Impact of Pumice Substitution on Mortar Properties: A Case Study on Mechanical Performance and XRD Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Sand
2.1.2. Pumice (PM)
2.1.3. Alkaline Activator (NaOH)
2.2. Design of Experiments
2.3. Preparation of Specimens
2.4. Compressive Strength
3. Results
3.1. X-Ray Diffraction (XRD)
3.2. Average Density and Fluidity
3.3. Mortar Mechanical Strength
3.4. Analysis of Variance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- del Río-Merino, M.; Vidales-Barriguete, A.; Piña-Ramírez, C.; Vitiello, V.; Santa Cruz-Astorqui, J.; Castelluccio, R. A review of the research about gypsum mortars with waste aggregates. J. Build. Eng. 2022, 45, 103338. [Google Scholar] [CrossRef]
- Nie, S.; Zhou, J.; Yang, F.; Lan, M.; Li, J.; Zhang, Z.; Chen, Z.; Xu, M.; Li, H.; Sanjayan, J.G. Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application. J. Clean. Prod. 2022, 334, 130270. [Google Scholar] [CrossRef]
- Bhat, R.; Han, T.; Sant, G.; Neithalath, N.; Kumar, A. A comprehensive analysis of hydration kinetics and compressive strength development of fly ash-Portland cement binders. J. Build. Eng. 2024, 88, 109191. [Google Scholar] [CrossRef]
- Martinez-Molina, W.; Chavez-Garcia, H.L.; Perez-Lopez, T.; Alonso-Guzman, E.M.; Arreola-Sanchez, M.; Navarrete-Seras, M.A.; Borrego-Perez, J.A.; Sanchez-Calvillo, A.; Guzman-Torres, J.A.; Perez-Quiroz, J.T. Effect of the Addition of Agribusiness and Industrial Wastes as a Partial Substitution of Portland Cement for the Carbonation of Mortars. Materials 2021, 14, 7276. [Google Scholar] [CrossRef]
- Rosewitz, J.A.; Wang, S.; Scarlata, S.F.; Rahbar, N. An enzymatic self-healing cementitious material. Appl. Mater. Today 2021, 23, 101035. [Google Scholar] [CrossRef]
- Cerchione, R.; Colangelo, F.; Farina, I.; Ghisellini, P.; Passaro, R.; Ulgiati, S. Life cycle assessment of concrete production within a circular economy perspective. Sustainability 2023, 15, 11469. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, H.; Miao, Z.; Tang, H.; Lin, B.; Zhuang, W. Life-cycle carbon emissions (LCCE) of buildings: Implications, calculations, and reductions. Engineering 2024, 35, 115–139. [Google Scholar] [CrossRef]
- Giergiczny, Z.; Król, A.; Tałaj, M.; Wandoch, K. Performance of concrete with low CO2 emission. Energies 2020, 13, 4328. [Google Scholar] [CrossRef]
- Drissi, M.; Horma, O.; Mezrhab, A.; Karkri, M. Exploring Raw Red Clay as a Supplementary Cementitious Material: Composition, Thermo-Mechanical Performance, Cost, and Environmental Impact. Buildings 2024, 14, 3906. [Google Scholar] [CrossRef]
- Benmansour, N.; Agoudjil, B.; Gherabli, A.; Kareche, A.; Boudenne, A. Thermal and Mechanical Performance of Natural Mortar Reinforced with Date Palm Fibers for Use as Insulating Materials in Building. Energy Build. 2014, 81, 98–104. [Google Scholar] [CrossRef]
- Horma, O.; El Hammouti, A.; El Hassani, S.; Kırgız, M.S.; Channouf, S.; Moussaoui, M.A.; Mezrhab, A. Sustainable Approach to Mortar Production Using Mint Stem Aggregates: Investigating the Thermal, Mechanical, and Physical Performance. J. Mater. Civ. Eng. 2024, 36, 04024330. [Google Scholar] [CrossRef]
- Balun, B.; Karataş, M. Influence of curing conditions on pumice-based alkali activated composites incorporating Portland cement. J. Build. Eng. 2021, 43, 102605. [Google Scholar] [CrossRef]
- Karthika, R.B.; Vidyapriya, V.; Sri, K.N.; Beaula, K.M.G.; Harini, R.; Sriram, M. Experimental study on lightweight concrete using pumice aggregate. Mater. Today Proc. 2021, 43, 1606–1613. [Google Scholar] [CrossRef]
- Wei, S.; Zheng, K.; Chen, W.; Chen, L.; Zhou, J.; Mi, T. The correlation between Al incorporation and alkali fixation by calcium aluminosilicate hydrate: Observations from hydrated C3S blended with and without metakaolin. Cem. Concr. Res. 2023, 172, 107249. [Google Scholar] [CrossRef]
- Zhang, W.L.; Yuan, Z.J.; Li, D.Q.; Zhang, K.; Zhao, L.Y. Mechanical and vegetation performance of porous concrete with recycled aggregate in riparian buffer area. J. Clean. Prod. 2022, 332, 130015. [Google Scholar] [CrossRef]
- Tanyıldızı, M.; Gökalp, İ. Utilization of pumice as aggregate in the concrete: A state of art. Constr. Build. Mater. 2023, 377, 131102. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Fu, K.; Li, Q.; Wang, Y. Experimental studies on the chloride ion permeability of concrete considering the effect of freeze–thaw damage. Constr. Build. Mater. 2020, 236, 117556. [Google Scholar] [CrossRef]
- Alqarni, A.S. A comprehensive review on properties of sustainable concrete using volcanic pumice powder ash as a supplementary cementitious material. Constr. Build. Mater. 2022, 323, 126533. [Google Scholar] [CrossRef]
- Tran, Q.; Ghosh, P. Influence of pumice on mechanical properties and durability of high performance concrete. Constr. Build. Mater. 2020, 249, 118741. [Google Scholar] [CrossRef]
- Antunes, M.; Santos, R.L.; Pereira, J.; Rocha, P.; Horta, R.B.; Colaço, R. Alternative Clinker Technologies for Reducing Carbon Emissions in Cement Industry: A Critical Review. Materials 2022, 15, 209. [Google Scholar] [CrossRef]
- Nasr, M.S.; Shubbar, A.A.; Abed, Z.A.A.R.; Ibrahim, M.S. Properties of eco-friendly cement mortar contained recycled materials from different sources. J. Build. Eng. 2020, 31, 101444. [Google Scholar]
- Rahman, F.; Adil, W.; Raheel, M.; Saberian, M.; Li, J.; Maqsood, T. Experimental investigation of high replacement of cement by pumice in cement mortar: A mechanical, durability and microstructural study. J. Build. Eng. 2022, 49, 104037. [Google Scholar] [CrossRef]
- Zhang, M.; Peng, Z.; Li, B.; Monteiro, S.N.; Soman, R.; Hwang, J.Y.; Kalay, Y.E.; Escobedo-Diaz, J.P.; Carpenter, J.S.; Brown, A.D.; et al. Characterization of Minerals, Metals, and Materials 2023. Johns. Matthey Technol. Rev. 2024, 68, 275. [Google Scholar]
- ASTM D75/D75M; Standard Practice for Sampling Aggregates. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C702/C702M—18; Standard Practice for Reducing Samples of Aggregate to Testing Size. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM C136-14; Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM C188-17; Standard Test Method for Density of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2017.
- Cabrera Luna, K.; Escalante García, J.I.; Nieves Mendoza, D.; Maldonado Bandala, E.E. Compressive strength and microstructure of concretes manufactured with supersulfated cement based on materials of volcanic origin exposed to a sulfate environment. Rev. ALCONPAT 2019, 9, 106–116. [Google Scholar]
- Cabrera-Luna, K.; Perez-Cortes, P.; Garcia, J.I.E. Pumice-based supersulfated cements in mortars: Effects of pumice fineness and activator ratio on physical and environmental characteristics. Constr. Build. Mater. 2022, 342, 127947. [Google Scholar] [CrossRef]
- Jwaida, Z.; Dulaimi, A.; Mashaan, N.; Othuman Mydin, M.A. Geopolymers: The Green Alternative to Traditional Materials for Engineering Applications. Infrastructures 2023, 8, 98. [Google Scholar] [CrossRef]
- Shi, X.; Zha, Q.; Li, S.; Cai, G.; Wu, D.; Zhai, C. Experimental Study on the Mechanical Properties and Microstructure of Metakaolin-Based Geopolymer Modified Clay. Molecules 2022, 27, 4805. [Google Scholar] [CrossRef]
- Oti, J.; Adeleke, B.O.; Anowie, F.X.; Kinuthia, J.M.; Ekwulo, E. Mechanical Properties of a Sustainable Low-Carbon Geopolymer Concrete Using a Pumice-Derived Sodium Silicate Solution. Materials 2024, 17, 1792. [Google Scholar] [CrossRef]
- Ghazy, M.F.; Abd Elaty, M.A.; Mostafa, S.M. Properties of One-Part versus Two-Part Geopolymer Composites—A Review. Am. J. Eng. Res. 2022, 11, 1–14. [Google Scholar]
- ASTM C109/C109M—20; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International: West Conshohocken, PA, USA, 2020.
- Pérez, S.P.M.; Carrasco, J.J.B.; Guerrero, R.C.; Palma, J.A.C.; Bances, K.E.B.; Castillo, S.E.R. El Uso del aditivo mineral como modificador de las propiedades mecánicas en el concreto: Una revisión. Métodos Mater. 2021, 11, 10–19. [Google Scholar] [CrossRef]
- Mobasheri, F.; Shirzadi Javid, A.A.; Mirvalad, S.; Azizi, S.; Mowlaei, R. Durability and mechanical properties of pumice-based geopolymers: A sustainable material for future. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 223–235. [Google Scholar] [CrossRef]
- Becerra-Duitama, J.A.; Rojas-Avellaneda, D. Pozzolans: A review. Eng. Appl. Sci. Res. 2022, 49, 495–504. [Google Scholar]
- Pavlík, Z.; Vyšvařil, M.; Pavlíková, M.; Bayer, P.; Pivák, A.; Rovnaníková, P.; Záleská, M. Lightweight pumice mortars for repair of historic buildings–Assessment of physical parameters, engineering properties and durability. Constr. Build. Mater. 2023, 404, 133275. [Google Scholar] [CrossRef]
- Szabó, R.; Kristaly, F.; Nagy, S.; Singla, R.; Mucsi, G.; Kumar, S. Reaction, structure and properties of eco-friendly geopolymer cement derived from mechanically activated pumice. Ceram. Int. 2023, 49, 6756–6763. [Google Scholar] [CrossRef]
Mortar Mix | Nomenclature | Percentage of Pumice | Concentration of Solution |
---|---|---|---|
1 | M15A | 15 | 0.25 N |
2 | M15B | 15 | 0.5 N |
3 | M15C | 15 | 1 N |
4 | M25A | 25 | 0.25 N |
5 | M25B | 25 | 0.5 N |
6 | M25C | 25 | 1 N |
7 | M50A | 50 | 0.25 N |
8 | M50B | 50 | 0.5 N |
9 | M50C | 50 | 1 N |
Effects | Sum of Squares | Degrees of Freedom | Mean Squares | F Value | p Value | Critical F Value |
---|---|---|---|---|---|---|
Percentage of substitution | 200.0444 | 2 | 100.0222 | 33.621 | 5.81 × 10−9 | 3.2594 |
Alkaline solution concentration | 13.3778 | 2 | 6.68889 | 2.2484 | 0.121 | 3.2594 |
Interaction | 41.5556 | 4 | 10.3889 | 3.4921 | 0.0165 | 2.6335 |
Inside the group | 107.1 | 36 | 2.975 | |||
Total | 362.0778 | 44 |
Effects | M50A | M50B | M50C | M25A | M25B | M25C | M15A | M15B | M15C |
---|---|---|---|---|---|---|---|---|---|
Mean strength (MPa) | 17.8 | 15.2 | 13.2 | 19.6 | 20 | 19.6 | 19.8 | 19.8 | 20.4 |
Variance | 1.2 | 5.7 | 3.2 | 5.3 | 2.5 | 2.175 | 2.7 | 0.7 | 3.3 |
Effects | Sum of Squares | Degrees of Freedom | Mean Squares | F Value | p Value | Critical F Value | |
---|---|---|---|---|---|---|---|
50% | Between groups | 53.2 | 2 | 26.6 | 7.901 | 0.0065 | 3.8853 |
Inside the groups | 40.4 | 12 | 3.3667 | ||||
Total | 93.6 | 14 | |||||
25% | Between groups | 0.5333 | 2 | 0.2667 | 0.0802 | 0.9234 | 3.8853 |
Inside the groups | 39.9 | 12 | 3.325 | ||||
Total | 40.4333 | 14 | |||||
15% | Between groups | 1.2 | 2 | 0.6 | 0.26866 | 0.7689 | 3.8853 |
Inside the groups | 26.8 | 12 | 2.2333 | ||||
Total | 28 | 14 |
Effects | Sum of Squares | Degrees of Freedom | Mean Squares | F Value | p Value | Critical F Value | |
---|---|---|---|---|---|---|---|
50% | Between groups | 12.1333 | 2 | 6.0667 | 1.9783 | 0.1809 | 3.8853 |
Inside the groups | 36.8 | 12 | 3.0667 | ||||
Total | 48.9333 | 14 | |||||
25% | Between groups | 73.7333 | 2 | 36.8667 | 12.4270 | 0.0012 | 3.8853 |
Inside the groups | 35.6 | 12 | 2.9667 | ||||
Total | 109.3333 | 14 | |||||
15% | Between groups | 155.7333 | 2 | 77.8667 | 26.9280 | 3.6603 × 10−5 | 3.8853 |
Inside the groups | 34.7 | 12 | 2.8917 | ||||
Total | 190.4333 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Gonzalez, P.J.; Vivar-Ocampo, R.; González-Moreno, H.R.; Moreno-Vazquez, O.; Meza-Ruíz, E.; Zamora-Castro, S.A.; Reyes-González, D.; Sangabriel-Lomeli, J. Impact of Pumice Substitution on Mortar Properties: A Case Study on Mechanical Performance and XRD Analysis. Infrastructures 2025, 10, 95. https://doi.org/10.3390/infrastructures10040095
López-Gonzalez PJ, Vivar-Ocampo R, González-Moreno HR, Moreno-Vazquez O, Meza-Ruíz E, Zamora-Castro SA, Reyes-González D, Sangabriel-Lomeli J. Impact of Pumice Substitution on Mortar Properties: A Case Study on Mechanical Performance and XRD Analysis. Infrastructures. 2025; 10(4):95. https://doi.org/10.3390/infrastructures10040095
Chicago/Turabian StyleLópez-Gonzalez, Pablo Julián, Rodrigo Vivar-Ocampo, Humberto Raymundo González-Moreno, Oscar Moreno-Vazquez, Efrén Meza-Ruíz, Sergio Aurelio Zamora-Castro, David Reyes-González, and Joaquin Sangabriel-Lomeli. 2025. "Impact of Pumice Substitution on Mortar Properties: A Case Study on Mechanical Performance and XRD Analysis" Infrastructures 10, no. 4: 95. https://doi.org/10.3390/infrastructures10040095
APA StyleLópez-Gonzalez, P. J., Vivar-Ocampo, R., González-Moreno, H. R., Moreno-Vazquez, O., Meza-Ruíz, E., Zamora-Castro, S. A., Reyes-González, D., & Sangabriel-Lomeli, J. (2025). Impact of Pumice Substitution on Mortar Properties: A Case Study on Mechanical Performance and XRD Analysis. Infrastructures, 10(4), 95. https://doi.org/10.3390/infrastructures10040095