Scholar] [CrossRef]
- Uygunoğlu, T.; Topçu, İ.B. The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars. Constr. Build. Mater. 2010, 24, 1141–1150. [Google Scholar] [CrossRef]
- Mohammadi, I.; Khabbaz, H. Shrinkage performance of crumb rubber concrete (CRC) prepared by water-soaking treatment method for rigid pavements. Cem. Concr. Comp. 2015, 62, 106–116. [Google Scholar] [CrossRef]
- Meddah, A.; Beddar, M.; Bali, A. Use of shredded rubber tire aggregates for roller compacted concrete pavement. J. Clean. Prod. 2014, 72, 187–192. [Google Scholar] [CrossRef]
- Rahman, M.M.; Usman, M.; Al-Ghalib, A.A. Fundamental properties of rubber modified self-compacting concrete (RMSCC). Constr. Build. Mater. 2012, 36, 630–637. [Google Scholar] [CrossRef]
- Youssf, O.; ElGawady, M.A.; Mills, J.E. Static cyclic behaviour of FRP-confined crumb rubber concrete columns. Eng. Struct. 2016, 113, 371–387. [Google Scholar] [CrossRef]
- Medina, N.F.; Garcia, R.; Hajirasouliha, I.; Pilakoutas, K.; Guadagnini, M.; Raffoul, S. Composites with recycled rubber aggregates: Properties and opportunities in construction. Constr. Build. Mater. 2018, 188, 884–897. [Google Scholar] [CrossRef]
- Al-Tayeb, M.M.; Abu Bakar, B.H.; Akil, H.M.; Ismail, H. Performance of rubberized and hybrid rubberized concrete structures under static and impact load conditions. Exp. Mech. 2013, 53, 377–384. [Google Scholar] [CrossRef]
- Al-Tayeb, M.M.; Abu Bakar, B.H.; Ismail, H.; Akil, H.M. Effect of partial replacement of sand by recycled fine crumb rubber on the performance of hybrid rubberized-normal concrete under impact load: Experiment and simulation. J. Clean. Prod. 2013, 59, 284–289. [Google Scholar] [CrossRef]
- Li, W.; Huang, Z.; Wang, X.C.; Wang, J.W. Review of crumb rubber concrete. Appl. Mech. Mater. 2014, 672–674, 1833–1837. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Z.; Hu, Y.; Wang, X. Bearing strength of crumb rubber concrete under partial area loading. Materials 2020, 13, 2446. [Google Scholar] [CrossRef]
- Duarte, A.P.C.; Silva, B.A.; Silvestre, N.; de Brito, J.; Júlio, E.; Castro, J.M. Finite element modelling of short steel tubes filled with rubberized concrete. Compos. Struct. 2016, 150, 28–40. [Google Scholar] [CrossRef]
- Frankowski, R. Patent US 5290356 Rubber Crumb-Reinforced Cement Concrete. U.S. Patent 5290356, 23 April 1992. [Google Scholar]
- Eldin, N.N.; Senouci, A.B. Observations on rubberized concrete behavior. Cem. Concr. Comp. 1994, 16, 287–298. [Google Scholar] [CrossRef]
- Zandi, I.; Lepore, J.; Rostami, H. Particulate rubber included concrete compositions. U.S. Patent 5456751, 14 November 1994. [Google Scholar]
- Topçu, İ.B. The properties of rubberized concretes. Cem. Concr. Res. 1995, 25, 304–310. [Google Scholar] [CrossRef]
- Fattuhi, N.I.; Clark, L.A. Cement-based materials containing shredded scrap truck tyre rubber. Constr. Build. Mater. 1996, 10, 229–236. [Google Scholar] [CrossRef]
- Toutanji, H.A. The use of rubber tire particles in concrete to replace mineral aggregates. Cem. Concr. Comp. 1996, 18, 135–139. [Google Scholar] [CrossRef]
- Biel, T.D.; Lee, H. Magnesium oxychloride cement concrete with recycled tire rubber. Transp. Res. Rec. 1996, 1561, 6–12. [Google Scholar] [CrossRef]
- Mills, J.; Gravina, R.; Zhuge, Y.; Ma, X.; Skinner, B. Crumbed Rubber Concrete: A Promising Material for Sustainable Construction. 2018. Available online: https://www.scientia.global/wp-content/uploads/Mills-Zhuge-Skinner-Ma-Gravina/Mills-Zhuge-Skinner-Ma-Gravina.pdf (accessed on 1 February 2021).
- Li, Y.; Zhang, X.; Wang, R.; Lei, Y. Performance enhancement of rubberised concrete via surface modification of rubber: A review. Constr. Build. Mater. 2019, 227, 116691. [Google Scholar] [CrossRef]
- Topçu, İ.B. Assessment of the brittleness index of rubberized concretes. Cem. Concr. Res. 1997, 27, 177–183. [Google Scholar] [CrossRef]
- Li, C.-F.; Xie, J.; Liu, C.; Guo, S.; Deng, J. Fire performance of high-strength concrete reinforced with recycled rubber particles. Mag. Concr. Res. 2011, 63, 187–195. [Google Scholar] [CrossRef]
- Hassanli, R.; Youssf, O.; Mills, J.E. Experimental investigations of reinforced rubberized concrete structural members. J. Build. Eng. 2017, 10, 149–165. [Google Scholar] [CrossRef]
- Ling, T.-C. Prediction of density and compressive strength for rubberized concrete blocks. Constr. Build. Mater. 2011, 25, 4303–4306. [Google Scholar] [CrossRef]
- Eldin, N.N.; Senouci, A.B. Rubber-tire particles as concrete aggregate. J. Mater. Civil. Eng. 1993, 5, 478–496. [Google Scholar] [CrossRef]
- Issa, C.A.; Salem, G. Utilization of recycled crumb rubber as fine aggregates in concrete mix design. Constr. Build. Mater. 2013, 42, 48–52. [Google Scholar] [CrossRef]
- Liu, F.; Zheng, W.; Li, L.; Feng, W.; Ning, G. Mechanical and fatigue performance of rubber concrete. Constr. Build. Mater. 2013, 47, 711–719. [Google Scholar] [CrossRef]
- Yang, G.; Chen, X.; Xuan, W.; Chen, Y. Dynamic compressive and splitting tensile properties of concrete containing recycled tyre rubber under high strain rates. Sādhanā 2018, 43, 178. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.W.; Yu, T.; Zhang, S.S.; Xu, Q.F. Compressive behaviour of FRP-confined rubber concrete. Constr. Build. Mater. 2019, 211, 416–426. [Google Scholar] [CrossRef]
- Valadares, F.; Bravo, M.; de Brito, J. Concrete with used tire rubber aggregates: Mechanical performance. ACI Mater. J. 2012, 109, 283–292. [Google Scholar]
- da Silva, F.M.; Gachet Barbosa, L.A.; Lintz, R.C.C.; Jacintho, A.E.P.G.A. Investigation on the properties of concrete tactile paving blocks made with recycled tire rubber. Constr. Build. Mater. 2015, 91, 71–79. [Google Scholar] [CrossRef]
- Jokar, F.; Khorram, M.; Karimi, G.; Hataf, N. Experimental investigation of mechanical properties of crumbed rubber concrete containing natural zeolite. Constr. Build. Mater. 2019, 208, 651–658. [Google Scholar] [CrossRef]
- Ismail, M.K.; Hassan, A.A.A. Impact resistance and mechanical properties of self-consolidating rubberized concrete reinforced with steel fibers. J. Mater. Civil. Eng. 2017, 29, 04016193. [Google Scholar] [CrossRef]
- Bharathi Murugan, R.; Natarajan, C. Investigation of the behaviour of concrete containing waste tire crumb rubber. In Advances in Structural Engineering; Matsagar, V., Ed.; Springer: New Delhi, India, 2015; pp. 1795–1802. [Google Scholar] [CrossRef]
- Wu, Y.-F.; Kazmi, S.M.S.; Munir, M.J.; Zhou, Y.; Xing, F. Effect of compression casting method on the compressive strength, elastic modulus and microstructure of rubber concrete. J. Clean. Prod. 2020, 264, 121746. [Google Scholar] [CrossRef]
- Van Tigchelt, S.; Roelandt, D.; Kara De Maeijer, P.; Craeye, B. Use of Crumb Rubber as Inert Material for Sustainable Concrete Applications. Master’s Thesis, UAntwerp, Antwerpen, Belgium, 2021. [Google Scholar]
- Ganesan, N.; Bharati Raj, J.; Shashikala, A.P. Flexural fatigue behavior of self compacting rubberized concrete. Constr. Build. Mater. 2013, 44, 7–14. [Google Scholar] [CrossRef]
- Güneyisi, E. Fresh properties of self-compacting rubberized concrete incorporated with fly ash. Mater. Struct. 2010, 43, 1037–1048. [Google Scholar] [CrossRef]
- Lotfy, A.; Hossain, K.M.A.; Lachemi, M. Mix design and properties of lightweight self-consolidating concretes developed with furnace slag, expanded clay and expanded shale aggregates. J. Sustain. Cem. Based Mater. 2016, 5, 297–323. [Google Scholar] [CrossRef]
- Ismail, M.K.; Hassan, A.A.A. Use of metakaolin on enhancing the mechanical properties of self-consolidating concrete containing high percentages of crumb rubber. J. Clean. Prod. 2016, 125, 282–295. [Google Scholar] [CrossRef]
- Alsaif, A.; Bernal, S.A.; Guadagnini, M.; Pilakoutas, K. Freeze-thaw resistance of steel fibre reinforced rubberised concrete. Constr. Build. Mater. 2019, 195, 450–458. [Google Scholar] [CrossRef]
- Youssf, O.; Mills, J.E.; Hassanli, R. Assessment of the mechanical performance of crumb rubber concrete. Constr. Build. Mater. 2016, 125, 175–183. [Google Scholar] [CrossRef]
- Bekhiti, M.; Trouzine, H.; Asroun, A. Properties of waste tire rubber powder. Eng. Technol. Appl. Sci. Res. 2014, 4, 669–672. [Google Scholar] [CrossRef]
- Gregori, A.; Castoro, C.; Marano, G.C.; Greco, R. Strength reduction factor of concrete with recycled rubber aggregates from tires. J. Mater. Civil. Eng. 2019, 31, 04019146. [Google Scholar] [CrossRef]
- Pelisser, F.; Zavarise, N.; Longo, T.A.; Bernardin, A.M. Concrete made with recycled tire rubber: Effect of alkaline activation and silica fume addition. J. Clean. Prod. 2011, 19, 757–763. [Google Scholar] [CrossRef]
- Mohammadi, I.; Khabbaz, H.; Vessalas, K. Enhancing mechanical performance of rubberised concrete pavements with sodium hydroxide treatment. Mater. Struct. 2016, 49, 813–827. [Google Scholar] [CrossRef]
- Strukar, K.; Kalman Šipoš, T.; Miličević, I.; Bušić, R. Potential use of rubber as aggregate in structural reinforced concrete element—A review. Eng. Struct. 2019, 188, 452–468. [Google Scholar] [CrossRef]
- Li, Z.; Li, F.; Li, J.S.L. Properties of concrete incorporating rubber tyre particles. Mag. Concr. Res. 1998, 50, 297–304. [Google Scholar] [CrossRef]
- Balaha, M.M.; Badawy, A.A.M.; Hashish, M. Effect of using ground waste tire rubber as fine aggregate on the behaviour of concrete mixes. Indian J. Eng. Mater. Sci. 2007, 14, 427–435. Available online: http://nopr.niscair.res.in/bitstream/123456789/225/1/IJEMS%2014%286%29%20%282007%29%20427-435.pdf (accessed on 1 February 2021).
- Segre, N.; Joekes, I. Use of tire rubber particles as addition to cement paste. Cem. Concr. Res. 2000, 30, 1421–1425. [Google Scholar] [CrossRef]
- Dong, Q.; Huang, B.; Shu, X. Rubber modified concrete improved by chemically active coating and silane coupling agent. Constr. Build. Mater. 2013, 48, 116–123. [Google Scholar] [CrossRef]
- Huang, B.; Shu, X.; Cao, J. A two-staged surface treatment to improve properties of rubber modified cement composites. Constr. Build. Mater. 2013, 40, 270–274. [Google Scholar] [CrossRef]
- Albano, C.; Camacho, N.; Reyes, J.; Feliu, J.L.; Hernández, M. Influence of scrap rubber addition to Portland I concrete composites: Destructive and non-destructive testing. Compos. Struct. 2005, 71, 439–446. [Google Scholar] [CrossRef]
- Cavanagh, P.H.; Johnson, C.R.; Roy-Delage, L.; Sylvaine, D.; Gerard, G.; Cooper, I.; Guillot, D.J.; Bulte, H.; Dargaud, B. Self-healing cement-novel technology to achieve leak-free wells. In Proceedings of the SPE/IADC Drilling Conference, Amsterdam, The Netherlands, 20–22 February 2007. [Google Scholar] [CrossRef]
- Le Roy-Delage, S.; Comet, A.; Garnier, A.; Presles, J.L.; Bulté-Loyer, H.; Drecq, P.; Rodriguez, I.U. Self-healing cement system—A step forward in reducing long-term environmental impact. In Proceedings of the IADC/SPE Drilling Conference and Exhibition, New Orleans, LA, USA, 2–4 February 2010. [Google Scholar] [CrossRef]
- Chou, L.-H.; Lin, C.-N.; Lu, C.-K.; Lee, C.-H.; Lee, M.-T. Improving rubber concrete by waste organic sulfur compounds. Waste Manag. Res. 2010, 28, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Ossola, G.; Wojcik, A. UV modification of tire rubber for use in cementitious composites. Cem. Concr. Comp. 2014, 52, 34–41. [Google Scholar] [CrossRef]
- He, L.; Cai, H.; Huang, Y.; Ma, Y.; Van den bergh, W.; Gaspar, L.; Valentin, J.; Vasiliev, Y.E.; Kowalski, K.J.; Zhang, J. Research on the properties of rubber concrete containing surface-modified rubber powders. J. Build. Eng. 2021, 35, 101991. [Google Scholar] [CrossRef]
- Mwaluwinga, S.; Ayano, T.; Sakata, K. Influence of urea in concrete. Cem. Concr. Res. 1997, 27, 733–745. [Google Scholar] [CrossRef]
- Stocks-Fischer, S.; Galinat, J.K.; Bang, S.S. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 1999, 31, 1563–1571. [Google Scholar] [CrossRef]
- De Muynck, W.; Debrouwer, D.; De Belie, N.; Verstraete, W. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 2008, 38, 1005–1014. [Google Scholar] [CrossRef]
- Gesoğlu, M.; Güneyisi, E. Strength development and chloride penetration in rubberized concretes with and without silica fume. Mater. Struct. 2007, 40, 953–964. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Özturan, T. Properties of rubberized concretes containing silica fume. Cem. Concr. Res. 2004, 34, 2309–2317. [Google Scholar] [CrossRef]
- Azevedo, F.; Pacheco-Torgal, F.; Jesus, C.; Barroso de Aguiar, J.L.; Camões, A.F. Properties and durability of HPC with tyre rubber wastes. Constr. Build. Mater. 2012, 34, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Zhang, B.; Li, G. The abrasion-resistance investigation of rubberized concrete. J. Wuhan Univ. Technol. Mat. Sci. Edit. 2012, 27, 1144–1148. [Google Scholar] [CrossRef]
- Mohajerani, A.; Burnett, L.; Smith, J.V.; Markovski, S.; Rodwell, G.; Rahman, M.T.; Kurmus, H.; Mirzababaei, M.; Arulrajah, A.; Horpibulsuk, S.; et al. Recycling waste rubber tyres in construction materials and associated environmental considerations: A review. Resour. Conserv. Recy. 2020, 155, 104679. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, Z.; Xu, J.; Han, Q. Microporous structures and compressive strength of high-performance rubber concrete with internal curing agent. Constr. Build. Mater. 2019, 215, 128–134. [Google Scholar] [CrossRef]
- Gonen, T. Freezing-thawing and impact resistance of concretes containing waste crumb rubbers. Constr. Build. Mater. 2018, 177, 436–442. [Google Scholar] [CrossRef]
- Shu, X.; Huang, B. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014, 67, 217–224. [Google Scholar] [CrossRef]
- Girskas, G.; Nagrockienė, D. Crushed rubber waste impact of concrete basic properties. Constr. Build. Mater. 2017, 140, 36–42. [Google Scholar] [CrossRef]
- Richardson, A.E.; Coventry, K.A.; Ward, G. Freeze/thaw protection of concrete with optimum rubber crumb content. J. Clean. Prod. 2012, 23, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Si, R.; Guo, S.; Dai, Q. Durability performance of rubberized mortar and concrete with NaOH-Solution treated rubber particles. Constr. Build. Mater. 2017, 153, 496–505. [Google Scholar] [CrossRef]
- Thomas, B.S.; Chandra Gupta, R. Properties of high strength concrete containing scrap tire rubber. J. Clean. Prod. 2016, 113, 86–92. [Google Scholar] [CrossRef]
- Afshinnia, K.; Poursaee, A. The influence of waste crumb rubber in reducing the alkali–silica reaction in mortar bars. J. Build. Eng. 2015, 4, 231–236. [Google Scholar] [CrossRef]
- Gesoğlu, M.; Güneyisi, E. Permeability properties of self-compacting rubberized concretes. Constr. Build. Mater. 2011, 25, 3319–3326. [Google Scholar] [CrossRef]
- Bravo, M.; de Brito, J. Concrete made with used tyre aggregate: Durability-related performance. J. Clean. Prod. 2012, 25, 42–50. [Google Scholar] [CrossRef]
- Segre, N.; Joekes, I.; Galves, A.D.; Rodrigues, J.A. Rubber-mortar composites: Effect of composition on properties. J. Mater. Sci. 2004, 39, 3319–3327. [Google Scholar] [CrossRef]
- Oikonomou, N.; Mavridou, S. Improvement of chloride ion penetration resistance in cement mortars modified with rubber from worn automobile tires. Cem. Concr. Comp. 2009, 31, 403–407. [Google Scholar] [CrossRef]
- Thomas, B.S.; Gupta, R.C. Long term behaviour of cement concrete containing discarded tire rubber. J. Clean. Prod. 2015, 102, 78–87. [Google Scholar] [CrossRef]
- Alsaif, A.; Koutas, L.; Bernal, S.A.; Guadagnini, M.; Pilakoutas, K. Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements. Constr. Build. Mater. 2018, 172, 533–543. [Google Scholar] [CrossRef]
- Turatsinze, A.; Bonnet, S.; Granju, J.L. Potential of rubber aggregates to modify properties of cement based-mortars: Improvement in cracking shrinkage resistance. Constr. Build. Mater. 2007, 21, 176–181. [Google Scholar] [CrossRef]
- Alsaif, A.; Bernal, S.A.; Guadagnini, M.; Pilakoutas, K. Durability of steel fibre reinforced rubberised concrete exposed to chlorides. Constr. Build. Mater. 2018, 188, 130–142. [Google Scholar] [CrossRef]
- Guo, S.; Dai, Q.; Si, R.; Sun, X.; Lu, C. Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire. J. Clean. Prod. 2017, 148, 681–689. [Google Scholar] [CrossRef]
- Zhu, H.; Liang, J.; Xu, J.; Bo, M.; Li, J.; Tang, B. Research on anti-chloride ion penetration property of crumb rubber concrete at different ambient temperatures. Constr. Build. Mater. 2018, 189, 42–53. [Google Scholar] [CrossRef]
- Gheni, A.A.; Alghazali, H.H.; ElGawady, M.A.; Myers, J.J.; Feys, D. Durability properties of cleaner cement mortar with by-products of tire recycling. J. Clean. Prod. 2019, 213, 1135–1146. [Google Scholar] [CrossRef]
- Li, X.; Berger, W.; Musante, C.; Mattina, M.I. Characterization of substances released from crumb rubber material used on artificial turf fields. Chemosphere 2010, 80, 279–285. [Google Scholar] [CrossRef]
- Kardos, A.J.; Durham, S.A. Strength, durability, and environmental properties of concrete utilizing recycled tire particles for pavement applications. Constr. Build. Mater. 2015, 98, 832–845. [Google Scholar] [CrossRef]
- Muyssen, B.T.A.; De Schamphelaere, K.A.C.; Janssen, C.R. Mechanisms of chronic waterborne Zn toxicity in Daphnia magna. Aquat. Toxicol. 2006, 77, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Stephensen, E.; Adolfsson-Erici, M.; Celander, M.; Hulander, M.; Parkkonen, J.; Hegelund, T.; Sturve, J.; Hasselberg, L.; Bengtsson, M.; Förlin, L. Biomarker responses and chemical analyses in fish indicate leakage of polycyclic aromatic hydrocarbons and other compounds from car tire rubber. Environ. Toxicol. Chem. 2003, 22, 2926–2931. [Google Scholar] [CrossRef]
- Wik, A.; Dave, G. Environmental labeling of car tires—toxicity to Daphnia magna can be used as a screening method. Chemosphere 2005, 58, 645–651. [Google Scholar] [CrossRef]
- Zhang, J.; Han, I.-K.; Zhang, L.; Crain, W. Hazardous chemicals in synthetic turf materials and their bioaccessibility in digestive fluids. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 600–607. [Google Scholar] [CrossRef] [Green Version]
- Kanematsu, M.; Hayashi, A.; Denison, M.S.; Young, T.M. Characterization and potential environmental risks of leachate from shredded rubber mulches. Chemosphere 2009, 76, 952–958. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.; Rice, L. Toxicity of tire wear particle leachate to the marine macroalga, Ulva lactuca. Environ. Pollut. 2010, 158, 3650–3654. [Google Scholar] [CrossRef]
- Bocca, B.; Forte, G.; Petrucci, F.; Costantini, S.; Izzo, P. Metals contained and leached from rubber granulates used in synthetic turf areas. Sci. Total Environ. 2009, 407, 2183–2190. [Google Scholar] [CrossRef]
- Azizian, M.F.; Nelson, P.O.; Thayumanavan, P.; Williamson, K.J. Environmental impact of highway construction and repair materials on surface and ground waters: Case study: Crumb rubber asphalt concrete. Waste Manag. 2003, 23, 719–728. [Google Scholar] [CrossRef]
- Reddy, C.M.; Quinn, J.G. Environmental chemistry of benzothiazoles derived from rubber. Environ. Sci. Technol. 1997, 31, 2847–2853. [Google Scholar] [CrossRef]
- Kloepfer, A.; Jekel, M.; Reemtsma, T. Determination of benzothiazoles from complex aqueous samples by liquid chromatography–mass spectrometry following solid-phase extraction. J. Chromatogr. A 2004, 1058, 81–88. [Google Scholar] [CrossRef]
- Downs, L.A.; Humphrey, D.N.; Katz, L.E.; Rock, C.A. Water Quality Effects of Using Tire Chips below the Groundwater Table. University of Maine, Orono, ME, USA. 1996. Available online: https://www.ustires.org/sites/default/files/LEA_004_USTMA.pdf (accessed on 18 July 2021).
- Selbes, M.; Yilmaz, O.; Khan, A.A.; Karanfil, T. Leaching of DOC, DN, and inorganic constituents from scrap tires. Chemosphere 2015, 139, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Overmann, S.; Lin, X.; Vollpracht, A. Investigations on the leaching behavior of fresh concrete—A review. Constr. Build. Mater. 2021, 272, 121390. [Google Scholar] [CrossRef]
- Hartwich, P.; Vollpracht, A. Influence of leachate composition on the leaching behaviour of concrete. Cem. Concr. Res. 2017, 100, 423–434. [Google Scholar] [CrossRef]
- Vollpracht, A.; Brameshuber, W. Binding and leaching of trace elements in Portland cement pastes. Cem. Concr. Res. 2016, 79, 76–92. [Google Scholar] [CrossRef]
- NEN7345. Uitloogkarakteristieken—Bepaling van de Uitloging van Anorganische Componenten uit Vormgegeven en Monolitische Materialen met een Diffusieproef—Vaste Grond- en Steenachtige Materialen; The Royal Netherlands Standardization Institute: Delft, The Netherlands, 1995. (In Dutch) [Google Scholar]
- NEN7375. Leaching Characteristics—Determination of the Leaching of Inorganic Components from Moulded or Monolitic Materials with a Diffusion Test—Solid Earthy and Stony Materials; The Royal Netherlands Standardization Institute: Delft, The Netherlands, 2004. [Google Scholar]
- DAfStb. Determination of the Release of Inorganic Substances Byleaching from Cement-Bound Building Materials; Deutscher Ausschuss für Stahlbeton: Berlin, Germany, 2005. [Google Scholar]
- CMA2/II/A.9.1. VLAREMA—The Flemish Standard. 2016. Available online: https://navigator.emis.vito.be/mijn-navigator?woId=43993 (accessed on 1 March 2021).
- SW-846. Test Method 1315. Mass Transfer Rates of Constituents in Monolithic or Compacted Granular Materials Using a Semi-Dynamic Tank Leaching Procedure; United States Environmental Protection Agency (EPA): Washington, DC, USA, 2017.
- Deutsches Institut für Bautechnik (DIBt). Muster-Verwaltungsvorschrift Technische Baubestimmungen; Model Administrative Regulation Fortechnical Building Regulations; Deutsches Institut für Bautechnik: Berlin, Germany, 2019. (In German) [Google Scholar]
- Dutch Soil Quality Decree: Regulation of 13 December 2007, No. DJZ2007124397. Available online: https://wetten.overheid.nl/BWBR0023085/2018-11-30 (accessed on 18 July 2021). (In Dutch).
- Oikonomou, N.D. Recycled concrete aggregates. Cem. Concr. Comp. 2005, 27, 315–318. [Google Scholar] [CrossRef]
- Kara, P. The next generation ecological self compacting concrete with glass waste powder as a cement component in concrete and recycled concrete aggregates. In Proceedings of the 3rd Workshop on The New Boundaries of Structural Concrete, University of Bergamo—ACI Italy Chapter, Bergamo, Italy, 3–4 October 2013; pp. 21–30, ISBN 9788890429279. [Google Scholar]
- FPSE, Sand and Gravel Extractionin the Belgian Part of the North Sea. Federal Public Service Economy, SMEs, Self-Employed and Energy. 2014. Available online: www.vliz.be/imisdocs/publications/265503.pdf (accessed on 30 April 2021).
- Ismail, S.; Hoe, K.W.; Ramli, M. Sustainable aggregates: The potential and challenge for natural resources conservation. Procedia Soc. Behav. Sci. 2013, 101, 100–109. [Google Scholar] [CrossRef] [Green Version]
- CEWEP, Landfill Taxes and Bans Overview. Available online: https://www.cewep.eu/wp-content/uploads/2017/12/Landfill-taxes-and-bans-overview.pdf (accessed on 30 April 2021).
- RECYTYRE, Recytyre in Sprekende Cijfers. Available online: https://www.recytyre.be/nl/recytyre-sprekende-cijfers (accessed on 30 April 2021). (In Dutch).
- Wat Kost een Kuub Zand. Available online: https://grondverzet.nu/wat-kost-een-kuub-zand (accessed on 30 April 2021). (In Dutch).
- Youssf, O.; ElGawady, M.A.; Mills, J.E.; Ma, X. An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes. Constr. Build. Mater. 2014, 53, 522–532. [Google Scholar] [CrossRef]
- Youssf, O.; Hassanli, R.; Mills, J.E. Mechanical performance of FRP-confined and unconfined crumb rubber concrete containing high rubber content. J. Build. Eng. 2017, 11, 115–126. [Google Scholar] [CrossRef]
Belgium (Flanders) | The Netherlands | |||
---|---|---|---|---|
Shaped Applications NEN 7345 (mg/m2) | Non-Shaped Applications CMA 2/II/A.9.1 (mg/kg d.s.) | Shaped Applications NEN 7345 (mg/m2) | Non-Shaped Applications NEN 7345 (mg/m2) | |
Cd | 1.1 | 0.03 | 3.8 | 0.04 |
Cu | 25 | 0.8 | 98 | 0.9 |
Pb | 60 | 1.3 | 400 | 2.3 |
Zn | 90 | 2.8 | 800 | 4.5 |
Volume (m3) | Price of Sand (€) [172] | Sand in Certain Concrete Mix [92] | ||
---|---|---|---|---|
Sand Mass (kg) | Price of Sand (€) | Price of Sand (15%) (€) | ||
1 | 139 | 770 | 71.35 | 10.70 |
10 | 265 | 7700 | 136.03 | 20.41 |
20 | 405 | 15,400 | 207.90 | 31.19 |
50 | 825 | 38,500 | 423.50 | 63.53 |
100 | 1525 | 77,000 | 782.83 | 117.43 |
Volume (m3) | Price of CR (15%) (€) [171] | Landfill Tax (15%) (€) | Price of CR (15%) Incl. Possible Landfill Tax (€) | Difference in Price CR vs. Sand (€) | |||
---|---|---|---|---|---|---|---|
Flanders | Wallonia | Flanders | Wallonia | Flanders | Wallonia | ||
1 | 4.86 | 4.08 | 4.54 | 0.79 | 0.32 | −9.92 | −10.38 |
10 | 48.64 | 40.78 | 45.44 | 7.86 | 3.20 | −12.55 | −17.21 |
20 | 97.28 | 81.56 | 90.89 | 15.72 | 6.39 | −15.47 | −24.79 |
50 | 243.20 | 203.91 | 227.22 | 39.29 | 15.98 | −24.23 | −47.55 |
100 | 486.4 | 407.82 | 454.44 | 78.58 | 31.96 | −38.84 | −85.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kara De Maeijer, P.; Craeye, B.; Blom, J.; Bervoets, L. Crumb Rubber in Concrete—The Barriers for Application in the Construction Industry. Infrastructures 2021, 6, 116. https://doi.org/10.3390/infrastructures6080116
Kara De Maeijer P, Craeye B, Blom J, Bervoets L. Crumb Rubber in Concrete—The Barriers for Application in the Construction Industry. Infrastructures. 2021; 6(8):116. https://doi.org/10.3390/infrastructures6080116
Chicago/Turabian StyleKara De Maeijer, Patricia, Bart Craeye, Johan Blom, and Lieven Bervoets. 2021. "Crumb Rubber in Concrete—The Barriers for Application in the Construction Industry" Infrastructures 6, no. 8: 116. https://doi.org/10.3390/infrastructures6080116
APA StyleKara De Maeijer, P., Craeye, B., Blom, J., & Bervoets, L. (2021). Crumb Rubber in Concrete—The Barriers for Application in the Construction Industry. Infrastructures, 6(8), 116. https://doi.org/10.3390/infrastructures6080116