Photobiomodulation as Medicine: Low-Level Laser Therapy (LLLT) for Acute Tissue Injury or Sport Performance Recovery
Abstract
:1. Introduction
2. Literature Search Strategy
3. Findings from the Clinical Literature
3.1. Wound Healing
3.1.1. Post Surgery
3.1.2. Pre-Conditioning of Wounds
3.2. Athletic Training and Performance
3.3. Management of Acute Musculoskeletal Injury
3.4. LLLT at a Cellular Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- National Library of Medicine. MeSH Descriptor Data. 2023. Available online: https://meshb.nlm.nih.gov/record/ui?ui=D028022 (accessed on 31 July 2024).
- Anders, J.J.; Lanzafame, R.J.; Arany, P.R. Low-Level Light/Laser Therapy Versus Photobiomodulation Therapy. Photomed. Laser Surg. 2015, 33, 183–184. [Google Scholar] [CrossRef] [PubMed]
- Mussttaf, R.A.; Jenkins, D.F.L.; Jha, A.N. Assessing the impact of low level laser therapy (LLLT) on biological systems: A review. Int. J. Radiat. Biol. 2019, 95, 120–143. [Google Scholar] [CrossRef]
- Hamblin, M.R. Photobiomodulation or low-level laser therapy. J. Biophotonics 2016, 9, 1122–1124. [Google Scholar] [CrossRef] [PubMed]
- Mester, E.; Mester, A.F.; Mester, A. The biomedical effects of laser application. Lasers Surg. Med. 1985, 5, 31–39. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug Administration. Laser Products and Instruments. 2023. Available online: https://www.fda.gov/radiation-emitting-products/home-business-and-entertainment-products/laser-products-and-instruments (accessed on 31 July 2024).
- Regulatory Affairs Professionals Society. FDA Draft Guidance Covers Low-Level Light Therapy Devices. 2023. Available online: https://www.raps.org/News-and-Articles/News-Articles/2023/1/FDA-draft-guidance-covers-low-level-light-therapy (accessed on 31 July 2024).
- Heiskanen, V.; Hamblin, M.R. Photobiomodulation: Lasers vs. light emitting diodes? Photochem. Photobiol. Sci. 2018, 17, 1003–1017. [Google Scholar] [CrossRef]
- World Association for Photobiomodulation Therapy. WALT Recommendations—Dosage Recommendations 2022. 2022. Available online: https://waltpbm.org/documentation-links/recommendations/ (accessed on 31 July 2024).
- Gayton, J.; Monga, A. Goal setting in physiotherapy-led adult musculoskeletal care: A scoping review. Musculoskelet. Care 2023, 21, 1315–1340. [Google Scholar] [CrossRef]
- Opel, D.R.; Hagstrom, E.; Pace, A.K.; Sisto, K.; Hirano-Ali, S.A.; Desai, S.; Swan, J. Light-emitting Diodes: A Brief Review and Clinical Experience. J. Clin. Aesthet. Dermatol. 2015, 8, 36–44. [Google Scholar]
- Rola, P.; Wlodarczk, S.; Lesiak, M.; Doroszko, A.; Wlodarczk, A. Changes in Cell Biology under the Influence of Low-LevelLaser Therapy. Photonics 2022, 9, 502. [Google Scholar] [CrossRef]
- Artzi, O.; Friedman, O.; Al-niaimi, F.; Wolf, Y.; Mehrabi, J.N. Mitigation of Postsurgical Scars Using Lasers. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2746. [Google Scholar] [CrossRef]
- Seago, M.; Shumaker, P.R.; Spring, L.K.; Alam, M.; Al-Niaimi, F.; Rox Anderson, R.; Artzi, O.; Bayat, A.; Cassuto, D.; Chan, H.H.; et al. Laser Treatment of Traumatic Scars and Contractures: 2020 International Consensus Recommendations. Lasers Surg. Med. 2020, 52, 96–116. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Yang, X.; Pan, B.; Xie, H.; Bi, H. Safety and Effectiveness of Laser or Intense Pulsed Light Treatment for Early Surgical Scar: A Systematic Review and Meta-analysis. Aesthetic Plast. Surg. 2023, 48, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Friedman, O.; Gofstein, D.; Arad, E.; Gur, E.; Sprecher, E.; Artzi, O. Laser pretreatment for the attenuation of planned surgical scars: A randomized self-controlled hemi-scar pilot study. J. Plast. Reconstr. Aesthetic Surg. 2020, 73, 893–898. [Google Scholar] [CrossRef]
- González-Muñoz, A.; Perez-Montilla, J.J.; Cuevas-Cervera, M.; Aguilar-García, M.; Aguilar-Nuñez, D.; Hamed-Hamed, D.; Pruimboom, L.; Navarro-Ledesma, S. Effects of Photobiomodulation in Sports Performance: A Literature Review. Appl. Sci. 2023, 13, 3147. [Google Scholar] [CrossRef]
- Oliveira, A.F.S.S.D.; Silva, J.L.D.; Camillo, C.A.M.; Andraus, R.A.C.; Maia, L.P. Does Photobiomodulation Improve Muscle Performance and Recovery? A Systematic Review. Rev. Bras. Med. Esporte 2023, 29, e2021_0412. [Google Scholar] [CrossRef]
- Luo, W.T.; Lee, C.J.; Tam, K.W.; Huang, T.W. Effects of Low-Level Laser Therapy on Muscular Performance and Soreness Recovery in Athletes: A Meta-analysis of Randomized Controlled Trials. Sports Health Multidiscip. Approach 2022, 14, 687–693. [Google Scholar] [CrossRef]
- De Marchi, T.; Ferlito, J.V.; Ferlito, M.V.; Salvador, M.; Cesar, E.; Leal-Junior, P. Can Photobiomodulation Therapy (PBMT) Minimize Exercise-Induced Oxidative Stress? A Systematic Review and Meta-Analysis. Antioxidants 2022, 11, 1671. [Google Scholar] [CrossRef]
- Ailioaie, L.M.; Litscher, G.; Crovella, S. Photobiomodulation and Sports: Results of a Narrative Review. Life 2021, 11, 1339. [Google Scholar] [CrossRef]
- Alves, V.M.N.; Furlan, R.M.M.M.; Motta, A.R. Immediate effects of photobiomodulation with low-level laser therapy on muscle performance: An integrative literature review. Rev. CEFAC 2019, 21, e12019. [Google Scholar] [CrossRef]
- Vanin, A.A.; Verhagen, E.; Barboza, S.D.; Costa, L.O.P.; Leal-Junior, E.C.P. Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: A systematic review and meta-analysis. Lasers Med. Sci. 2018, 33, 181–214. [Google Scholar] [CrossRef]
- Ferraresi, C.; Huang, Y.Y.; Hamblin, M.R. Photobiomodulation in human muscle tissue: An advantage in sports performance? J. Biophotonics 2016, 9, 1273–1299. [Google Scholar] [CrossRef]
- Nampo, F.K.; Cavalheri, V.; dos Santos Soares, F.; de Paula Ramos, S.; Camargo, E.A. Low-level phototherapy to improve exercise capacity and muscle performance: A systematic review and meta-analysis. Lasers Med. Sci. 2016, 31, 1957–1970. [Google Scholar] [CrossRef] [PubMed]
- Borsa, P.A.; Larkin, K.A.; True, J.M. Does Phototherapy Enhance Skeletal Muscle Contractile Function and Postexercise Recovery? A Systematic Review. J. Athl. Train. 2013, 48, 57–67. [Google Scholar] [CrossRef]
- Leal-Junior, E.C.P.; Vanin, A.A.; Miranda, E.F.; de Carvalho, P.D.T.C.; Dal Corso, S.; Bjordal, J.M. Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: A systematic review with meta-analysis. Lasers Med. Sci. 2013, 30, 925–939. [Google Scholar] [CrossRef]
- Dutra, Y.M.; Malta, E.S.; Elias, A.S.; Broatch, J.R.; Zagatto, A.M. Deconstructing the Ergogenic Effects of Photobiomodulation: A Systematic Review and Meta-analysis of its Efficacy in Improving Mode-Specific Exercise Performance in Humans. Sports Med. 2022, 52, 2733–2757. [Google Scholar] [CrossRef] [PubMed]
- Toma, R.L.; Vassão, P.G.; Assis, L.; Antunes, H.K.M.; Renno, A.C.M. Low level laser therapy associated with a strength training program on muscle performance in elderly women: A randomized double blind control study. Lasers Med. Sci. 2016, 31, 1219–1229. [Google Scholar] [CrossRef]
- Vassão, P.G.; Toma, R.L.; Antunes, H.K.M.; Tucci, H.T.; Renno, A.C.M. Effects of photobiomodulation on the fatigue level in elderly women: An isokinetic dynamometry evaluation. Lasers Med. Sci. 2016, 31, 275–282. [Google Scholar] [CrossRef]
- Toma, R.L.; Tucci, H.T.; Antunes, H.K.M.; Pedroni, C.R.; de Oliveira, A.S.; Buck, I.; Ferreira, P.D.; Vassão, P.G.; Renno, A.C.M. Effect of 808 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in elderly women. Lasers Med. Sci. 2013, 28, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Bublitz, C.; Renno, A.C.M.; Ramos, R.S.; Assis, L.; Sellera, C.A.C.; Trimer, R.; Borghi-Silva, A.; Arena, R.; Guizilini, S. Acute effects of low-level laser therapy irradiation on blood lactate and muscle fatigue perception in hospitalized patients with heart failure—A pilot study. Lasers Med. Sci. 2016, 31, 1203–1209. [Google Scholar] [CrossRef]
- Tomazoni, S.S.; Machado, C.D.S.M.; De Marchi, T.; Casalechi, H.L.; Bjordal, J.M.; de Carvalho, P.D.T.C.; Leal-Junior, E.C.P. Infrared Low-Level Laser Therapy (Photobiomodulation Therapy) before Intense Progressive Running Test of High-Level Soccer Players: Effects on Functional, Muscle Damage, Inflammatory, and Oxidative Stress Markers—A Randomized Controlled Trial. Oxidative Med. Cell. Longev. 2019, 2019, 6239058. [Google Scholar] [CrossRef]
- Miranda, E.F.; Tomazoni, S.S.; de Paiva, P.R.V.; Pinto, H.D.; Smith, D.; Santos, L.A.; de Tarso Camillo de Carvalho, P.; Leal-Junior, E.C.P. When is the best moment to apply photobiomodulation therapy (PBMT) when associated to a treadmill endurance-training program? A randomized, triple-blinded, placebo-controlled clinical trial. Lasers Med. Sci. 2018, 33, 719–727. [Google Scholar] [CrossRef]
- Follmer, B.; Dellagrana, R.A.; Rossato, M.; Sakugawa, R.L.; Diefenthaeler, F. Photobiomodulation therapy is beneficial in reducing muscle fatigue in Brazilian jiu-jitsu athletes and physically active men. Sport Sci. Health 2018, 14, 685–691. [Google Scholar] [CrossRef]
- De Marchi, T.; Leal-Junior, E.C.P.; Lando, K.C.; Cimadon, F.; Vanin, A.A.; da Rosa, D.P.; Salvador, M. Photobiomodulation therapy before futsal matches improves the staying time of athletes in the court and accelerates post-exercise recovery. Lasers Med. Sci. 2019, 34, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Machado, C.D.S.M.; Casalechi, H.L.; Vanin, A.A.; de Azevedo, J.B.; de Carvalho, P.D.T.C.; Leal-Junior, E.C.P. Does photobiomodulation therapy combined to static magnetic field (PBMT-sMF) promote ergogenic effects even when the exercised muscle group is not irradiated? A randomized, triple-blind, placebo-controlled trial. BMC Sports Sci. Med. Rehabil. 2020, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Leal-Junior, E.C.P.; de Oliveira, M.F.D.; Joensen, J.; Stausholm, M.B.; Bjordal, J.M.; Tomazoni, S.S. What is the optimal time-response window for the use of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) for the improvement of exercise performance and recovery, and for how long the effects last? A randomized, triple-blinded, placebo-controlled trial. BMC Sports Sci. Med. Rehabil. 2020, 12, 64. [Google Scholar] [CrossRef]
- De Paiva, P.R.V.; Casalechi, H.L.; Tomazoni, S.S.; Machado, C.D.S.M.; Ribeiro, N.F.; Pereira, A.L.; De Oliveira, M.F.D.; Alves, M.N.D.S.; Dos Santos, M.C.; Takara, I.E.T.; et al. Does the combination of photobiomodulation therapy (PBMT) and static magnetic fields (sMF) potentiate the effects of aerobic endurance training and decrease the loss of performance during detraining? A randomised, triple-blinded, placebo-controlled trial. BMC Sports Sci. Med. Rehabil. 2020, 12, 23. [Google Scholar] [CrossRef]
- Machado, A.F.; Leal-Junior, E.C.P.; Batista, N.P.; Espinoza, R.M.C.P.P.; Hidalgo, R.B.R.; Carvalho, F.A.; Micheletti, J.K.; Vanderlei, F.M.; Pastre, C.M. Photobiomodulation therapy applied during an exercise-training program does not promote additional effects in trained individuals: A randomized placebo-controlled trial. Braz. J. Phys. Ther. 2022, 26, 100388. [Google Scholar] [CrossRef]
- Orssatto, L.B.D.R.; Detanico, D.; Kons, R.L.; Sakugawa, R.L.; Silva, J.N.D., Jr.; Diefenthaeler, F. Photobiomodulation Therapy Does Not Attenuate Fatigue and Muscle Damage in Judo Athletes: A Randomized, Triple-Blind, Placebo-Controlled Trial. Front. Physiol. 2019, 10, 811. [Google Scholar] [CrossRef]
- de Oliveira, A.R.; Vanin, A.A.; Tomazoni, S.S.; Miranda, E.F.; Albuquerque-Pontes, G.M.; De Marchi, T.; dos Santos Grandinetti, V.; de Paiva, P.R.V.; Imperatori, T.B.G.; de Carvalho, P.D.T.C.; et al. Pre-Exercise Infrared Photobiomodulation Therapy (810 nm) in Skeletal Muscle Performance and Postexercise Recovery in Humans: What Is the Optimal Power Output? Photomed. Laser Surg. 2017, 35, 595–603. [Google Scholar] [CrossRef]
- Pinto, H.D.; Vanin, A.A.; Miranda, E.F.; Tomazoni, S.S.; Johnson, D.S.; Albuquerque-Pontes, G.M.; Ivo de OAleixo, J.; Grandinetti, V.D.S.; Casalechi, H.L.; Paulo de Tarso, C.; et al. Photobiomodulation Therapy Improves Performance and Accelerates Recovery of High-Level Rugby Players in Field Test: A Randomized, Crossover, Double-Blind, Placebo-Controlled Clinical Study. J. Strength Cond. Res. 2016, 30, 3329–3338. [Google Scholar] [CrossRef]
- Larkin-Kaiser, K.A.; Borsa, P.A.; Baweja, H.S.; Moore, M.A.; Tillman, M.D.; George, S.Z.; Christou, E.A. Photobiomodulation delays the onset of skeletal muscle fatigue in a dose-dependent manner. Lasers Med. Sci. 2016, 31, 1325–1332. [Google Scholar] [CrossRef]
- Aver Vanin, A.; De Marchi, T.; Silva Tomazoni, S.; Tairova, O.; Leão Casalechi, H.; de Tarso Camillo de Carvalho, P.; Bjordal, J.M.; Leal-Junior, E.C. Pre-Exercise Infrared Low-Level Laser Therapy (810 nm) in Skeletal Muscle Performance and Postexercise Recovery in Humans, What Is the Optimal Dose? A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Photomed. Laser Surg. 2016, 34, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Dellagrana, R.A.; Rossato, M.; Sakugawa, R.L.; Lazzari, C.D.; Baroni, B.M.; Diefenthaeler, F. Dose-response effect of photobiomodulation therapy on neuromuscular economy during submaximal running. Lasers Med. Sci. 2018, 33, 329–336. [Google Scholar] [CrossRef]
- Ferraresi, C.; de Brito Oliveira, T.; de Oliveira Zafalon, L.; de Menezes Reiff, R.B.; Baldissera, V.; de Andrade Perez, S.E.; Júnior, E.M.; Parizotto, N.A. Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med. Sci. 2011, 26, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Antonialli, F.C.; De Marchi, T.; Tomazoni, S.S.; Vanin, A.A.; dos Santos Grandinetti, V.; de Paiva, P.R.V.; Pinto, H.D.; Miranda, E.F.; de Tarso Camillo de Carvalho, P.; Leal-Junior, E.C.P. Phototherapy in skeletal muscle performance and recovery after exercise: Effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med. Sci. 2014, 29, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, T.; Leal-Junior, E.C.P.; Bortoli, C.; Tomazoni, S.S.; Lopes-Martins, R.Á.B.; Salvador, M. Low-level laser therapy (LLLT) in human progressive-intensity running: Effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med. Sci. 2012, 27, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Zagatto, A.M.; de Paula Ramos, S.; Nakamura, F.Y.; de Lira, F.S.; Lopes-Martins, R.Á.B.; de Paiva Carvalho, R.L. Effects of low-level laser therapy on performance, inflammatory markers, and muscle damage in young water polo athletes: A double-blind, randomized, placebo-controlled study. Lasers Med. Sci. 2016, 31, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Larkin-Kaiser, K.A.; Christou, E.; Tillman, M.; George, S.; Borsa, P.A. Near-Infrared Light Therapy to Attenuate Strength Loss After Strenuous Resistance Exercise. J. Athl. Train. 2015, 50, 45–50. [Google Scholar] [CrossRef]
- de Almeida, P.; Lopes-Martins, R.Á.B.; De Marchi, T.; Tomazoni, S.S.; Albertini, R.; Corrêa, J.C.F.; Rossi, R.P.; Machado, G.P.; da Silva, D.P.; Bjordal, J.M.; et al. Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: What is better? Lasers Med. Sci. 2012, 27, 453–458. [Google Scholar] [CrossRef]
- Toma, R.L.; Oliveira, M.X.; Renno, A.C.M.; Laakso, E.L. Photobiomodulation (PBM) therapy at 904 nm mitigates effects of exercise-induced skeletal muscle fatigue in young women. Lasers Med. Sci. 2018, 33, 1197–1205. [Google Scholar] [CrossRef]
- Lanferdini, F.J.; Bini, R.R.; Baroni, B.M.; Klein, K.D.; Carpes, F.P.; Vaz, M.A. Improvement of Performance and Reduction of Fatigue With Low-Level Laser Therapy in Competitive Cyclists. Int. J. Sports Physiol. Perform. 2018, 13, 14–22. [Google Scholar] [CrossRef]
- Dellagrana, R.A.; Rossato, M.; Sakugawa, R.L.; Baroni, B.M.; Diefenthaeler, F. Photobiomodulation Therapy on Physiological and Performance Parameters During Running Tests: Dose–Response Effects. J. Strength Cond. Res. 2018, 32, 2807–2815. [Google Scholar] [CrossRef]
- Teixeira, C.L.; Mezzaroba, P.V.; Machado, F.A. Effect of Photobiomodulation on Critical Swimming Velocity: A Randomized, Crossover, Double-Blind, and Placebo-Controlled Study. Int. J. Sports Physiol. Perform. 2021, 16, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Azuma, R.H.E.; Merlo, J.K.; Jacinto, J.L.; Borim, J.M.; da Silva, R.A.; Pacagnelli, F.L.; Nunes, J.P.; Ribeiro, A.S.; Aguiar, A.F. Photobiomodulation Therapy at 808 nm Does Not Improve Biceps Brachii Performance to Exhaustion and Delayed-Onset Muscle Soreness in Young Adult Women: A Randomized, Controlled, Crossover Trial. Front. Physiol. 2021, 12, 664582. [Google Scholar] [CrossRef] [PubMed]
- Leal-Junior, E.C.P.; Lopes-Martins, R.A.B.; Baroni, B.M.; De Marchi, T.; Rossi, R.P.; Grosselli, D.; Generosi, R.A.; de Godoi, V.; Basso, M.; Mancalossi, J.L.; et al. Comparison Between Single-Diode Low-Level Laser Therapy (LLLT) and LED Multi-Diode (Cluster) Therapy (LEDT) Applications Before High-Intensity Exercise. Photomed. Laser Surg. 2009, 27, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Leal-Junior, E.C.P.; Lopes-Martins, R.Á.B.; Baroni, B.M.; De Marchi, T.; Taufer, D.; Manfro, D.S.; Rech, M.; Danna, V.; Grosselli, D.; Generosi, R.A.; et al. Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med. Sci. 2009, 24, 857–863. [Google Scholar] [CrossRef]
- Leal, E.C.P.; Lopes-Martins, R.Á.B.; Frigo, L.; De Marchi, T.; Rossi, R.P.; De Godoi, V.; Tomazoni, S.S.; Silva, D.P.; Basso, M.; Filho, P.L.; et al. Effects of Low-Level Laser Therapy (LLLT) in the Development of Exercise-Induced Skeletal Muscle Fatigue and Changes in Biochemical Markers Related to Postexercise Recovery. J. Orthop. Sports Phys. Ther. 2010, 40, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Leal-Junior, E.C.P.; Lopes-Martins, R.Á.B.; Vanin, A.A.; Baroni, B.M.; Grosselli, D.; De Marchi, T.; Iversen, V.V.; Bjordal, J.M. Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med. Sci. 2009, 24, 425–431. [Google Scholar] [CrossRef]
- Rossato, M.; Dellagrana, R.A.; Sakugawa, R.L.; Baroni, B.M.; Diefenthaeler, F. Dose–Response Effect of Photobiomodulation Therapy on Muscle Performance and Fatigue During a Multiple-Set Knee Extension Exercise: A Randomized, Crossover, Double-Blind Placebo-Controlled Trial. Photobiomodul. Photomed. Laser Surg. 2020, 38, 758–765. [Google Scholar] [CrossRef]
- Rossato, M.; Dellagrana, R.A.; Sakugawa, R.L.; Lazzari, C.D.; Baroni, B.M.; Diefenthaeler, F. Time Response of Photobiomodulation Therapy on Muscular Fatigue in Humans. J. Strength Cond. Res. 2018, 32, 3285–3293. [Google Scholar] [CrossRef]
- Miranda, E.F.; Vanin, A.A.; Tomazoni, S.S.; Grandinetti, V.D.S.; de Paiva, P.R.V.; Machado, C.D.S.M.; Monteiro, K.K.D.S.; Casalechi, H.L.; de Tarso, P.; de Carvalho, C.; et al. Using Pre-Exercise Photobiomodulation Therapy Combining Super-Pulsed Lasers and Light-Emitting Diodes to Improve Performance in Progressive Cardiopulmonary Exercise Tests. J. Athl. Train. 2016, 51, 129–135. [Google Scholar] [CrossRef]
- Orssatto, L.B.R.; Rossato, M.; Vargas, M.; Diefenthaeler, F.; de la Rocha Freitas, C. Photobiomodulation Therapy Effects on Resistance Training Volume and Discomfort in Well-Trained Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Photobiomodul. Photomed. Laser Surg. 2020, 38, 720–726. [Google Scholar] [CrossRef]
- Dellagrana, R.A.; Rossato, M.; Orssatto, L.B.R.; Sakugawa, R.L.; Baroni, B.M.; Diefenthaeler, F. Effect of Photobiomodulation Therapy in the 1500 m Run: An Analysis of Performance and Individual Responsiveness. Photobiomodul. Photomed. Laser Surg. 2020, 38, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Higashi, R.H.; Toma, R.L.; Tucci, H.T.; Pedroni, C.R.; Ferreira, P.D.; Baldini, G.S.; Aveiro, M.C.; Borghi-Silva, A.; de Oliveira, A.S.; Renno, A.C.M. Effects of Low-Level Laser Therapy on Biceps Braquialis Muscle Fatigue in Young Women. Photomed. Laser Surg. 2013, 31, 586–594. [Google Scholar] [CrossRef] [PubMed]
- da Silva Alves, M.A.; Pinfildi, C.E.; Neto, L.N.; Lourenço, R.P.; de Azevedo, P.H.S.M.; Dourado, V.Z. Acute effects of low-level laser therapy on physiologic and electromyographic responses to the cardiopulmonary exercise testing in healthy untrained adults. Lasers Med. Sci. 2014, 29, 1945–1951. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Maciel, T.; Muñoz, I.S.S.; Nicolau, R.A.; Nogueira, D.V.; Hauck, L.A.; Osório, R.A.L.; de Paula Júnior, A.R. Phototherapy effect on the muscular activity of regular physical activity practitioners. Lasers Med. Sci. 2014, 29, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, R.A.; Pinfildi, C.E.; de Castro Pochini, A.; Cohen, M. Photobiomodulation therapy and NMES improve muscle strength and jumping performance in young volleyball athletes: A randomized controlled trial study in Brazil. Lasers Med. Sci. 2020, 35, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis, F.A.; da Silva, B.A.K.; Laraia, E.M.S.; de Melo, R.M.; Silva, P.H.; Leal-Junior, E.C.P.; de Carvalho, P.D.T.C. Effects of Pre- or Post-Exercise Low-Level Laser Therapy (830 nm) on Skeletal Muscle Fatigue and Biochemical Markers of Recovery in Humans: Double-Blind Placebo-Controlled Trial. Photomed. Laser Surg. 2014, 32, 106–112. [Google Scholar] [CrossRef]
- Lanferdini, F.J.; Krüger, R.L.; Baroni, B.M.; Lazzari, C.; Figueiredo, P.; Reischak-Oliveira, A.; Vaz, M.A. Low-level laser therapy improves the VO2 kinetics in competitive cyclists. Lasers Med. Sci. 2018, 33, 453–460. [Google Scholar] [CrossRef]
- Leal-Junior, E.C.P.; Lopes-Martins, R.Á.B.; Dalan, F.; Ferrari, M.; Sbabo, F.M.; Generosi, R.A.; Baroni, B.M.; Penna, S.C.; Iversen, V.V.; Bjordal, J.M. Effect of 655-nm Low-Level Laser Therapy on Exercise-Induced Skeletal Muscle Fatigue in Humans. Photomed. Laser Surg. 2008, 26, 419–424. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H. Effect of Low-Level Laser Therapy on Exercise-Induced Skeletal Muscle Fatigue and Exercise Performance. Acta Medica Mediterr. 2020, 36, 2019–2025. [Google Scholar] [CrossRef]
- Medeiros, D.M.; Aimi, M.; Vaz, M.A.; Baroni, B.M. Effects of low-level laser therapy on hamstring strain injury rehabilitation: A randomized controlled trial. Phys. Ther. Sport 2020, 42, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Pinto, H.D.; Casalechi, H.L.; de Marchi, T.; dos Santos Monteiro Machado, C.; Dias, L.B.; Lino, M.M.A.; de Azevedo, J.B.; Tomazoni, S.S.; Leal-Junior, E.C.P. Photobiomodulation Therapy Combined with a Static Magnetic Field Applied in Different Moments Enhances Performance and Accelerates Muscle Recovery in CrossFit® Athletes: A Randomized, Triple-Blind, Placebo-Controlled Crossover Trial. Oxidative Med. Cell. Longev. 2022, 2022, 9968428. [Google Scholar] [CrossRef] [PubMed]
- de Paiva, P.R.V.; Tomazoni, S.S.; Johnson, D.S.; Vanin, A.A.; Albuquerque-Pontes, G.M.; Machado, C.D.S.M.; Casalechi, H.L.; de Carvalho, P.D.T.C.; Leal-Junior, E.C.P. Photobiomodulation therapy (PBMT) and/or cryotherapy in skeletal muscle restitution, what is better? A randomized, double-blinded, placebo-controlled clinical trial. Lasers Med. Sci. 2016, 31, 1925–1933. [Google Scholar] [CrossRef] [PubMed]
- Vanin, A.A.; Miranda, E.F.; Machado, C.S.M.; de Paiva, P.R.V.; Albuquerque-Pontes, G.M.; Casalechi, H.L.; de Tarso Camillo de Carvalho, P.; Leal-Junior, E.C.P. What is the best moment to apply phototherapy when associated to a strength training program? A randomized, double-blinded, placebo-controlled trial. Lasers Med. Sci. 2016, 31, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- de Brito Vieira, W.H.; Bezerra, R.M.; Queiroz, R.A.S.; Maciel, N.F.B.; Parizotto, N.A.; Ferraresi, C. Use of Low-Level Laser Therapy (808 nm) to Muscle Fatigue Resistance: A Randomized Double-Blind Crossover Trial. Photomed. Laser Surg. 2014, 32, 678–685. [Google Scholar] [CrossRef]
- Florianovicz, V.C.; Ferraresi, C.; Kuriki, H.U.; Marcolino, A.M.; Barbosa, R.I. Effects of Photobiomodulation Therapy and Restriction of Wrist Extensor Blood Flow on Grip: Randomized Clinical Trial. Photobiomodul. Photomed. Laser Surg. 2020, 38, 743–749. [Google Scholar] [CrossRef]
- Baroni, B.M.; Leal-Junior, E.C.P.; De Marchi, T.; Lopes, A.L.; Salvador, M.; Vaz, M.A. Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur. J. Appl. Physiol. 2010, 110, 789–796. [Google Scholar] [CrossRef]
- de Brito Vieira, W.H.; Ferraresi, C.; de Andrade Perez, S.E.; Baldissera, V.; Parizotto, N.A. Effects of low-level laser therapy (808 nm) on isokinetic muscle performance of young women submitted to endurance training: A randomized controlled clinical trial. Lasers Med. Sci. 2012, 27, 497–504. [Google Scholar] [CrossRef]
- Baroni, B.M.; Rodrigues, R.; Freire, B.B.; Franke, R.D.A.; Geremia, J.M.; Vaz, M.A. Effect of low-level laser therapy on muscle adaptation to knee extensor eccentric training. Eur. J. Appl. Physiol. 2015, 115, 639–647. [Google Scholar] [CrossRef]
- Kakihata, C.M.M.; Malanotte, J.A.; Higa, J.Y.; Errero, T.K.; Balbo, S.L.; Bertolini, G.R.F. Influence of low-level laser therapy on vertical jump in sedentary individuals. Einstein 2015, 13, 41–46. [Google Scholar] [CrossRef]
- de Souza, C.G.; Borges, D.T.; de Brito Macedo, L.; Brasileiro, J.S. Low-level laser therapy reduces the fatigue index in the ankle plantar flexors of healthy subjects. Lasers Med. Sci. 2016, 31, 1949–1955. [Google Scholar] [CrossRef] [PubMed]
- Felismino, A.S.; Costa, E.C.; Aoki, M.S.; Ferraresi, C.; de Araújo Moura Lemos, T.M.; de Brito Vieira, W.H. Effect of low-level laser therapy (808 nm) on markers of muscle damage: A randomized double-blind placebo-controlled trial. Lasers Med. Sci. 2014, 29, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, C.G.; Dornelles, M.P.; Severo-Silveira, L.; Marques, V.B.; Rosso, I.D.A.; Baroni, B.M. Effects of low-level laser therapy applied before or after plyometric exercise on muscle damage markers: Randomized, double-blind, placebo-controlled trial. Lasers Med. Sci. 2016, 31, 1935–1942. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Wadee, A.N.; Sobhi, N.N. The Effect of Low-Level Laser Therapy on Electrically Induced Muscle Fatigue: A Pilot Study. Photomed. Laser Surg. 2008, 26, 501–506. [Google Scholar] [CrossRef]
- Rossato, M.; Dellagrana, R.A.; Lanferdini, F.J.; Sakugawa, R.L.; Lazzari, C.D.; Baroni, B.M.; Diefenthaeler, F. Effect of pre-exercise phototherapy applied with different cluster probe sizes on elbow flexor muscle fatigue. Lasers Med. Sci. 2016, 31, 1237–1244. [Google Scholar] [CrossRef]
- Craig, J.A.; Barlas, P.; Baxter, G.D.; Walsh, D.M.; Allen, J.M. Delayed-Onset Muscle Soreness: Lack of Effect of Combined Phototherapy/Low-Intensity Laser Therapy at Low Pulse Repetition Rates. J. Clin. Laser Med. Surg. 1996, 14, 375–380. [Google Scholar] [CrossRef]
- Craig, J.A.; Barron, J.; Walsh, D.M.; Baxter, G.D. Lack of effect of combined low intensity laser therapy/phototherapy (CLILT) on delayed onset muscle soreness in humans. Lasers Surg. Med. 1999, 24, 223–230. [Google Scholar] [CrossRef]
- Hainline, B.; Derman, W.; Vernec, A.; Budgett, R.; Deie, M.; Dvořák, J.; Harle, C.; Herring, S.A.; McNamee, M.; Meeuwisse, W.; et al. International Olympic Committee consensus statement on pain management in elite athletes. Br. J. Sports Med. 2017, 51, 1245–1258. [Google Scholar] [CrossRef]
- Tripodi, N.; Feehan, J.; Husaric, M.; Sidiroglou, F.; Apostolopoulos, V. The effect of low-level red and near-infrared photobiomodulation on pain and function in tendinopathy: A systematic review and meta-analysis of randomized control trials. BMC Sports Sci. Med. Rehabil. 2021, 13, 91. [Google Scholar] [CrossRef]
- Taylor, D.N.; Winfield, T.; Wynd, S. Low-Level Laser Light Therapy Dosage Variables vs Treatment Efficacy of Neuromusculoskeletal Conditions: A Scoping Review. J. Chiropr. Med. 2020, 19, 119–127. [Google Scholar] [CrossRef]
- Awotidebe, A.W.; Inglis-Jassiem, G.; Young, T. Does Low-level Laser Therapy Provide Additional Benefits to Exercise in Patients with Shoulder Musculoskeletal Disorders? A Meta-analysis of Randomised Controlled Trials. Ortop. Traumatol. Rehabil. 2019, 21, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Clijsen, R.; Brunner, A.; Barbero, M.; Clarys, P.; Taeymans, J. Effects of low-level laser therapy on pain in patients with musculoskeletal disorders: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2017, 53, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Haslerud, S.; Magnussen, L.H.; Joensen, J.; Lopes-Martins, R.A.B.; Bjordal, J.M. The Efficacy of Low-Level Laser Therapy for Shoulder Tendinopathy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Physiother. Res. Int. 2015, 20, 108–125. [Google Scholar] [CrossRef]
- Emanet, S.K.; Altan, L.İ.; Yurtkuran, M. Investigation of the Effect of GaAs Laser Therapy on Lateral Epicondylitis. Photomed. Laser Surg. 2010, 28, 397–403. [Google Scholar] [CrossRef]
- Kaydok, E. Short-Term Efficacy Comparison of High-Intensity and Low-Intensity Laser Therapy in the Treatment of Lateral Epicondylitis: A Randomized Double-Blind Clinical Study. Arch. Rheumatol. 2020, 35, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.K.Y.; Cheing, G.L.Y. Effects of 904-nm Low-Level Laser Therapy in the Management of Lateral Epicondylitis: A Randomized Controlled Trial. Photomed. Laser Surg. 2007, 25, 65–71. [Google Scholar] [CrossRef]
- Eslamian, F.; Shakouri, S.K.; Ghojazadeh, M.; Nobari, O.E.; Eftekharsadat, B. Effects of low-level laser therapy in combination with physiotherapy in the management of rotator cuff tendinitis. Lasers Med. Sci. 2012, 27, 951–958. [Google Scholar] [CrossRef]
- Bal, A.; Eksioglu, E.; Gurcay, E.; Gulec, B.; Karaahmet, O.; Cakci, A. Low-Level Laser Therapy in Subacromial Impingement Syndrome. Photomed. Laser Surg. 2009, 27, 31–36. [Google Scholar] [CrossRef]
- World Association for Photobiomodulation Therapy. WALT Recommendations—Dosage Recommendations 2010. 2010. Available online: https://waltpbm.org/documentation-links/recommendations/ (accessed on 31 July 2024).
- Bingöl, Ü.; Altan, L.; Yurtkuran, M. Low-Power Laser Treatment for Shoulder Pain. Photomed. Laser Surg. 2005, 23, 459–464. [Google Scholar] [CrossRef]
- Yeldan, I.; Cetin, E.; Razak Ozdincler, A. The effectiveness of low-level laser therapy on shoulder function in subacromial impingement syndrome. Disabil. Rehabil. 2009, 31, 935–940. [Google Scholar] [CrossRef]
- Tascioglu, F.; Degirmenci, N.A.; Ozkan, S.; Mehmetoglu, O. Low-level laser in the treatment of carpal tunnel syndrome: Clinical, electrophysiological, and ultrasonographical evaluation. Rheumatol. Int. 2012, 32, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Sommer, A.P. Mitochondrial cytochrome c oxidase is not the primary acceptor for near infrared light—It is mitochondrial bound water: The principles of low-level light therapy. Ann. Transl. Med. 2019, 7 (Suppl. 1), S13. [Google Scholar] [CrossRef] [PubMed]
- RHamblin, M. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.G.; Ribeiro, R.S.; Mencalha, A.L.; de Souza Fonseca, A. Photobiomodulation at molecular, cellular, and systemic levels. Lasers Med. Sci. 2023, 38, 136. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.M.; Darafsheh, A. Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochem. Photobiol. 2020, 96, 280–294. [Google Scholar] [CrossRef]
- Esnouf, A.; Wright, P.A.; Moore, J.C.; Ahmed, S. Depth of Penetration of an 850nm Wavelength Low Level Laser in Human Skin. Acupunct. Electro-Ther. Res. 2007, 32, 81–86. [Google Scholar] [CrossRef]
- Souza-Barros, L.; Dhaidan, G.; Maunula, M.; Solomon, V.; Gabison, S.; Lilge, L.; Nussbaum, E.L. Skin color and tissue thickness effects on transmittance, reflectance, and skin temperature when using 635 and 808 nm lasers in low intensity therapeutics. Lasers Surg. Med. 2018, 50, 291–301. [Google Scholar] [CrossRef]
- De Marchi, T.; Schmitt, V.M.; Machado, G.P.; de Sene, J.S.; de Col, C.D.; Tairova, O.; Salvador, M.; Leal-Junior, E.C.P. Does photobiomodulation therapy is better than cryotherapy in muscle recovery after a high-intensity exercise? A randomized, double-blind, placebo-controlled clinical trial. Lasers Med. Sci. 2017, 32, 429–437. [Google Scholar] [CrossRef]
- Bettleyon, J.; Kaminski, T.W. Does Low-Level Laser Therapy Decrease Muscle-Damaging Mediators After Performance in Soccer Athletes Versus Sham Laser Treatment? A Critically Appraised Topic. J. Sport Rehabil. 2020, 29, 1210–1213. [Google Scholar] [CrossRef]
- Berni, M.; Brancato, A.M.; Torriani, C.; Bina, V.; Annunziata, S.; Cornella, E.; Trucchi, M.; Jannelli, E.; Mosconi, M.; Gastaldi, G.; et al. The Role of Low-Level Laser Therapy in Bone Healing: Systematic Review. Int. J. Mol. Sci. 2023, 24, 7094. [Google Scholar] [CrossRef]
Literature Search In-Scope Criteria | Literature Search Out-of-Scope Criteria |
---|---|
|
|
Review | RCTs Evaluated | Laser Parameter Ranges | Outcome | LLLT Pre-, Post-Exertion or Both | Quality of Primary Research Evidence |
---|---|---|---|---|---|
González-Muñoz 2023 [17] |
| 810, 850, 905 nm 0.285–30 J/point; 30–60, 510, 850 J total 32–228 s 2–17, 85 exposure points | 8 of 9 favorable results | Pre-Exertion: 5 Post-Exertion: 1 Both: 2 | Low |
Oliveira 2023 [18] |
| 660, 800–980 nm 0.095–50 J/point; 10–60, 180–480 J total 16–30 s–<6.5 min 3–17, 42 exposure points | 13 of 13 favorable results | Pre-Exertion: 9 Post-Exertion: 2 Both: 2 | Low |
Dutra 2022 [28] |
| 660, 780–905 nm 0.81–60 J/point; 12–84, 100–540 J total 13–300 s 2–29 exposure points | 20 of 24 favorable results | Pre-Exertion: 20 | Low |
Luo 2022 [19] |
| 632.8, 655 810–905 nm 0.285–45 J/point; 12–60, 135–405 J total 15–600 s 2–9, 17, 42, 85 exposure points | 14 of 16 favorable results | Pre-Exertion: 12 Post-Exertion: 1 Both: 1 | Low |
De Marchi 2022 [20] |
| 810–905 nm 0.285–30 J/point; 30–68, 180, 300, 360 J total 25–228 s 6–17, 85 exposure points | 5 of 5 favorable results | Pre-Exertion: 3 Post-Exertion: 1 Both: 1 | Low |
Ailioaie 2021 [21] |
| 640, 810–905 nm 0.095–50 J/point; 10–60, 180–540 J total 16–381 s 3–9, 17, 85 exposure points | 18 of 23 favorable results | Pre-Exertion: 12 Post-Exertion: 3 Both: 3 | Low |
Alves 2019 [22] |
| 655–660, 808–950 nm 0.6–50 J/point; 1.92–60, 180–300 J total 8–300 s 2–12, 29, 30, 42 exposure points | 21 of 25 favorable results | Pre-Exertion: 16 Post-Exertion: 4 Both: 1 | Low |
Vanin 2018 [23] |
| 660, 810–905 nm 0.285–50 J/point; 4–60, 180–360 J total 10–300 s 2–17, 30, 42 exposure points | 24 of 27 favorable results | Pre-Exertion: 16 Post-Exertion: 4 Both: 4 | Low |
Ferraresi 2016 [24] |
| 660, 780, 808–950 nm 0.095–30 J/point; 4–60, 132–380 J total 10–720 s 1–7, 29, 42 exposure points | 28 of 34 favorable results | Pre-Exertion: 19 Post-Exertion: 5 Both: 4 | Low |
Nampo 2016 [25] |
| 655, 660, 808–970 nm 0.6–30 J/point, 12–60, 180, 360 J total 20–240 s 2–12, 42 exposure points | 12 of 13 favorable results | Pre-Exertion: 11 Both: 1 | Low |
Borsa 2013 [26] |
| 655, 810, 830 nm 3–40 J/point; 20–60 J total 30–100 s 2–5 exposure points | 5 of 6 favorable results | Pre-Exertion: 5 | Low |
Leal Junior 2013 [27] |
| 655/660, 808/810, 830 nm 0.6–30 J/point, 12–60, 360 J total 30–600 s 2–12, 42 exposure points | 8 of 10 favorable results | Pre-Exertion: 7 Post-Exertion: 1 | Low |
Review | RCTs Evaluated | Participant Injury | Laser Parameters | Outcome | Quality of Primary Research Evidence |
---|---|---|---|---|---|
Tripodi 2021 [93] |
|
| 830, 904/905 nm 1–4 J/cm2 11–30 or 120 s | 2 of 5 favorable results | Low |
Taylor 2020 [94] |
|
| 830, 904/905 nm 2–4 J/cm2 11, 20, 90, 120 s | 1 of 4 favorable results | Low |
Awotidebe 2020 [95] |
|
| 830, 904 nm 1.6–4 J/cm2 20, 60, 90, 120 s | 1 of 4 favorable results | Low |
Clijsen 2017 [96] |
|
| 830, 905 nm 1 J/cm2 1 or 2 min | 0 of 2 favorable results | Low |
Haslerud 2015 [97] |
|
| 830, 904 nm 2–4 J/cm2 20, 60, 90, 120 s | 1 of 4 favorable results | Low |
Parameter | Low-Level Laser Therapy (LLLT) | Light Emitting Diode (LED) |
---|---|---|
Light Source | Light Amplification by Stimulated Emission of Radiation (LASER). Uses a gas or crystal medium to produce light; electricity passes through the medium causing electrons to emit photons that are amplified Laser diode: LASER; Class of lasers that generate laser radiation through a semiconductor; stimulated emission | LED from spontaneous emission. Use semiconductor materials and much simpler p-n junctions than laser diodes, to produce non-coherent (less directional), broad spectrum light; the process is called electroluminescence |
Classification | Class IIIb: treatment of musculoskeletal conditions (e.g., sport performance, acute and chronic inflammatory conditions), would healing Class IV: similar to Class IIIb above but also deep tissue repair and rehabilitation | N/A |
Emitted Light | Monochromatic | Broad spectral width (~5% of central wavelength) [110] |
Coherency | Coherent light | Non-coherent light |
Wavelength | 632.8–660 & 808–980 nm *,† | 630–980 nm [24,26] |
Depth of Penetration | Both superficial and deeper structures; suggested to penetrate ≤50 mm [111] | Superficial; 2–10 mm [11] |
Energy Density | 3–500 & 1071.43–1785 J/cm2 *,† | 1.5–8 J/cm2 [24,26] |
Exposure Time | 8–720 s *,† | 30–360 s [24,26] |
Power Output | Class IIIb: 5–500 mW; Class IV: >500 mW | 10–300 mW [24,26] |
Skin Application | Direct contact or non-contact protocol for wounds | Direct contact or non-contact protocol for wounds |
Other features | Wavelength specificity, in-clinic/professional treatments, targets treatment to damaged tissue | Lower cost device, possible at-home administration, may expose larger areas to treatment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawrence, J.; Sorra, K. Photobiomodulation as Medicine: Low-Level Laser Therapy (LLLT) for Acute Tissue Injury or Sport Performance Recovery. J. Funct. Morphol. Kinesiol. 2024, 9, 181. https://doi.org/10.3390/jfmk9040181
Lawrence J, Sorra K. Photobiomodulation as Medicine: Low-Level Laser Therapy (LLLT) for Acute Tissue Injury or Sport Performance Recovery. Journal of Functional Morphology and Kinesiology. 2024; 9(4):181. https://doi.org/10.3390/jfmk9040181
Chicago/Turabian StyleLawrence, Julia, and Karin Sorra. 2024. "Photobiomodulation as Medicine: Low-Level Laser Therapy (LLLT) for Acute Tissue Injury or Sport Performance Recovery" Journal of Functional Morphology and Kinesiology 9, no. 4: 181. https://doi.org/10.3390/jfmk9040181
APA StyleLawrence, J., & Sorra, K. (2024). Photobiomodulation as Medicine: Low-Level Laser Therapy (LLLT) for Acute Tissue Injury or Sport Performance Recovery. Journal of Functional Morphology and Kinesiology, 9(4), 181. https://doi.org/10.3390/jfmk9040181