The Impact of Autonomous Vehicles on the Transportation Network with a Focus on the Physical Road Infrastructure
Abstract
1. Introduction
2. Background
3. Methodology
4. General Information About AVs and the Development of AD Technology
5. AVs in Mixed Traffic Flow
5.1. Technologies That Affect Traffic Flow
5.2. Safety
5.3. Capacity
5.4. Testing and Modelling
6. Necessary Adaptation of Physical Infrastructure for AVs
6.1. Design of New Road Infrastructure
6.2. Redesign of Existing Road Infrastructure
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AV | Autonomous Vehicle |
| AI | Artificial Intelligence |
| CV | Conventional Vehicle |
| EU | European Union |
| EC | European Commission |
| WHO | World Health Organization |
| AD | Autonomous Driving |
| GPS | Global Positioning Systems |
| IMU | Inertial Measurement Units |
| RADAR | Radio Detection and Ranging |
| LIDAR | Light Detection and Ranging |
| ADAS | Advanced Driver Assistance Systems |
| ADS | Automated Driving Systems |
| V2V | Vehicle-to-Vehicle connectivity |
| V2I | Vehicle-to-Infrastructure connectivity |
| CACC | Cooperative Adaptive Cruise Control |
| ACC | Adaptive Cruise Control |
| A.M. | Advanced Merging |
| HCM | Highway Capacity Manual |
| CAF | Capacity Adjustment Factor |
| LKS | Lane-Keeping System |
References
- Petrović, Đ.; Mijailović, R.; Pešić, D. Traffic Accidents with Autonomous Vehicles: Type of Collisions, Manoeuvres and Errors of Conventional Vehicles’ Drivers. Transp. Res. Procedia 2020, 45, 161–168. [Google Scholar] [CrossRef]
- Novikov, A.; Shevtsova, A.; Vasilieva, V. Development of approach to reduce number of accidents caused by drivers. Transp. Res. Procedia 2020, 50, 491–498. [Google Scholar] [CrossRef]
- Džambas, T.; Čudina Ivančev, A.; Dragčević, V.; Vujević, I. Safety and environmental benefits of intelligent speed bumps. Transp. Res. Procedia 2023, 73, 159–166. [Google Scholar] [CrossRef]
- European Commission. Official Website: Mobility and Transport. Available online: https://transport.ec.europa.eu/news-events/news/eu-road-fatalities-drop-3-2024-progress-remains-slow-2025-03-18_en#:~:text=Today%2C%20the%20European%20Commission%20has,to%20600%20fewer%20lives%20lost (accessed on 21 May 2025).
- European Commission. Official Website: Mobility and Transport–Road Safety. Available online: https://road-safety.transport.ec.europa.eu/eu-road-safety-policy/what-we-do_en (accessed on 21 May 2025).
- World Health Organisation, Official Website: Road Traffic Injuries. Available online: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries (accessed on 1 May 2025).
- Zhao, H.; Meng., M.; Li, X.; Xu, J.; Li, L. A survey of autonomous driving frameworks and simulators. Adv. Eng. Inform. 2024, 62, 102850. [Google Scholar] [CrossRef]
- Bulatov, S.V. Analysis of factors affecting the likelihood of road accidents. Transp. Eng. 2022, 6, 42–47. [Google Scholar] [CrossRef]
- Woo, S.; Woo, B.; Chang, Y.; Tak, S. Road Design on Human Driver Accidents vs. Automated Vehicle Failures: Comparison with Real-World Field Data. IEEE Access 2024, 12, 159545–159560. [Google Scholar] [CrossRef]
- Gahrig, S.K.; Stein, F.J. Dead Reckoning and Cartography Using Stereo Vision for an Autonomous Car. In Proceedings of the 1999 IEEGRSJ International Conference on Intelligent Robots and Systems, in Intelligent Robots and Systems, Kyongju, Republic of Korea, 17–21 October 1999. [Google Scholar]
- Uzzaman, A.; Muhammad, W. A Comprehensive Review of Environmental and Economic Impacts of Autonomous Vehicles. Control Syst. Optim. Lett. 2024, 2, 303–309. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Huang, C.; Li, B.; Xing, Y.; Tian, D.; Li, L.; Hu, Z.; Na, X.; Li, Z.; et al. Milestones in Autonomous Driving and Intelligent Vehicles: Survey of Surveys. IEEE Trans. Intell. Veh. 2023, 8, 1046–1056. [Google Scholar] [CrossRef]
- Bai, J.; Mao, S.; Lee, J.J. A novel car-following model for adaptive cruise control vehicles using enhanced intelligent driver model. Transp. Lett. 2024, 17, 702–718. [Google Scholar] [CrossRef]
- Gavanas, N. Autonomous Road Vehicles: Challenges for Urban Planning in European Cities. Urban Sci. 2019, 3, 61. [Google Scholar] [CrossRef]
- Rana, M.; Hossain, K. Connected and Autonomous Vehicles and Infrastructures: A Literature Review. Int. J. Pavement Res. Technol. 2021, 16, 264–284. [Google Scholar] [CrossRef]
- Manivasakan, H.; Kalra, R.; O’Hern, S.; Fang, Y.; Xi, Y.; Zheng, N. Infrastructure requirement for autonomous vehicle integration for future urban and suburban roads—Current practice and a case study of Melbourne, Australia. Transp. Res. Part A 2021, 152, 36–53. [Google Scholar] [CrossRef]
- Tengilimoglu, O.; Carsten, O.; Wadud, Z. Implications of automated vehicles for physical road environment: A comprehensive review. Transp. Res. Part E 2022, 169, 102989. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, D.; Wu, S.; Yang, X.; Wang, Y.; Zou, Y. Enhancing Mixed Traffic Flow with Platoon Control and Lane Management for Connected and Autonomous Vehicles. Sensors 2025, 25, 644. [Google Scholar] [CrossRef]
- Tengilimoglu, O.; Carsten, O.; Wadud, Z. The effects of infrastructure quality on the usefulness of automated vehicles: A case study for Leeds, UK. J. Transp. Geogr. 2024, 121, 104042. [Google Scholar] [CrossRef]
- Gandini, P.; Ponti, M.; Studer, L. Analysis of the driver’s stress level while driving in Truck Platooning. Multimodal Transp. 2025, 4, 100185. [Google Scholar] [CrossRef]
- Li, K.; Zheng, Y.; Wang, J. Cooperative Formation of Autonomous Vehicles in Mixed Traffic Flow: Beyond Platooning. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15951–15966. [Google Scholar] [CrossRef]
- Duarte, S.P.; Ferreira, S.; Lobo, A.; Cunha, L. Representations of truck platooning acceptance of truck drivers, decision-makers, and general public: A systematic review. Transp. Res. Part F Traffic Psychol. Behav. 2024, 104, 359–373. [Google Scholar] [CrossRef]
- Martinez-Diaz, M.; Al-Haddad, C.; Soriguera, F.; Antoniou, C. Platooning of connected automated vehicles on freeways: A bird’s eye view. Transp. Res. Procedia 2021, 58, 479–486. [Google Scholar] [CrossRef]
- Botelho, T.; Campos Ferreira, M.; Duarte, S.P.; Ferreira, S. Simulator and on-road testing of truck platooning: A systematic review. Eur. Transp. Res. Rev. 2025, 17, 4. [Google Scholar] [CrossRef]
- Hossain, M.M.; Zhou, H. Exploring Potential Critical Content of Connected and Autonomous Vehicles for Transportation Engineering Courses: A National Survey. Transp. Res. Rec. J. Transp. Res. Board 2024, 2678, 12. [Google Scholar] [CrossRef]
- Weijermars, W.; Hula, A.; Chaudhry, A.; Sha, S.; Zwart, R.; Mons, C.; Boghani, H. LEVITATE: Road safety impacts of Connected and Automated Vehicles. Loughborough 2021, 1–11. Available online: https://publications.ait.ac.at/en/publications/levitate-road-safety-impacts-of-connected-and-automated-vehicles/ (accessed on 21 May 2025).
- Tafidis, P.; Farah, H.; Brijs, T.; Pirdavani, A. Safety implications of higher levels of automated vehicles: A scoping review. Transp. Rev. 2022, 42, 245–267. [Google Scholar] [CrossRef]
- Ghulaxe, V. Driving The Future: The Role of Artificial Intelligence in Autonomous Vehicles. SSRN Electron. J. 2024. [Google Scholar] [CrossRef]
- Rahman, M.M.; Thill, J.C. Impacts of connected and autonomous vehicles on urban transportation and environment: A comprehensive review. Sustain. Cities Soc. 2023, 96, 104649. [Google Scholar] [CrossRef]
- Wang, S.; Yu, B.; Ma, Y.; Liu, J.; Zhou, W. Impacts of Different Driving Automation Levels on Highway Geometric Design from the Perspective of Trucks. Hindawi J. Adv. Transp. 2021, 21, 1. [Google Scholar] [CrossRef]
- Orieno, O.H.; Ndubuisi, N.L.; Ilojianya, V.I.; Biu, P.W.; Odonkor, B. The future of autonomous vehicles in the US urban landscape: A review: Analyzing implications for traffic, urban planning, and the environment. Eng. Sci. Technol. J. 2024, 5, 43–64. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Y.; Wu, Y.; Xiu, Y.; Fu, X.; Zhang, K. The Effects of Autonomous Vehicles on Traffic Efficiency and Energy Consumption. Systems 2023, 11, 347. [Google Scholar] [CrossRef]
- Liu, Y.; Du, M.; Yang, L.; Cui, Q.; Liu, Y.; Li, X.; Zhu, N.; Li, Y.; Jiang, C.; Zhou, P.; et al. Mitigation policies interactions delay the achievement of carbon neutrality in China. Nat. Clim. Change 2025, 15, 147–152. [Google Scholar] [CrossRef]
- European Environment Agency. Available online: https://www.eea.europa.eu/en/topics/in-depth/climate-change-mitigation-reducing-emissions (accessed on 1 September 2025).
- European Commission. Research and Innovation. Available online: https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en (accessed on 1 September 2025).
- Fayyaz, M.; González- González, E.; Nogués, S. Autonomous Mobility: A Potential Opportunity to Reclaim Public Spaces for People. Sustainability 2022, 14, 1568. [Google Scholar] [CrossRef]
- Rezwana, S.; Lownes, N. Interactions and Behaviors of Pedestrians with Autonomous Vehicles: A Synthesis. Future Transp. 2024, 4, 722–745. [Google Scholar] [CrossRef]
- Liang, K. Highway life-cycle cost analysis under the autonomous vehicles scenario. J. Highw. Transp. Res. Dev. 2024, 18, 1–7. [Google Scholar] [CrossRef]
- Gowda, M.; Shetty, T.G.N.; Kumar, P. Working of Autonomous Vehicles. Int. Res. J. Eng. Technol. (IRJET) 2019, 6, 12. [Google Scholar] [CrossRef]
- Zhang, D.; Islam, R.M.; Huang, P.; Ho, C. Overcoming Autoware-Ubuntu Incompatibility In Autonomous Driving Systems-Equipped Vehicles: Lessons Learned. arXiv 2024. [Google Scholar] [CrossRef]
- Sarraf, S. Current Stage of Autonomous Driving Through a Quick Survey for Novice. Am. Sci. Res. J. Eng. Technol. Sci. (ASRJETS) 2020, 73, 1–7. [Google Scholar]
- SAE J3016; Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. SAE International: Warrendale, PA, USA, 2021.
- Wang, S.; Ma, Y.; Easa, S.M.; Zhou, H.; Lai, Y.; Chen, W. Sight Distance of Automated Vehicles Considering Highway Vertical Alignments and Its Implications for Speed Limits. IEEE Intell. Transp. Syst. Mag. 2023, 16, 45–61. [Google Scholar] [CrossRef]
- Norouzi, A.; Barari, A.; Adibi-Asl, H. Stability Control of an Autonomous Vehicle in Overtaking Manoeuvre Using Wheel Slip Control. Int. J. Intell. Transp. Syst. Res. 2020, 18, 320–330. [Google Scholar] [CrossRef]
- Espinoza-Molina, F.E.; Valladolid, J.D.; Bautista, P.B.; Quinde, E.; Villa Uvidia, R.; Vazquez Salazar, J.S.; Miranda, G.J.A. Backcasting Analysis of Autonomous Vehicle Implementation: A Systematic Review. World Electr. Veh. J. 2024, 15, 393. [Google Scholar] [CrossRef]
- Mohammed, D.; Horváth, B. Steady-Speed Traffic Capacity Analysis for Autonomous and Human-Driven Vehicles. Appl. Sci. 2024, 14, 337. [Google Scholar] [CrossRef]
- Imran, W.; Pariota, L. Macroscopic evaluation of traffic flow in view of connected and autonomous vehicles: A simulation-based approach. Alex. Eng. J. 2023, 79, 581–590. [Google Scholar] [CrossRef]
- Agriesti, S.; Ponti, M.; Studer, L.; Maja, R.; Aleccia, O.; Lohmiller, J.; Gordillo, I.V. Definition of a Python script for the micro-simulation of the truck platooning system. Transport 2021, 36, 84–97. [Google Scholar] [CrossRef]
- Adebisi, A.; Liu, Y.; Schroeder, B.; Ma, J.; Cesme, B.; Jia, A.; Morgan, A. Developing Highway Capacity Manual (HCM) Capacity Adjustment Factors (CAF) for Connected and Automated Traffic on Freeway Segments. J. Transp. Eng. Part A Syst. 2021, 148, 3. [Google Scholar] [CrossRef]
- Chang, Q.; Chen, H. Impacts of autonomous vehicles on freeway with conditional isolated and dedicated lanes. Sci. Rep. 2025, 15, 21374. [Google Scholar] [CrossRef] [PubMed]
- Rad, S.R.; Farah, H.; Taale, H.; van Arem, B.; Hoogendoorn, S.P. Design and Operation of Dedicated Lanes for Connected and Automated Vehicles on Motorways: A Conceptual Framework and Research Agenda. Transp. Res. Part C Emerg. Technol. 2020, 117, 102664. [Google Scholar] [CrossRef]
- Makahleh, H.Y.; Abdelfatah, A.; Badrawi, H.A. Assessing the Impacts of Autonomous Vehicles for Freeway Safety. In Proceedings of the 10th World Congress on New Technologies (NewTech’24), Barcelona, Spain, 25–27 August 2024. [Google Scholar] [CrossRef]
- Talebpour, A.; Mahmassani, H.S.; Elfar, A. Investigating the effects of reserved lanes for autonomous vehicles on congestion and travel time reliability. Transp. Res. Rec. 2017, 2622. [Google Scholar] [CrossRef]
- Zmud, J.; Williams, T.; Outwater, M.; Bradley, M.; Kalra, N.; Row, S. Updating Regional Transportation Planning and Modeling Tools to Address Impacts of Connected and Automated Vehicles, Volume 2: Guidance; National Cooperative Highway Research Program; Transportation Research Board: Washington, DC, USA, 2018. [Google Scholar]
- Fakhrmoosavi, F.; Kamjoo, E.; Zockaie, A.; Mittal, A.; Fishelson, J. Assessing the Network-Wide Impacts of Dedicated Lanes for Connected Autonomous Vehicles. Transp. Res. Rec. 2023, 2677, 371–388. [Google Scholar] [CrossRef]
- Ye, L.; Yamamoto, T. Modeling Connected and Autonomous Vehicles in Heterogeneous Traffic Flow. Phys. A Stat. Mech. Its Appl. 2018, 490, 269–277. [Google Scholar] [CrossRef]
- Wang, Q.; Li, B.; Li, Z.; Li, L. Effect of Connected Automated Driving on Traffic Capacity. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017. [Google Scholar]
- Ullah, I.; Zheng, J.; Severino, A.; Jamal, A. Assessing the barriers and implications of autonomous vehicles: Implementation in sustainable cities. Sustain. Futures 2025, 9, 100564. [Google Scholar] [CrossRef]
- Hasnat, M.M.; Bardaka, E.; Samandar, M.S. Differential impacts of autonomous and connected-autonomous vehicles on household residential location. Travel Behav. Soc. 2023, 32, 100570. [Google Scholar] [CrossRef]
- Simoni, M.D.; Kockelman, K.M.; Gurumurthy, K.M.; Bischoff, J. Congestion pricing in a world of self-driving vehicles: An analysis of different strategies in alternative future scenarios. Transp. Res. Part C Emerg. Technol. 2019, 98, 167–185. [Google Scholar] [CrossRef]
- Wen, M.; Park, J.; Sung, Y.; Park, Y.W.; Cho, K. Virtual Scenario Simulation and Modeling Framework in Autonomous Driving Simulators. Electronics 2021, 10, 694. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, W.; Zhang, S.; Yan, W.; Shen, Q.; Wang, C.; Yang, M. Choose Your Simulator Wisely: A Review on Open-source Simulators for Autonomous Driving. Robotics 2023, 9, 4861–4876. [Google Scholar] [CrossRef]
- The Waymo Team. Simulation City: Introducing Waymo’s Most Advanced Simulation System Yet for Autonomous Driving. Available online: https://waymo.com/blog/2021/06/SimulationCity.html (accessed on 1 April 2025).
- Pony.ai, Technology. Available online: https://pony.ai/tech?lang=en (accessed on 1 April 2025).
- DiDi, Didi’s Autonomous Driving. Available online: https://www.didiglobal.com/science/intelligent-driving (accessed on 1 April 2025).
- Li, M.; Luo, Q.; Fan, J.; Ning, Q. Impact Analysis of Smart Road Stud on Driving Behavior and Traffic Flow in Two-Lane Two-Way Highway. Sustainability 2023, 15, 11559. [Google Scholar] [CrossRef]
- Khan, Z.H.; Ali, F.; Altamimi, A.B.; Gulliver, T.A. Effect of human-driven, autonomous, and connected autonomous vehicles on geometric highway design. Alex. Eng. J. 2025, 127, 1073–1080. [Google Scholar] [CrossRef]
- National Research Council (NRC); Transportation Research Board (TRB). Highway Capacity Manual; National Research Council (NRC); Transportation Research Board (TRB): Washington, DC, USA, 2000. [Google Scholar]
- PTV Vissim. Available online: https://www.ptvgroup.com/en/products/ptv-vissim (accessed on 21 May 2025).
- Laufer, J. Freeway Capacity, Saturation Flow and the Car Following Behavioural Algorithm of the VISSIM Microsimulation Software; Maunsell Australia: Sydney, Australia, 2007; p. 15. [Google Scholar]
- Liu, Y.; Tight, M.; Sun, Q.; Kang, R. A Systematic review: Road infrastructure requirement for Connected and Autonomous Vehicles (CAVs). J. Phys. Conf. Ser. 2019, 1187, 4. [Google Scholar] [CrossRef]
- Čudina Ivančev, A.; Dragčević, V.; Džambas, T. Road infrastructure requirements to accommodate autonomous vehicles. In Proceedings of the CETRA 2022, 7th International Conference on Road and Rail Infrastructure, Pula, Croatia, 11–13 May 2022. [Google Scholar] [CrossRef]
- Tak, S.; Kim, S.; Yu, H.; Lee, D. Analysis of Relationship between Road Geometry and Automated Driving Safety for Automated Vehicle-Based Mobility Service. Sustainability 2022, 14, 2336. [Google Scholar] [CrossRef]
- Pike, A.M.; Barrette, T.P.; Carlson, P.J. Evaluation of the Effects of Pavement Marking Characteristics on Detectability by ADAS Machine Vision; National Cooperative Highway Research Program; Transportation Research Board: Washington, DC, USA, 2018. [Google Scholar]
- Feng, S.; Cai, X.; Li, L.; Wang, W.; Ying, S. A review of research on vehicle detection in adverse weather environments. J. Traffic Transp. Eng. (Engl. Ed.) 2025, 12, 1452–1483. [Google Scholar] [CrossRef]
- Duboz, L.; Raileanu, I.C.; Krause, J.; Norman-López, A.; Weitzel, M.; Ciuffo, B. Scenarios for the deployment of automated vehicles in Europe. Transp. Res. Interdiscip. Perspect. 2025, 32, 101530. [Google Scholar] [CrossRef]
- Guéguen, N.; Meineri, S.; Eyssartier, C. A pedestrian’s stare and drivers’ stopping behavior: A field experiment at the pedestrian crossing. Saf. Sci. 2015, 75, 87–89. [Google Scholar] [CrossRef]
- Zou, F. Studying Pedestrian’s Unmarked Midblock Crossing Behavior on a Multilane Road When Interacting with Autonomous Vehicles Using Virtual Reality. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2019. [Google Scholar]
- Gkyrtis, K.; Kokkalis, A. An Overview of the Efficiency of Roundabouts: Design Aspects and Contribution toward Safer Vehicle Movement. Vehicles 2024, 6, 433–449. [Google Scholar] [CrossRef]
- Hu, W.; Cicchino, J.B.; Reagan, I.J.; Monfort, S.S.; Gershon, P.; Mehler, B.; Reimer, B. Use of Level 1 and 2 driving automation on horizontal curves on interstates and freeways. Transp. Res. Part F Traffic Psychol. Behav. 2022, 89, 64–71. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, S.; Dai, Z.; Chen, Z.; Pan, C.; Xu, J. A Study of Vehicle Lateral Position Characteristics and Passenger Cars’ Special Lane Width on Expressways. Eng. Rep. 2023, 6, 4. [Google Scholar] [CrossRef]
- Aryal, P. Optimization of Geometric Road Design for Autonomous Vehicle; Degree project; KTH Royal Institute of Technology: Stockholm, Sweden, 2020. [Google Scholar]
- Othman, K. Impact of Autonomous Vehicles on the Physical Infrastructure: Changes and Challenges. Designs 2021, 5, 40. [Google Scholar] [CrossRef]
- Pravilnik o Osnovnim Uvjetima Kojima Javne Ceste Izvan Naselja i Njihovi Elementi Moraju Udovoljavati sa Stajališta Sigurnosti Prometa (NN 110/01, 90/22), Zagreb, Croatia, 2001. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2001_12_110_1829.html (accessed on 21 May 2025).
- Jehanfo, H.; Hu, S.; Kaparias, I.; Preston, J.; Zhou, F.; Stevens, A. Redesigning Highway Infrastructure Systems for Connected Autonomous Truck Lanes. J. Transp. Eng. Part A Syst. 2022, 148, 762. [Google Scholar] [CrossRef]
- Guerrieri, M.; Mauro, R.; Pompigna, A.; Isaenko, N. Road Design Criteria and Capacity Estimation Based on Autonomous Vehicle Performances. First Results from the European C-Roads Platform and A22 Motorway. Transp. Telecomun. 2021, 22, 230–243. [Google Scholar] [CrossRef]
- Klemenčić, A. Oblikovanje Cestovnih Čvorišta Izvan Razine; Građevinski Institut Zagreb: Zagreb, Croatia, 1982. [Google Scholar]
- Chen, C.; Lin, Z.; Zhang, S.; Chen, F.; Chen, P.; Zhang, L. The Compatibility between the Takeover Process in Conditional Automated Driving and the Current Geometric Design of the Deceleration Lane in Highway. Sustainability 2021, 13, 13403. [Google Scholar] [CrossRef]
- Čudina Ivančev, A.; Dragčević, V. Utjecaj autonomnih vozila na odabir projektnih elemenata autocesta. In Proceedings of the 8. Simpozij Doktorskog Studija Građevinarstva, Zagreb, Croatia, 5–6 September 2022. [Google Scholar] [CrossRef]
- FGSV. Richtlinen für die Anlage von Autobahnen (RAA); FGSV: Cologne, Germany, 2008. [Google Scholar]
- SN 640 261; Knoten, Kreuzungsfreie Knoten. Schweizer Norm: Winterthur, Switzerland, 1998.













| Year | History of Autonomous Driving |
|---|---|
| 1921 | First automated, radio-controlled vehicle tested in the USA |
| 1953 | The Radio Corporation of America (RCA) Laboratories developed a miniature vehicle that was navigated and controlled by wires |
| 1983 | The US Defense Advanced Research Projects Agency (DARPA) established the Autonomous Land Vehicle program to realize Automated Driving (AD)—they integrated LiDAR, computer vision, and automated control methods |
| 1989 | Carnegie Mellon University (CMU) pioneered the use of neural networks to control intelligent vehicles, laying the foundation for intelligent control technologies |
| 2005 | DARPA organized competitions to evaluate the capabilities of intelligent vehicles in complex environments—Stanford University won first prize with a vehicle equipped with a camera, LiDAR, RADAR, GPS, and an Intel CPU |
| 2010 | The development of neural networks and computer platforms led intelligent vehicles from private to urban roads |
| 2016 | Drive.ai receives permission to test intelligent vehicles in California, and nuTonomy operates autonomous taxis in Singapore |
| SAE Levels of Automation | |||||
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| no automation | driver assistance | partial automation | conditional automation | high automation | full automation |
| driver must steer, brake or accelerate | driver must drive on request | driver is not required to take over the driving | |||
| driver support features | automated driving features | ||||
| warnings and momentary assistance | steering or brake/acceleration support | steering and brake/acceleration support | features can drive the vehicle under limited conditions | features can drive the vehicle under all conditions | |
| AVs in Traffic Flow (%) | Increase in Capacity |
|---|---|
| 100% | up to 40% [40] |
| >70% | significant [41] |
| 20–40% | significant [28] |
| <20% | insignificant [28] |
| Symbol | Parameter |
|---|---|
| S | stopping sight distance (m) |
| ts | AV time to detect obstacles/sensor recognition time (s) |
| td | driver’s reaction time (s) |
| Vo | operating speed (km/h) |
| hs | total height of AV—sum of the height of the vehicle and the height of the sensor (m) |
| hd | driver’s eye height (m) |
| ∆L | extension of the deceleration lane (m) |
| Vp | design speed (km/h) |
| tc | takeover time (s) |
| LA | existing length of deceleration lane (m) |
| Lu | total length of deceleration lane (m) |
| Share of AVs | Road Infrastructure | Highway Design Elements | ||||
|---|---|---|---|---|---|---|
| Horizontal Geometry | Vertical Geometry | Cross-Section | Interchanges | Deceleration Lane | ||
| 0% | new | − | − | − | − | − |
| reconstruction | − | − | − | − | − | |
| 50% | new | − | − | − | − | + |
| reconstruction | − | − | +/− | +/− | + | |
| 100% | new | + | + | + | + | + |
| reconstruction | +/− | +/− | + | +/− | + | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čudina Ivančev, A.; Džambas, T.; Dragčević, V. The Impact of Autonomous Vehicles on the Transportation Network with a Focus on the Physical Road Infrastructure. Infrastructures 2025, 10, 347. https://doi.org/10.3390/infrastructures10120347
Čudina Ivančev A, Džambas T, Dragčević V. The Impact of Autonomous Vehicles on the Transportation Network with a Focus on the Physical Road Infrastructure. Infrastructures. 2025; 10(12):347. https://doi.org/10.3390/infrastructures10120347
Chicago/Turabian StyleČudina Ivančev, Ana, Tamara Džambas, and Vesna Dragčević. 2025. "The Impact of Autonomous Vehicles on the Transportation Network with a Focus on the Physical Road Infrastructure" Infrastructures 10, no. 12: 347. https://doi.org/10.3390/infrastructures10120347
APA StyleČudina Ivančev, A., Džambas, T., & Dragčević, V. (2025). The Impact of Autonomous Vehicles on the Transportation Network with a Focus on the Physical Road Infrastructure. Infrastructures, 10(12), 347. https://doi.org/10.3390/infrastructures10120347

