Hydration Considerations to Improve the Physical Performance and Health of Firefighters
Abstract
:1. Introduction
2. Fluid Balance
3. Dangers of Dehydration in Firefighters
3.1. Fluid Loss on Shift
3.2. Hydration and Core Temperature
4. Hydration Assessments
4.1. Saliva Osmolality
4.2. Urine
4.3. Body Mass
4.4. Thirst
5. Hydration Status and Physical Performance
5.1. Exercise Fluid Loss and Rehydration
5.2. Electrolyte Loss and Replenishment
6. Experimental Hydration Interventions
7. Medications and Fluid Balance
8. Practical Applications and New Techniques
8.1. Hydration Protocol for Firefighting Activity
8.1.1. Before Firefighting Activity
8.1.2. During Firefighting Activity
8.1.3. After Firefighting Activity
8.2. Heat Acclimation Techniques
9. Conclusions
- Implement multiple measurements to determine hydration status. A feasible combination suggested by the National Association of Athletic Trainers includes measuring first-morning body mass, urine concentration through specific gravity or color, and thirst sensation.
- On rest days with minimal sweat and respiratory rates, daily fluid intakes of 3.7 L and 2.7 L for men and women, respectively, are suggested. However, fluid intake requirements will increase when sweat and/or respiratory rates increase due to working at higher altitudes, hot/cold temperatures, increased physiological workloads, and/or wearing personal protective equipment.
- The following hydration protocol from ACSM could be utilized to maintain euhydration and prevent heat illnesses from firefighting activities: (1) start consuming 2 to 3 mL fluid per lb of body mass at least 4 h before the firefighting activity, (2) during a break, consume water and/or sports drinks to limit dehydration to <2% body mass loss, and (3) consume 450 to 675 mL of fluid for every 1 lb of body mass lost via water and sports drinks.
Author Contributions
Funding
Conflicts of Interest
References
- Bode, E.D.; Mathias, K.C.; Stewart, D.F.; Moffatt, S.M.; Jack, K.; Smith, D.L. Cardiovascular Disease Risk Factors by BMI and Age in United States Firefighters. Obesity 2021, 29, 1186–1194. [Google Scholar] [CrossRef] [PubMed]
- Suminski, R.R.; Poston, W.S.C.; Day, R.S.; Jitnarin, N.; Haddock, C.K.; Jahnke, S.A.; Dominick, G.M. Steady State Hydration Levels of Career Firefighters in a Large, Population-Based Sample. J. Occup. Environ. Med. 2019, 61, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Washburn, A.E.; LeBlanc, P.R.; Fahy, R.F. 1995 firefighter fatalities. NFPA J. 1996, 90, 63–65+68–70+77. [Google Scholar] [PubMed]
- Smith, D.L.; Haller, J.M.; Korre, M.; Fehling, P.C.; Sampani, K.; Grossi Porto, L.G.; Christophi, C.A.; Kales, S.N. Pathoanatomic Findings Associated with Duty-Related Cardiac Death in US Firefighters: A Case-Control Study. J. Am. Heart Assoc. 2018, 7, e009446. [Google Scholar] [CrossRef] [PubMed]
- Soteriades, E.S.; Smith, D.L.; Tsismenakis, A.J.; Baur, D.M.; Kales, S.N. Cardiovascular disease in US firefighters: A systematic review. Cardiol. Rev. 2011, 19, 202–215. [Google Scholar] [CrossRef]
- Smith, D.L.; DeBlois, J.P.; Kales, S.N.; Horn, G.P. Cardiovascular Strain of Firefighting and the Risk of Sudden Cardiac Events. Exerc. Sport Sci. Rev. 2016, 44, 90–97. [Google Scholar] [CrossRef]
- Horn, G.P.; DeBlois, J.; Shalmyeva, I.; Smith, D.L. Quantifying dehydration in the fire service using field methods and novel devices. Prehosp. Emerg. Care 2012, 16, 347–355. [Google Scholar] [CrossRef]
- Walker, A.; Pope, R.; Orr, R.M. The impact of fire suppression tasks on firefighter hydration: A critical review with consideration of the utility of reported hydration measures. Ann. Occup. Env. Med. 2016, 28, 63. [Google Scholar] [CrossRef]
- Kenefick, R.W.; Cheuvront, S.N. Physiological adjustments to hypohydration: Impact on thermoregulation. Auton. Neurosci. 2016, 196, 47–51. [Google Scholar] [CrossRef]
- Cheuvront, S.N.; Kenefick, R.W. Dehydration: Physiology, assessment, and performance effects. Compr. Physiol. 2014, 4, 257–285. [Google Scholar] [CrossRef] [PubMed]
- Scrogin, K.E.; Grygielko, E.T.; Brooks, V.L. Osmolality: A physiological long-term regulator of lumbar sympathetic nerve activity and arterial pressure. Am. J. Physiol. 1999, 276, R1579–R1586. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.R. Overview of the cardiovascular system and hemodynamics. Med. Physiol. Princ. Clin. Med. 2013, 212–226. [Google Scholar]
- Holbein, W.W.; Bardgett, M.E.; Toney, G.M. Blood pressure is maintained during dehydration by hypothalamic paraventricular nucleus-driven tonic sympathetic nerve activity. J. Physiol. 2014, 592, 3783–3799. [Google Scholar] [CrossRef]
- Lang, F.; Guelinckx, I.; Lemetais, G.; Melander, O. Two Liters a Day Keep the Doctor Away? Considerations on the Pathophysiology of Suboptimal Fluid Intake in the Common Population. Kidney Blood Press. Res. 2017, 42, 483–494. [Google Scholar] [CrossRef]
- Roussel, R.; Fezeu, L.; Bouby, N.; Balkau, B.; Lantieri, O.; Alhenc-Gelas, F.; Marre, M.; Bankir, L.; D.E.S.I.R. Study Group. Low water intake and risk for new-onset hyperglycemia. Diabetes Care 2011, 34, 2551–2554. [Google Scholar] [CrossRef] [PubMed]
- González-Alonso, J.; Mora-Rodríguez, R.; Below, P.R.; Coyle, E.F. Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise. J. Appl. Physiol. 1997, 82, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Racinais, S.; Alonso, J.M.; Coutts, A.J.; Flouris, A.D.; Girard, O.; González-Alonso, J.; Hausswirth, C.; Jay, O.; Lee, J.K.; Mitchell, N.; et al. Consensus recommendations on training and competing in the heat. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. S1), 6–19. [Google Scholar] [CrossRef] [PubMed]
- McConell, G.K.; Burge, C.M.; Skinner, S.L.; Hargreaves, M. Influence of ingested fluid volume on physiological responses during prolonged exercise. Acta Physiol. Scand. 1997, 160, 149–156. [Google Scholar] [CrossRef]
- Candas, V.; Libert, J.P.; Brandenberger, G.; Sagot, J.C.; Kahn, J.M. Thermal and circulatory responses during prolonged exercise at different levels of hydration. J. Physiol. 1988, 83, 11–18. [Google Scholar] [PubMed]
- Powers, K.S. Dehydration: Isonatremic, Hyponatremic, and Hypernatremic Recognition and Management. Pediatr. Rev. 2015, 36, 274–283, quiz 284–285. Erratum in Pediatr. Rev. 2015, 36, 422. [Google Scholar] [CrossRef]
- Nadel, E.R.; Fortney, S.M.; Wenger, C.B. Effect of hydration state of circulatory and thermal regulations. J. Appl. Physiol. Respir. Env. Exerc. Physiol. 1980, 49, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Sawka, M.N. Physiological consequences of hypohydration: Exercise performance and thermoregulation. Med. Sci. Sports Exerc. 1992, 24, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Ritz, P.; Vol, S.; Berrut, G.; Tack, I.; Arnaud, M.J.; Tichet, J. Influence of gender and body composition on hydration and body water spaces. Clin. Nutr. 2008, 27, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Watson, F.; Austin, P. Physiology of human fluid balance. Anaesth. Intensive Care Med. 2021, 22, 644–651. [Google Scholar] [CrossRef]
- Campbell, I. Physiology of fluid balance. Anaesth. Intensive Care Med. 2003, 4, 342–345. [Google Scholar] [CrossRef]
- Noda, M.; Sakuta, H. Central regulation of body-fluid homeostasis. Trends Neurosci. 2013, 36, 661–673. [Google Scholar] [CrossRef]
- Cheuvront, S.N.; Sawka, M.N. Hydration assessment of athletes. Chin. J. Sports Med. 2006, 25, 238. [Google Scholar]
- Büyükkaragöz, B.; Bakkaloğlu, S.A. Serum osmolality and hyperosmolar states. Pediatr. Nephrol. 2023, 38, 1013–1025. [Google Scholar] [CrossRef]
- Najem, O.; Shah, M.M.; Zubair, M.; De Jesus, O. Serum Osmolality. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Dorwart, W.V.; Chalmers, L. Comparison of methods for calculating serum osmolality form chemical concentrations, and the prognostic value of such calculations. Clin. Chem. 1975, 21, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Barley, O.R.; Chapman, D.W.; Abbiss, C.R. Reviewing the current methods of assessing hydration in athletes. J. Int. Soc. Sports Nutr. 2020, 17, 52. [Google Scholar] [CrossRef]
- Tobias, A.; Ballard, B.D.; Mohiuddin, S.S. Physiology, Water Balance. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- McDermott, B.P.; Anderson, S.A.; Armstrong, L.E.; Casa, D.J.; Cheuvront, S.N.; Cooper, L.; Kenney, W.L.; O’Connor, F.G.; Roberts, W.O. National Athletic Trainers’ Association Position Statement: Fluid Replacement for the Physically Active. J. Athl. Train. 2017, 52, 877–895. [Google Scholar] [CrossRef] [PubMed]
- McLellan, T.M.; Selkirk, G.A. The management of heat stress for the firefighter: A review of work conducted on behalf of the Toronto Fire Service. Ind. Health 2006, 44, 414–426. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.L.; Petruzzello, S.J.; Kramer, J.M.; Misner, J.E. Physiological, psychophysical, and psychological responses of firefighters to firefighting training drills. Aviat. Space Environ. Med. 1996, 67, 1063–1068. [Google Scholar] [PubMed]
- Smith, D.L.; Manning, T.S.; Petruzzello, S.J. Effect of strenuous live-fire drills on cardiovascular and psychological responses of recruit firefighters. Ergonomics 2001, 44, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Givoni, B.; Goldman, R.F. Predicting rectal temperature response to work, environment, and clothing. J. Appl. Physiol. 1972, 32, 812–822. [Google Scholar] [CrossRef]
- Jones, M.R. Personal protective equipment (PPE): Practical and theoretical considerations. In Chemical Warfare Agents; CRC Press: Boca Raton, FL, USA, 2019; pp. 303–372. [Google Scholar]
- Baker, S.J.; Grice, J.; Roby, L.; Matthews, C. Cardiorespiratory and thermoregulatory response of working in fire-fighter protective clothing in a temperate environment. Ergonomics 2000, 43, 1350–1358. [Google Scholar] [CrossRef]
- Carter, J.B.; Banister, E.W.; Morrison, J.B. Effectiveness of rest pauses and cooling in alleviation of heat stress during simulated fire-fighting activity. Ergonomics 1999, 42, 299–313. [Google Scholar] [CrossRef]
- Kuht, J.; Farmery, A.D. Body temperature and its regulation. Anaesth. Intensive Care Med. 2014, 15, 273–278. [Google Scholar] [CrossRef]
- Madden, C.J.; Morrison, S.F. Central nervous system circuits that control body temperature. Neurosci. Lett. 2019, 696, 225–232. [Google Scholar] [CrossRef]
- Charkoudian, N. Skin blood flow in adult human thermoregulation: How it works, when it does not, and why. Mayo Clin. Proc. 2003, 78, 603–612. [Google Scholar] [CrossRef]
- Janský, L.; Vávra, V.; Janský, P.; Kunc, P.; Knížková, I.; Jandová, D.; Slováček, K. Skin temperature changes in humans induced by local peripheral cooling. J. Therm. Biol. 2003, 28, 429–437. [Google Scholar] [CrossRef]
- Granger, D.; Marsolais, M.; Burry, J.; Laprade, R. Na+/H+ exchangers in the human eccrine sweat duct. Am. J. Physiol. Cell Physiol. 2003, 285, C1047–C1058. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, M.; Secher, N.H.; Selmer, C.; Kondo, N.; Crandall, C.G. Central command is capable of modulating sweating from non-glabrous human skin. J. Physiol. 2003, 553 Pt 3, 999–1004. [Google Scholar] [CrossRef]
- Stewart, R.; Reed, J.; Zhong, J.; Morton, K.; Porter, T.L. Human hydration level monitoring using embedded piezoresistive microcantilever sensors. Med. Eng. Phys. 2007, 29, 1084–1088. [Google Scholar] [CrossRef]
- Mentes, J.C.; DeVost, M.A.; Nandy, K. Salivary Osmolality, Function, and Hydration Habits in Community-Dwelling Older Adults. SAGE Open Nurs. 2019, 5, 2377960819826253. [Google Scholar] [CrossRef]
- Pranavmurthi, V.; Webb, C.; Hutzley, V.; Smith, R.; Strang, A. Independent validation of a commercial saliva osmometer for hydration monitoring. Wearable Sens. Hum. Monit. 2020. [Google Scholar]
- Sommerfield, L.M.; McAnulty, S.R.; McBride, J.M.; Zwetsloot, J.J.; Austin, M.D.; Mehlhorn, J.D.; Calhoun, M.C.; Young, J.O.; Haines, T.L.; Utter, A.C. Validity of Urine Specific Gravity When Compared with Plasma Osmolality as a Measure of Hydration Status in Male and Female NCAA Collegiate Athletes. J. Strength. Cond. Res. 2016, 30, 2219–2225. [Google Scholar] [CrossRef]
- He, H.; Zhang, J.; Zhang, N.; Du, S.; Liu, S.; Ma, G. Effects of the Amount and Frequency of Fluid Intake on Cognitive Performance and Mood among Young Adults in Baoding, Hebei, China: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, 8813. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.B.; Lang, J.A.; Kenney, W.L. Change in body mass accurately and reliably predicts change in body water after endurance exercise. Eur. J. Appl. Physiol. 2009, 105, 959–967. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Giersch, G.E.W.; Dunn, L.; Fiol, A.; Muñoz, C.X.; Lee, E.C. Inputs to Thirst and Drinking during Water Restriction and Rehydration. Nutrients 2020, 12, 2554. [Google Scholar] [CrossRef]
- Edmonds, C.J.; Crombie, R.; Gardner, M.R. Subjective thirst moderates changes in speed of responding associated with water consumption. Front. Hum. Neurosci. 2013, 7, 363. [Google Scholar] [CrossRef]
- Sollanek, K.J.; Kenefick, R.W.; Cheuvront, S.N.; Axtell, R.S. Potential impact of a 500-mL water bolus and body mass on plasma osmolality dilution. Eur. J. Appl. Physiol. 2011, 111, 1999–2004. [Google Scholar] [CrossRef] [PubMed]
- Rundgren, M.; Svensen, C.H. Fluid balance, regulatory mechanisms, and electrolytes. In Fluid Therapy for the Surgical Patient; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–29. [Google Scholar]
- Nose, H.; Mack, G.W.; Shi, X.R.; Nadel, E.R. Shift in body fluid compartments after dehydration in humans. J. Appl. Physiol. 1988, 65, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Oppliger, R.A.; Bartok, C. Hydration testing of athletes. Sports Med. 2002, 32, 959–971. [Google Scholar] [CrossRef] [PubMed]
- Arnaoutis, G.; Kavouras, S.A.; Stratakis, N.; Likka, M.; Mitrakou, A.; Papamichael, C.; Sidossis, L.S.; Stamatelopoulos, K. The effect of hypohydration on endothelial function in young healthy adults. Eur. J. Nutr. 2017, 56, 1211–1217. [Google Scholar] [CrossRef]
- Carroll, H.A.; James, L.J. Hydration, Arginine Vasopressin, and Glucoregulatory Health in Humans: A Critical Perspective. Nutrients 2019, 11, 1201. [Google Scholar] [CrossRef]
- Montain, S.J.; Laird, J.E.; Latzka, W.A.; Sawka, M.N. Aldosterone and vasopressin responses in the heat: Hydration level and exercise intensity effects. Med. Sci. Sports Exerc. 1997, 29, 661–668. [Google Scholar] [CrossRef]
- Wishart, C. Measurement of Total Body Water (TBW) and Total Energy Expenditure (TEE) Using Stable Isotopes. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2011. [Google Scholar]
- Shirreffs, S.M. Markers of hydration status. J. Sports Med. Phys. Fit. 2000, 40, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Belval, L.N.; Hosokawa, Y.; Casa, D.J.; Adams, W.M.; Armstrong, L.E.; Baker, L.B.; Burke, L.; Cheuvront, S.; Chiampas, G.; González-Alonso, J.; et al. Practical Hydration Solutions for Sports. Nutrients 2019, 11, 1550. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Costill, D.L.; Fink, W.J. Influence of diuretic-induced dehydration on competitive running performance. Med. Sci. Sports Exerc. 1985, 17, 456–461. [Google Scholar] [CrossRef]
- Galloway, S.D.; Maughan, R.J. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med. Sci. Sports Exerc. 1997, 29, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Judelson, D.A.; Maresh, C.M.; Farrell, M.J.; Yamamoto, L.M.; Armstrong, L.E.; Kraemer, W.J.; Volek, J.S.; Spiering, B.A.; Casa, D.J.; Anderson, J.M. Effect of hydration state on strength, power, and resistance exercise performance. Med. Sci. Sports Exerc. 2007, 39, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Dube, A.; Gouws, C.; Breukelman, G. Effects of hypohydration and fluid balance in athletes’ cognitive performance: A systematic review. Afr. Health Sci. 2022, 22, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Ganio, M.S.; Armstrong, L.E.; Casa, D.J.; McDermott, B.P.; Lee, E.C.; Yamamoto, L.M.; Marzano, S.; Lopez, R.M.; Jimenez, L.; Le Bellego, L.; et al. Mild dehydration impairs cognitive performance and mood of men. Br. J. Nutr. 2011, 106, 1535–1543. [Google Scholar] [CrossRef]
- Nadel, E.R. Control of sweating rate while exercising in the heat. Med. Sci. Sports 1979, 11, 31–35. [Google Scholar]
- Neves, E.B. Heat Stress Control Mechanisms in Military Operations. Adv. Military Technol. 2022, 17, 317–323. [Google Scholar] [CrossRef]
- American College of Sports Medicine; Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exerc. Fluid. Replace Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [CrossRef]
- Cheuvront, S.N.; Kenefick, R.W. CORP: Improving the status quo for measuring whole body sweat losses. J. Appl. Physiol. 2017, 123, 632–636. [Google Scholar] [CrossRef]
- Baker, L.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature 2019, 6, 211–259. [Google Scholar] [CrossRef]
- Gagge, A.P.; Gonzalez, R.R. Mechanisms of Heat Exchange: Biophysics and Physiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 45–84. [Google Scholar]
- Kasza, I.; Adler, D.; Nelson, D.W.; Eric Yen, C.L.; Dumas, S.; Ntambi, J.M.; MacDougald, O.A.; Hernando, D.; Porter, W.P.; Best, F.A.; et al. Evaporative cooling provides a major metabolic energy sink. Mol. Metab. 2019, 27, 47–61. [Google Scholar] [CrossRef]
- Maughan, R.J.; Shirreffs, S.M. Dehydration and rehydration in competative sport. Scand J. Med. Sci. Sports 2010, 20 (Suppl. S3), 40–47. [Google Scholar] [CrossRef]
- Bates, G.P.; Miller, V.S. Sweat rate and sodium loss during work in the heat. J. Occup. Med. Toxicol. 2008, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Horswill, C.A. Effective fluid replacement. Int. J. Sport. Nutr. 1998, 8, 175–195. [Google Scholar] [CrossRef]
- Meyer, F.; Szygula, Z.; Wilk, B. Fluid Balance, Hydration, and Athletic Performance; Taylor & Francis: Abingdon, UK, 2016. [Google Scholar]
- Shirreffs, S.M.; Maughan, R.J. Volume repletion after exercise-induced volume depletion in humans: Replacement of water and sodium losses. Am. J. Physiol. 1998, 274, F868–F875. [Google Scholar] [CrossRef] [PubMed]
- James, L.J.; Shirreffs, S.M. Effect of electrolyte addition to rehydration drinks consumed after severe fluid and energy restriction. J. Strength Cond. Res. 2015, 29, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Pohl, H.R.; Wheeler, J.S.; Murray, H.E. Sodium and potassium in health and disease. Met. Ions Life Sci. 2013, 13, 29–47. [Google Scholar] [CrossRef]
- Murphy, G.R.; Dunstan, R.H.; Macdonald, M.M.; Borges, N.; Radford, Z.; Sparkes, D.L.; Dascombe, B.J.; Roberts, T.K. Relationships between electrolyte and amino acid compositions in sweat during exercise suggest a role for amino acids and K+ in reabsorption of Na+ and Cl- from sweat. PLoS ONE 2019, 14, e0223381. [Google Scholar] [CrossRef]
- Tabuchi, S.; Horie, S.; Kawanami, S.; Inoue, D.; Morizane, S.; Inoue, J.; Nagano, C.; Sakurai, M.; Serizawa, R.; Hamada, K. Efficacy of ice slurry and carbohydrate-electrolyte solutions for firefighters. J. Occup. Health 2021, 63, e12263. [Google Scholar] [CrossRef]
- Pérez-Castillo, Í.M.; Williams, J.A.; López-Chicharro, J.; Mihic, N.; Rueda, R.; Bouzamondo, H.; Horswill, C.A. Compositional Aspects of Beverages Designed to Promote Hydration before, during, and after Exercise: Concepts Revisited. Nutrients 2023, 16, 17. [Google Scholar] [CrossRef]
- Perrier, E.T. Shifting Focus: From Hydration for Performance to Hydration for Health. Ann. Nutr. Metab. 2017, 70 (Suppl. S1), 4–12. [Google Scholar] [CrossRef]
- Borghi, L.; Meschi, T.; Amato, F.; Briganti, A.; Novarini, A.; Giannini, A. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: A 5-year randomized prospective study. J. Urol. 1996, 155, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Bankir, L.; Bichet, D.G.; Morgenthaler, N.G. Vasopressin: Physiology, assessment and osmosensation. J. Intern. Med. 2017, 282, 284–297. [Google Scholar] [CrossRef]
- Christ-Crain, M.; Fenske, W. Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis. Nat. Rev. Endocrinol. 2016, 12, 168–176. [Google Scholar] [CrossRef]
- Lemetais, G.; Melander, O.; Vecchio, M.; Bottin, J.H.; Enhörning, S.; Perrier, E.T. Effect of increased water intake on plasma copeptin in healthy adults. Eur. J. Nutr. 2018, 57, 1883–1890. [Google Scholar] [CrossRef]
- Tasevska, I.; Enhörning, S.; Christensson, A.; Persson, M.; Nilsson, P.M.; Melander, O. Increased Levels of Copeptin, a Surrogate Marker of Arginine Vasopressin, Are Associated with an Increased Risk of Chronic Kidney Disease in a General Population. Am. J. Nephrol. 2016, 44, 22–28. [Google Scholar] [CrossRef]
- Clark, W.F.; Sontrop, J.M.; Huang, S.H.; Gallo, K.; Moist, L.; House, A.A.; Weir, M.A.; Garg, A.X. The chronic kidney disease Water Intake Trial (WIT): Results from the pilot randomised controlled trial. BMJ Open 2013, 3, e003666. [Google Scholar] [CrossRef] [PubMed]
- Enhörning, S.; Tasevska, I.; Roussel, R.; Bouby, N.; Persson, M.; Burri, P.; Bankir, L.; Melander, O. Effects of hydration on plasma copeptin, glycemia and gluco-regulatory hormones: A water intervention in humans. Eur. J. Nutr. 2019, 58, 315–324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Houser, M.C.; Smith, D.J.; Rhodes, D.; Glick-Smith, J.L.; Chovan, P.; Ferranti, E.; Dunbar, S.B.; Tansey, M.G.; Hertzberg, V.; Mac, V.V. Inflammatory profiles, gut microbiome, and kidney function are impacted after high-fidelity firefighter training. Int. J. Hyg. Environ. Health 2023, 248, 114107. [Google Scholar] [CrossRef]
- Youakim, S. Risk of cancer among firefighters: A quantitative review of selected malignancies. Arch. Environ. Occup. Health 2006, 61, 223–231. [Google Scholar] [CrossRef]
- Byczek, L.; Walton, S.M.; Conrad, K.M.; Reichelt, P.A.; Samo, D.G. Cardiovascular risks in firefighters: Implications for occupational health nurse practice. AAOHN J. 2004, 52, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.cdc.gov/diabetes/php/data-research/methods.html?CDC_AAref_Val=https://www.cdc.gov/diabetes/data/statistics-report/index.html (accessed on 20 August 2024).
- Dyatlova, N.; Tobarran, N.V.; Kannan, L.; North, R.; Wills, B.K. Metformin-Associated Lactic Acidosis (MALA). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Takayama, K.; Obata, Y.; Maruo, Y.; Yamaguchi, H.; Kosugi, M.; Irie, Y.; Hazama, Y.; Yasuda, T. Metformin-associated Lactic Acidosis with Hypoglycemia during the COVID-19 Pandemic. Intern. Med. 2022, 61, 2333–2337. [Google Scholar] [CrossRef] [PubMed]
- Arumugham, V.B.; Shahin, M.H. Therapeutic Uses of Diuretic Agents. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Hill, R.D.; Vaidya, P.N. Angiotensin II Receptor Blockers (ARB). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Elliott, W.J.; Ram, C.V. Calcium channel blockers. J. Clin. Hypertens 2011, 13, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Farzam, K.; Jan, A. Beta Blockers. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Nobrega, A.C.; O’Leary, D.; Silva, B.M.; Marongiu, E.; Piepoli, M.F.; Crisafulli, A. Neural regulation of cardiovascular response to exercise: Role of central command and peripheral afferents. Biomed. Res. Int. 2014, 2014, 478965. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheuvront, S.N.; Carter, R., 3rd; Montain, S.J.; Sawka, M.N. Daily body mass variability and stability in active men undergoing exercise-heat stress. Int. J. Sport. Nutr. Exerc. Metab. 2004, 14, 532–540. [Google Scholar] [CrossRef] [PubMed]
- NSCA-National Strength & Conditioning Association. NSCA’s Essentials of Tactical Strength and Conditioning; Human Kinetics: Champaign, IL, USA, 2017; pp. 79–109. [Google Scholar]
- Travers, G.; Nichols, D.; Riding, N.; González-Alonso, J.; Périard, J.D. Heat Acclimation with Controlled Heart Rate: Influence of Hydration Status. Med. Sci. Sports Exerc. 2020, 52, 1815–1824. [Google Scholar] [CrossRef] [PubMed]
- Périard, J.D.; Racinais, S.; Sawka, M.N. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. S1), 20–38. [Google Scholar] [CrossRef]
- Taylor, N.A. Human heat adaptation. Compr. Physiol. 2014, 4, 325–365. [Google Scholar] [CrossRef]
- Pallubinsky, H.; Schellen, L.; Kingma, B.R.M.; Dautzenberg, B.; van Baak, M.A.; van Marken Lichtenbelt, W.D. Thermophysiological adaptations to passive mild heat acclimation. Temperature 2017, 4, 176–186, Erratum in Temperature 2018, 5, 100. [Google Scholar] [CrossRef]
- Heathcote, S.L.; Hassmén, P.; Zhou, S.; Stevens, C.J. Passive Heating: Reviewing Practical Heat Acclimation Strategies for Endurance Athletes. Front. Physiol. 2018, 9, 1851. [Google Scholar] [CrossRef]
- Scoon, G.S.; Hopkins, W.G.; Mayhew, S.; Cotter, J.D. Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. J. Sci. Med. Sport 2007, 10, 259–262. [Google Scholar] [CrossRef]
- Zurawlew, M.J.; Walsh, N.P.; Fortes, M.B.; Potter, C. Post-exercise hot water immersion induces heat acclimation and improves endurance exercise performance in the heat. Scand. J. Med. Sci. Sports 2016, 26, 745–754. [Google Scholar] [CrossRef] [PubMed]
Term | Definition |
---|---|
Hypohydration/ Dehydration (used interchangeably for this review) | >2% of body mass loss from water deficits [10,22] |
Euhydration | Normal total body water that fluctuates narrowly [27]. |
Hypotonic Fluid | Contains a lower concentration of solute compared to plasma and interstitial fluid [28]. |
Hypertonic Fluid | Contains a higher concentration of solute compared to plasma and interstitial fluid [28]. |
Serum osmolality | The sum of the osmolalities of every single dissolved particle in the blood, such as sodium and associated anions, potassium, glucose, and urea [28]. |
Hypoosmolar serum | Serum with a lower concentration of dissolved particles per volume of serum than normal (275 to 295 mOsm/kg) [29,30]. |
Hyperosmolar serum | Serum with a higher concentration of dissolved particles per volume of serum than normal (275 to 295 mOsm/kg) [29,30]. |
Hydration Assessment | Description |
---|---|
Serum Osmolality [27,29,55,56,57] |
|
Blood Hematocrit and Hemoglobin [31,58] |
|
Hormones [59,60,61] |
|
Total Body Water (TBW) [27,31,62,63] |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holland-Winkler, A.M.; Hamil, B.K. Hydration Considerations to Improve the Physical Performance and Health of Firefighters. J. Funct. Morphol. Kinesiol. 2024, 9, 182. https://doi.org/10.3390/jfmk9040182
Holland-Winkler AM, Hamil BK. Hydration Considerations to Improve the Physical Performance and Health of Firefighters. Journal of Functional Morphology and Kinesiology. 2024; 9(4):182. https://doi.org/10.3390/jfmk9040182
Chicago/Turabian StyleHolland-Winkler, Angelia M., and Blake K. Hamil. 2024. "Hydration Considerations to Improve the Physical Performance and Health of Firefighters" Journal of Functional Morphology and Kinesiology 9, no. 4: 182. https://doi.org/10.3390/jfmk9040182
APA StyleHolland-Winkler, A. M., & Hamil, B. K. (2024). Hydration Considerations to Improve the Physical Performance and Health of Firefighters. Journal of Functional Morphology and Kinesiology, 9(4), 182. https://doi.org/10.3390/jfmk9040182