Whole Body Substrate Metabolism during Different Exercise Intensities with Special Emphasis on Blood Protein Changes in Trained Subjects—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Exercise Protocol
2.3. Measurements
2.4. Statistic Analysis
3. Results
3.1. Cardio-Respiratory Changes
3.2. Energy Expenditure (EE in kcal)
3.3. Changes in CHO Metabolites
3.3.1. Lactate
3.3.2. Glucose
3.3.3. Carbohydrate (CHO) Oxidation
3.4. Changes in Fat Metabolism
3.4.1. FFA
3.4.2. Glycerol
3.4.3. Fat Oxidation
3.5. Changes in Blood Protein Sources
3.5.1. Blood Urea Nitrogen (BUN)
3.5.2. Plasma Amino Acids (AAs)
3.5.3. BCAAs (Branched Chain Amino Acids)
4. Discussion
4.1. Maximal Incremental Intensity (IE100: At 100%VO2max)
4.2. Submaximal Continuous Exercise Intensity (CE75: At 75%VO2max), 30 min
4.3. Moderate Prolonged Continuous Exercise Intensity (CE50: 50%VO2max), 90 min
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alghannam, A.F.; Ghaith, M.M.; Alhussain, M.H. Regulation of Energy Substrate Metabolism in Endurance Exercise. Int. J. Environ. Res. Public Health 2021, 18, 4963. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.F. Physical activity as a metabolic stressor. Am. J. Clin. Nutr. 2000, 72, 512–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, S.L.; Rennie, C.; Tarnopolsky, M.A. Substrate utilization during endurance exercise in men and women after endurance training. Am. J. Physiol. 2001, 280, 898–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spriet, L.L. Regulation of skeletal muscle fat oxidation during exercise in humans. Med. Sci. Sports Exerc. 2002, 34, 1477–1484. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E.; Aldred, S. Fat supplementation, health, and endurance performance. Nutrition 2004, 20, 678–688. [Google Scholar] [CrossRef]
- Lee, E.; Fragala, M.S.; Kavouras, S.A.; Queen, R.M.; Pryor, J.L.; Casa, D. Biomarkers in sports and exercise: Tracking health, performance, and recovery in athletes. J. Strength Cond. Res. 2017, 31, 2920–2937. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Chen, Y.; Yang, F.; Jensen, J.; Gao, R.; Yi, L.; Qiu, J. Effects of carbohydrate and protein supplement strategies on endurance capacity and muscle damage of endurance runners: A double blind, controlled crossover trial. J. Int. Soc. Sports Nutr. 2022, 19, 623–637. [Google Scholar] [CrossRef]
- Martin-Rincon, M.; Pérez-López, A.; Morales-Alamo, D.; Perez-Suarez, I.; de Pablos-Velasco, P.; Perez-Valera, M.; Perez-Regalado, S.; Martinez-Canton, M.; Gelabert-Rebato, M.; Juan-Habib, J.W.; et al. Exercise Mitigates the Loss of Muscle Mass by Attenuating the Activation of Autophagy during Severe Energy Deficit. Nutrients 2019, 19, 2824. [Google Scholar] [CrossRef] [Green Version]
- Lemon, P.W.; Deutsch, D.T.; Payne, W.R. Urea production during prolonged swimming. J. Sports Sci. 1989, 7, 241–246. [Google Scholar] [CrossRef]
- Dohm, G.L.; Williams, R.T.; Kasperek, G.J.; van Rij, A.M. Increased excretion of urea and N tau- methistidine by rats and humans after a bout of exercise. J. Appl. Physiol. 1982, 52, 27–33. [Google Scholar] [CrossRef]
- Butterfield, G.E. Whole body protein utilization in humans. Med. Sci. Sports Exerc. 1987, 19, 157–165. [Google Scholar] [CrossRef]
- Wolfe, R.R.; Wolfe, M.H.; Nadel, E.R.; Shaw, J.H.F. Isotopic determinations of amino acid–urea interactions in exercise. J. Appl. Physiol. 1984, 56, 221–229. [Google Scholar] [CrossRef]
- Pitkanen, H.T.; Nykanen, T.; Knuutinen, J.; Lahti, K.; Keinanen, O.; Alen, M.; Komi, P.V.; Mero, A.A. Free amino acid pool and muscle protein balance after resistance exercise. Med. Sci. Sports Exerc. 2003, 35, 784–792. [Google Scholar] [CrossRef]
- Huo, F.; Thomsen, M.; Ruell, P. Changes in Serum amino acid Concentrations during prolonged Endurance Running. Jpn. J. Physiol. 1993, 43, 797–807. [Google Scholar]
- Kato, H.; Suzuki, K.; Bannai, M.; Moore, D.R. Protein requirements are elevated in endurance athletes after exercise as determined by the indicator amino acid oxidation method. PLoS ONE 2016, 11, e0157406. [Google Scholar] [CrossRef] [Green Version]
- Ahlborg, G.; Felig, P.; Hagenfeldt, L.; Hendler, R.; Wahren, J. Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J. Clin. Investig. 1974, 53, 1080–1090. [Google Scholar] [CrossRef]
- Brooks, G.A.; Mercier, J. Balance of carbohydrate and lipid utilization during exercise: “crossover” concept. J. Appl. Physiol. 1994, 76, 2253–22261. [Google Scholar] [CrossRef] [Green Version]
- Melzer, K. Carbohydrate and fat utilization during rest and physical exercise activity. e-SPEN Eur. e-J. Clin. Nutr. Metab. 2011, 6, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Knuiman, P.; Hopman, M.T.; Verbruggen, C.; Mensink, M. Protein and the adaptive response with endurance training: Wishful thinking or competitive edge? Front. Physiol. 2018, 9, 598. [Google Scholar] [CrossRef] [Green Version]
- Kainulainen, H.J.; Hulmi, J.J.; Kujala, U.M. Potential role of branched-chain amino acid catabolism in regulating fat oxidation. Exerc. Sport Sci. Rev. 2013, 41, 194–200. [Google Scholar] [CrossRef]
- Gawedzka, A.; Grandys, M.; Duda, K.; Zapart-Bukowska, J.; Zoladz, J.A.; Majerczak, J. Plasma BCAA concentrations during exercise of varied intensities in young healthy men-the impact of endurance training. PeerJ 2020, 21, e10491. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Péronnet, F.; Massicotte, D. Table of non-protein respiratory quotient: An update. Can. J. Sport Sci. 1991, 16, 23–29. [Google Scholar] [PubMed]
- Binder, R.K.; Wonisch, M.; Corra, U.; Cohen-Solal, A.; Vanhees, L.; Saner, H.; Schmid, J.P. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 726–734. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.J. The roles of ionic processes in muscular fatigue during intense exercise. Sports Med. 1992, 13, 134–145. [Google Scholar] [CrossRef]
- Makhro, A.; Haider, T.; Wang, J.; Bogdanov, N.; Steffen, P.; Wagner, C.; Meyer, T.; Gassmann, M.; Hecksteden, A.; Kaestner, L.; et al. Comparing the impact of an acute exercise bout on plasma amino acid composition, intraerythrocytic Ca(2+) handling, and red cell function in athletes and untrained subjects. Cell Calcium 2016, 60, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Abu Moh’d, M.F.; Matalqah, L.; Al-Abdulla, Z.J. Effects of Oral Branched-Chain AminoAcids (BCAAs) Intake on Muscular and Central Fatigue During an Incremental Exercise. Hum. Kinet. 2020, 72, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Boyed, A.E.; Gamber, S.R.; Mager, M.; Lebovitz, H.E. Lactate inhibition of lipolysis in exercising man. Metabolism 1974, 23, 53–62. [Google Scholar] [CrossRef]
- Romijn, J.A.; Coyle, E.F.; Sidossis, L.S.; Zhang, X.L.; Wolfe, R.R. Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J. Appl. Physiol. 1995, 79, 1939–1945. [Google Scholar] [CrossRef]
- Lin, E.C. Glycerol utilization and its regulation in mammals. Ann. Rev. Biochem. 1975, 46, 765–795. [Google Scholar] [CrossRef]
- Polak, J.; Bajzova, M.; Stich, V. Effect of exercise on lipolysis in adipose tissue. Future Lipidol. 2008, 3, 557–572. [Google Scholar]
- Tschakert, G.; Handl, T.; Weiner, L.; Birnbaumer, P.; Mueller, A.; Groeschl, W.; Hofmann, P. Exercise duration: Independent effects on acute physiologic responses and the need for an individualized prescription. Physiol. Rep. 2022, 10, e15168. [Google Scholar] [CrossRef]
- Moser, O.; Tschakert, G.; Mueller, A.; Groeschl, W.; Pieber, T.R.; Obermayer-Pietsch, B.; Koehler, G.; Hofmann, P. Effects of High-Intensity Interval Exercise versus Moderate Continuous Exercise on Glucose Homeostasis and Hormone Response in Patients with Type 1 Diabetes Mellitus Using Novel Ultra-Long-Acting Insulin. PLoS ONE 2015, 10, e0136489. [Google Scholar] [CrossRef]
- Lemon, P.W. Effects of exercise on protein and amino acid metabolism. Med. Sci. Sports Exerc. 1981, 13, 141–149. [Google Scholar] [CrossRef]
- Camacho, R.C.; Galassetti, P.; Davis, S.N.; Wasserman, D.H. Glucoregulation during and after exercise in health and insulin-dependent diabetes. Exerc. Sport. Sci. Rev. 2005, 33, 17–23. [Google Scholar]
- Brooks, G.A. Amino acid and protein metabolism during exercise and recovery. Med. Sci. Sports Exerc. 1987, 19, 150–156. [Google Scholar] [CrossRef]
- De Feo, P.; Di Loreto, C.; Lucidi, P.; Murdolo, G.; Parlanti, N.; De Cicco, A.; Piccioni, F.; Santeusanio, F. Metabolic response to exercise. J. Endocrinol. Investig. 2003, 26, 851–854. [Google Scholar] [CrossRef]
Maximal Load (100% VO2max) | Submaximal (75% VO2max) | Moderate (50% VO2max) | ||||
---|---|---|---|---|---|---|
Rest (0) | 15 min | Rest (0) | 30 min | Rest (0) | 90 min | |
VO2max (L/min) | 0.3 ± 0.1 | 4.8 ± 0.4 * | 0.3 ± 0.01 | 3.7 ± 0.03 * | 0.3 ± 0.0 | 2.3 ± 0.3 |
HR (b/min) | 71.2 ± 4.5 | 190.7 ± 4.1 * | 69.3 ± 5.4 | 182.3 ± 3.5 * | 68.2 ± 5.3 | 132.5 ± 5.3 * |
RER (--) | 0.99 ± 0.1 | 1.20 ± 0.0 | 0.94 ± 0.02 | 0.98 ± 0.01 | 0.88 ± 0.0 | 0.89 ± 0.03 |
Lactate (mmol/L) | 1.0 ± 0.2 | 10.3 ± 1.1 * | 0.8 ± 0.1 | 6.8 ± 1.3 * | 0.8 ± 0.1 | 0.8 ± 0.20 |
CHO-Oxo (g/min) | 0.35 ± 0.14 | 12.38 ± 4.33 * | 0.37 ± 0.11 | 4.67 ± 0.93 * | 0.24 ± 0.18 | 1.68 ± 0.42 * |
Fat-Oxo (g/min) | 0.04 ± 0.09 | −1.43 ± 0.50 * | 0.12 ± 0.19 | 0.09 ± 0.24 | 0.06 ± 0.07 | 0.40 ± 0.29 * |
Intensity and Duration | Basal Rest | End of Exercise | Recovery (1 h) | |
---|---|---|---|---|
Glucose (mg/dL) | Max-incremental (15 min) | 110.0 ± 6.8 | 103.3 ± 6.8 * | 112.3 ± 12.7 |
Submaximal (30 min) | 100.5 ± 8.2 | 99.5 ± 9.7 | 96.3 ± 8.6 | |
Moderate (90 min) | 91.3 ± 6.1 | 81.3 ± 2.2 * | 88.7 ± 3.1 | |
FFA (µmol/L) | Max-incremental (15 min) | 0.3 ± 0.0 | 0.3 ± 0.1 | 0.5 ± 0.3 |
Submaximal (30 min) | 0.3 ± 0.2 | 0.4 ± 0.1 | 0.4 ± 0.2 | |
Moderate (90 min) | 0.3 ± 0.1 | 1.1 ± 0.1 * | 0.8 ± 0.1 * | |
Glycerol (µmol/L) | Max-incremental (15 min) | 0.06 ± 0.01 | 0.07 ± 0.01 | 0.08 ± 0.02 |
Submaximal (30 min) | 0.06 ± 0.01 | 0.17 ± 0.04 * | 0.07 ± 0.01 | |
Moderate (90 min) | 0.05 ± 0.01 | 0.30 ± 0.04 * | 0.12 ± 0.02 * | |
Urea (mg/dL) | Max-incremental (15 min) | 31 ± 20 | 31 ± 4 | 33 ± 3 |
Submaximal (30 min) | 33 ± 40 | 33 ± 3 | 34 ± 3 | |
Moderate (90 min) | 33 ± 40 | 37 ± 4 * | 37 ± 3 * | |
TP (mg/dL) | Max-incremental (15 min) | 6.67 ± 0.07 | 7.30 ± 0.16 * | 6.75 ± 0.06 * |
Submaximal (30 min) | 6.71 ± 0.09 | 7.13 ± 0.06 * | 6.77± 0.10 | |
Moderate (90 min) | 6.69 ± 0.04 | 7.03 ± 0.09 * | 6.78 ± 0.03 | |
%PV Change (%) | Max-incremental (15 min) | - | −9.49 ± 1.96 | −1.29 ± 1.14 |
Submaximal (30 min) | - | −6.28 ± 1.35 | −0.88 ± 1.15 | |
Moderate (90 min) | - | −5.10 ± 1.01 | −1.87± 0.79 |
Maximal (100% VO2max) Duration (X ± SE) = 15 min | Submaximal (75% VO2max) Duration (X ± SE) = 30 min | Moderate (50% VO2max) Duration (X ± SE) = 90 min | |||||||
---|---|---|---|---|---|---|---|---|---|
(µmol/L) | Rest | 15 min | PE-1 h | Rest | 30 min | PE-1 h | Rest | 90 min | PE-1 h |
Val | 214 ± 13 | 225 ± 13 | 228 ± 23 | 233 ± 24 | 229 ± 15 | 247 ± 18 | 228 ± 21 | 221 ± 24 | 211 ± 23 |
Leu | 125 ± 8 | 137 ± 11 | 130 ± 18 | 123 ± 27 | 120 ± 20 | 125 ± 10 | 123 ± 13 | 133 ± 17 | 126 ± 15 |
Ile | 65 ± 5 | 72 ± 6 | 76 ± 10 | 85 ± 14 | 83 ± 6 | 89 ± 8 | 76 ± 10 | 74 ± 11 | 72 ± 11 |
Gln | 505 ± 29 | 563 ± 32 * | 529 ± 23 | 502 ± 26 | 527 ± 25 | 490 ± 36 | 493 ± 43 | 482 ± 46 | 455 ± 42 |
Ala | 373 ± 67 | 471 ± 91 * | 428 ± 76 | 455 ± 36 | 568 ± 84 * | 427 ± 59 | 421 ± 33 | 366 ± 55 | 303 ± 44 |
Pala | 61 ± 9 | 61 ± 8 | 56 ± 6 | 56 ± 4 | 59 ± 4 | 60 ± 3 | 56 ± 4 | 55 ± 3 | 49 ± 3 |
Tyr | 64 ± 9 | 66 ± 8 | 60 ± 5 | 64 ± 5 | 67 ± 4 | 70 ± 3 | 63 ± 5 | 66 ± 6 | 59 ± 4 |
Met | 28 ± 5 | 29 ± 7 | 26 ± 5 | 27 ± 3 | 27 ± 5 | 27 ± 8 | 24 ± 4 | 23 ± 3 | 22 ± 2 |
Orn | 56 ± 6 | 56 ± 3 | 51 ± 4 | 60 ± 3 | 53 ± 1 | 61 ± 3 | 56 ± 6 | 52 ± 3 | 50 ± 4 |
Cit | 38 ± 6 | 43 ± 7 * | 39 ± 7 | 33 ± 4 | 35 ± 3 | 36 ± 5 | 28 ± 3 | 37 ± 5 * | 28 ± 3 |
Asp | 12 ± 1 | 16 ± 1 | 14 ± 1 | 13 ± 1 | 15 ± 1 | 14 ± 1 | 13 ± 1 | 13 ± 2 | 11 ± 1 |
Arg | 92 ± 9 | 106 ± 11 * | 91 ± 8 | 72 ± 12 | 93 ± 7 | 101 ± 8 | 85 ± 15 | 70 ± 12 | 78 ± 10 |
3-MH | 4 ± 1 | 5 ± 1 | 4 ± 1 | 5 ± 0 | 6 ± 0 | 6 ± 1 | 5 ± 1 | 6 ± 1 | 5 ± 1 |
Trp | 52 ± 6 | 44 ± 5 * | 49 ± 5 | 53 ± 5 | 50 ± 5 | 56 ± 3 | 48 ± 3 | 44 ± 4 | 44 ± 2 |
TSFAA $ | 1689 | 1894 | 1781 | 1781 | 1932 | 1836 | 1639 | 1642 | 1513 |
BCAA and | 405 ± 29 | 432 ± 30 | 434 ± 52 | 441 ± 65 | 432 ± 41 | 461 ± 36 | 427 ± 39 | 428 ± 52 | 409 ± 49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mekonen, W.; Schwaberger, G.; Lamprecht, M.; Hofmann, P. Whole Body Substrate Metabolism during Different Exercise Intensities with Special Emphasis on Blood Protein Changes in Trained Subjects—A Pilot Study. J. Funct. Morphol. Kinesiol. 2023, 8, 102. https://doi.org/10.3390/jfmk8030102
Mekonen W, Schwaberger G, Lamprecht M, Hofmann P. Whole Body Substrate Metabolism during Different Exercise Intensities with Special Emphasis on Blood Protein Changes in Trained Subjects—A Pilot Study. Journal of Functional Morphology and Kinesiology. 2023; 8(3):102. https://doi.org/10.3390/jfmk8030102
Chicago/Turabian StyleMekonen, Wondyefraw, Günther Schwaberger, Manfred Lamprecht, and Peter Hofmann. 2023. "Whole Body Substrate Metabolism during Different Exercise Intensities with Special Emphasis on Blood Protein Changes in Trained Subjects—A Pilot Study" Journal of Functional Morphology and Kinesiology 8, no. 3: 102. https://doi.org/10.3390/jfmk8030102
APA StyleMekonen, W., Schwaberger, G., Lamprecht, M., & Hofmann, P. (2023). Whole Body Substrate Metabolism during Different Exercise Intensities with Special Emphasis on Blood Protein Changes in Trained Subjects—A Pilot Study. Journal of Functional Morphology and Kinesiology, 8(3), 102. https://doi.org/10.3390/jfmk8030102