Effectiveness of Focal Muscle Vibration in the Recovery of Neuromotor Hypofunction: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Selection Criteria
2.3. Study Eligibility
2.4. Assessment of Methodological Quality
2.5. Assessment of Methodological Quality
3. Results and Discussion
3.1. Bias
3.2. Discussion
3.2.1. Stimulatory Features and Pattern
3.2.2. Relevance of Proprioceptive Activation
3.2.3. Suggested Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brinlee, A.W.; Dickenson, S.B.; Hunter-Giordano, A.; Snyder-Mackler, L. ACL Reconstruction Rehabilitation: Clinical Data, Biologic Healing, and Criterion-Based Milestones to Inform a Return-to-Sport Guideline. Sports Health 2022, 14, 770–779. [Google Scholar] [CrossRef]
- Kirsch, J.M.; Namdari, S. Rehabilitation After Anatomic and Reverse Total Shoulder Arthroplasty: A Critical Analysis Review. JBJS Rev. 2020, 8, e0129. [Google Scholar] [CrossRef] [PubMed]
- Aman, J.E.; Elangovan, N.; Yeh, I.L.; Konczak, J. The effectiveness of proprioceptive training for improving motor function: A systematic review. Front. Hum. Neurosci. 2015, 8, 1075. [Google Scholar] [CrossRef] [PubMed]
- Souron, R.; Besson, T.; Millet, G.Y.; Lapole, T. Acute and chronic neuromuscular adaptations to local vibration training. Eur. J. Appl. Physiol. 2017, 117, 1939–1964. [Google Scholar] [CrossRef] [PubMed]
- Alghadir, A.H.; Answer, S.; Zafar, H.; Iqbal, Z.A. Effect of localised vibration on muscle strength in healthy adults: A systematic review. Physiotherapy 2018, 104, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Fattorini, L.; Rodio, A.; Pettorossi, V.E.; Filippi, G.M. Is the Focal Muscle Vibration an Effective Motor Conditioning Intervention? A Systematic Review. J. Funct. Morphol. Kinesiol. 2021, 28, 39. [Google Scholar] [CrossRef]
- Dietz, V. Proprioception and locomotor disorders. Nat. Rev. Neurosci. 2002, 3, 781–871. [Google Scholar] [CrossRef] [PubMed]
- Gentilucci, M.; Toni, I.; Chieffi, S.; Pavesi, G. The role of proprioception in the control of prehension movements: A kinematic study in a peripherally deafferented patient and in normal subjects. Exp. Brain Res. 1994, 99, 483–500. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.; Ghilardi, M.; Ghez, C. Impairments of reaching movements inpatients without proprioception. I. Spatial errors. J. Neurophysiol. 1995, 73, 347–407. [Google Scholar] [CrossRef]
- Filippi, G.M.; Rodio, A.; Fattorini, L.; Faralli, M.; Ricci, H.; Pettorossi, V.E. Plastic changes induced by muscle focal vibration: A possible mechanism for long-term motor improvements. Front. Neurosci. 2023, 22, 1112232. [Google Scholar] [CrossRef]
- Beste, C.; Dinse, H.R. Learning without Training. Cur. Biol. 2013, 23, R489–R499. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.; Hagbarth, K.E.; Löfstedt, L.; Wallin, B.G. The responses of human muscle spindle endings to vibration during isometric contraction. J. Physiol. 1976, 261, 695–711. [Google Scholar] [CrossRef] [PubMed]
- Roll, J.P.; Vedel, J.P. Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp. Brain. Res. 1982, 47, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Low, B.; Coutinho, D.; Gonçalves, B.; Rein, R.; Memmert, D.; Sampaio, J.A. Systematic Review of Collective Tactical Behaviours in Football Using Positional Data. Sports Med. 2020, 50, 343–385. [Google Scholar] [CrossRef]
- Brunetti, O.; Filippi, G.M.; Lorenzini, M.; Liti, A.; Panichi, R.; Roscini, M.; Pettorossi, V.E.; Cerulli, G. Improvement of posture stability by vibratory stimulation following anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 1180–1187. [Google Scholar] [CrossRef]
- Pietrangelo, T.; Mancinelli, R.; Toniolo, L.; Cancellara, L.; Paoli, A.; Puglielli, C.; Iodice, P.; Doria, C.; Bosco, G.; D’Amelio, L.; et al. Effects of local vibrations on skeletal muscle trophism in elderly people: Mechanical, cellular, and molecular events. Int. J. Mol. Med. 2009, 24, 503–512. [Google Scholar] [CrossRef]
- Celletti, C.; Castori, M.; Galli, M.; Rigoldi, C.; Grammatico, P.; Albertini, G.; Camerota, F. Evaluation of balance and improvement of proprioception by repetitive muscle vibration in a 15-year-old girl with joint hypermobility syndrome. Arthritis Care Res. 2011, 63, 775–779. [Google Scholar] [CrossRef]
- Zhao, X.; Fan, X.; Song, X.; Shi, L. Daily muscle vibration amelioration of immobilization. J. Electromyogr. Kinesiol. 2011, 21, 1017–1022. [Google Scholar] [CrossRef]
- Celletti, C.; Fattorini, L.; Camerota, F.; Ricciardi, D.; La Torre, G.; Landi, F.; Filippi, G.M. Focal muscle vibration as a possible intervention to prevent falls in elderly women: A pragmatic randomized controlled trial. Aging Clin. Exp. Res. 2015, 27, 857–863. [Google Scholar] [CrossRef]
- Paoloni, M.; Mangone, M.; Scettri, P.; Procaccianti, R.; Cometa, A.; Santilli, V. Segmental muscle vibration improves walking in chronic stroke patients with foot drop: A randomized controlled trial. Neurorehabil. Neural Repair. 2015, 24, 254–262. [Google Scholar] [CrossRef]
- Tankisheva, E.; Bogaerts, A.; Boonen, S.; Delecluse, C.; Jansen, P.; Verschueren, S.M. Effects of a 6-month local vibration training on bone density, muscle strength, muscle mass and physical performance in postmenopausal women. J. Strength Cond. Res. 2015, 29, 2613–2622. [Google Scholar] [CrossRef] [PubMed]
- Ribot-Ciscar, E.; Milhe-De Bovis, V.; Aimonetti, J.M.; Lapeyssonnie, B.; Campana-Salort, E.; Pouget, J.; Attarian, S. Functional impact of vibratory proprioceptive assistance in patients with facioscapulohumeral muscular dystrophy. Muscle Nerve 2015, 52, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Rabini, A.; de Sire, A.; Marzetti, E.; Gimigliano, R.; Ferriero, G.; Piazzini, D.B.; Iolascon, G.; Gimigliano, F. Effects of focal muscle vibration on physical functioning in patients with knee osteoarthritis: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2015, 51, 513–520. [Google Scholar] [PubMed]
- Pazzaglia, C.; Camerota, F.; Germanotta, M.; Di Sipio, E.; Celletti, C.; Padua, L. Efficacy of focal mechanic vibration treatment on balance in Charcot-Marie-Tooth 1A disease: A pilot study. J. Neurol. 2016, 263, 1434–1441. [Google Scholar] [CrossRef]
- Celletti, C.; Fara, M.A.; Filippi, G.M.; La Torre, G.; Tozzi, R.; Vanacore, N.; Camerota, F. Focal muscle vibration and physical exercise in post mastectomy recovery: An explorative study. Biomed. Res. Int. 2017, 2017, 7302892. [Google Scholar] [CrossRef]
- Saggini, R.; Ancona, E.; Carmignano, S.M.; Supplizi, M.; Barassi, G.; Bellomo, R.G. Effect of combined treatment with focused mechano-acoustic vibration and pharmacological therapy on bone mineral density and muscle strength in post-menopausal women. Clin. Cases Miner. Bone Metab. 2017, 14, 305–311. [Google Scholar] [CrossRef]
- Benedetti, M.G.; Boccia, G.; Cavazzuti, L.; Magnani, E.; Mariani, E.; Rainoldi, A.; Casale, R. Localized muscle vibration reverses quadriceps muscle hypotrophy and improves physical function: A clinical and electrophysiological study. Int. J. Rehabil. Res. 2017, 40, 339–346. [Google Scholar] [CrossRef]
- Souron, R.; Besson, T.; Lapole, T.; Millet, G.Y. Neural adaptations in quadriceps muscle after 4 weeks of local vibration training in young versus old subjects. Appl. Physiol. Nutr. Metab. 2018, 43, 427–436. [Google Scholar] [CrossRef]
- Attanasio, G.; Camerota, F.; Ralli, M.; Galeoto, G.; La Torre, G.; Galli, M.; de Vincentiis, M.; Greco, A.; Celletti, C. Does focal mechanical stimulation of the lower limb muscles improve postural control and sit to stand movement in elderly? Aging Clin. Exp. Res. 2018, 30, 1161–1166. [Google Scholar] [CrossRef]
- Iodice, P.; Ripari, P.; Pezzulo, G. Local high frequency vibration therapy following eccentric exercises reduces muscle soreness perception and posture alterations in elite athletes. Eur. J. Appl. Physiol. 2019, 119, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Rippetoe, J.; Wang, H.; James, S.A.; Dionne, C.; Block, B.; Beckner, M. Improvement of Gait after 4 Weeks of Wearable Focal Muscle Vibration Therapy for Individuals with Diabetic Peripheral Neuropathy. J. Clin. Med. 2020, 22, 3767. [Google Scholar] [CrossRef] [PubMed]
- Coulondre, C.; Souron, R.; Rambaud, A.; Dalmais, E.; Espeit, L.; Neri, T.; Pinaroli, A.; Estour, Y.; Millet, G.Y.; Rupp, T.; et al. Local vibration training improves the recovery of quadriceps strength in early rehabilitation after anterior cruciate ligament reconstruction: A feasibility randomised controlled trial. Ann. Phys. Rehabil. Med. 2022, 65, 101441. [Google Scholar] [CrossRef] [PubMed]
- Filippi, G.M.; Brunetti, O.; Botti, F.M.; Panichi, R.; Roscini, M.; Camerota, F.; Cesari, M.; Pettorossi, V.E. Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2009, 90, 2019–2025. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, O.; Botti, F.M.; Roscini, M.; Brunetti, A.; Panichi, R.; Filippi, G.M.; Biscarini, A.; Pettorossi, V.E. Focal vibration of quadriceps muscle enhances leg power and decreases knee joint laxity in female volleyball players. J. Sports Med. Phys. Fit. 2012, 52, 596–605. [Google Scholar]
- Brunetti, O.; Botti, F.M.; Brunetti, A.; Biscarini, A.; Scarponi, A.M.; Filippi, G.M.; Pettorossi, V.E. Effects of focal vibration on bone mineral density and motor performance of postmenopausal osteoporotic women. J. Sports Med. Phys. Fit. 2015, 55, 118–127. [Google Scholar]
- Bakhtiary, A.H.; Fatemi, E.; Khalili, M.A.; Ghorbani, R. Localised application of vibration improves passive knee extension in women with apparent reduced hamstring extensibility: A randomised trial. J. Physiother. 2011, 57, 165–171. [Google Scholar] [CrossRef]
- Russo, E.F.; Rocco, S.; Calabrò, R.S.; Sale, P.; Vergura, F.; De Cola, M.C.; Militi, A.; Bramanti, P.; Portaro, S.; Filoni, S. Can muscle vibration be the future in the treatment of cerebral palsy-related drooling? A feasibility study. Int. J. Med. Sci. 2019, 16, 1447–1452. [Google Scholar] [CrossRef]
- Kerkhoff, G. Modulation and rehabilitation of spatial neglect by sensory stimulation. Prog. Brain Res. 2003, 142, 257–314. [Google Scholar]
- Matthwes, P.B.C. Mammalian Muscle Receptors and Their Central Actions; Edward Arnold: London, UK, 1972. [Google Scholar]
- Fattorini, L.; Tirabasso, A.; Lunghi, A.; Di Giovanni, R.; Sacco, F.; Marchetti, E. Muscular synchronization and hand-arm fatigue. Int. J. Ind. Ergon. 2017, 62, 13–16. [Google Scholar] [CrossRef]
- Bianconi, R.; van der Meulen, J.J. The response to vibration of the end organs of mammalian muscle spindles. J. Neurophysiol. 1963, 26, 177–190. [Google Scholar] [CrossRef]
- Matthews, P.B. Proprioceptors and their contribution to somatosensory mapping: Complex messages require complex processing. Can. J. Physiol. Pharmacol. 1988, 66, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, K.; Rothwell, J.C. The effect of sensory input and attention on the sensorimotor organization of the hand area of the human motor cortex. J. Physiol. 2004, 561, 307–320. [Google Scholar] [CrossRef]
- Hummel, F.C.; Cohen, L.G. Drivers of brain plasticity. Curr. Opin. Neurol. 2005, 18, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Marconi, B.; Filippi, G.M.; Koch, G.; Pecchioli, C.; Salerno, S.; Don, R.; Camerota, F.; Saraceni, V.M.; Caltagirone, C. Long-term effects on motor cortical excitability induced by repeated muscle vibration during contraction in healthy subjects. J. Neurol. Sci. 2008, 275, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, K.; Rothwell, J.C. Modulation of proprioceptive integration in the motor cortex shapes human motor learning. J. Neurosci. 2012, 32, 9000–9006. [Google Scholar] [CrossRef]
- Pettorossi, V.E.; Schieppati, M. Neck proprioception shapes body orientation and perception of motion. Front. Hum. Neurosci. 2014, 8, 895. [Google Scholar] [CrossRef]
- Avanzino, L.; Pelosin, E.; Abbruzzese, G.; Bassolino, M.; Pozzo, T.; Bove, M. Shaping Motor Cortex Plasticity Through Proprioception. Cereb. Cortex. 2014, 24, 2807–2814. [Google Scholar] [CrossRef] [PubMed]
- Pettorossi, V.E.; Panichi, R.; Botti, F.M.; Biscarini, A.; Filippi, G.M.; Schieppati, M. Long-lasting effects of neck muscle vibration and contraction on self-motion perception of vestibular origin. Clin. Neurophysiol. 2015, 126, 1886–1894. [Google Scholar] [CrossRef]
- Lopez, S.; Bini, F.; Del Percio, C.; Marinozzi, F.; Celletti, C.; Suppa, A.; Ferri, R.; Staltari, E.; Camerota, F.; Babiloni, C. Electroencephalographic sensorimotor rhythms are modulated in the acute phase following focal vibration in healthy subjects. Neuroscience 2017, 352, 236–248. [Google Scholar] [CrossRef]
- Smolen, P.; Zhang, Y.; Byrne, B.J. The right time to learn: Mechanisms and optimization of spaced learning. Nat. Rev. Neurosci. 2016, 17, 77–88. [Google Scholar] [CrossRef]
- Filippi, G.M.; Fattorini, L.; Summa, A.; Zagaglia, A.; Rodio, A. Effects of focal vibration on power and work in multiple wingate tests. Biol. Sport. 2020, 37, 25–31. [Google Scholar] [CrossRef]
- Karnath, H.O. Subjective body orientation in neglect and the interactive contribution of neck muscle proprioception and vestibular stimulation. Brain 1994, 117, 1001–1012. [Google Scholar] [CrossRef]
- Contemori, S.; Dieni, C.V.; Sullivan, J.A.; Ferraresi, A.; Occhigrossi, C.; Calabrese, F.; Pettorossi, V.E.; Biscarini, A.; Panichi, R. Sensory infow manipulation induces learning-like phenomena in motor behavior. Eur. J. Appl. Physiol. 2020, 120, 811–828. [Google Scholar] [CrossRef] [PubMed]
- Zampino, C.; Ficacci, R.; Checcacci, M.; Franciolini, F.; Catacuzzeno, L. Pain control by proprioceptive and exteroceptive stimulation at the trigeminal level. Front. Physiol. 2018, 9, 1037. [Google Scholar] [CrossRef] [PubMed]
- Pettorossi, V.E.; Della Torre, G.; Bortolami, R.; Brunetti, O. The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat. J. Physiol. 1999, 515, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Woodhead, A.; North, J.S.; Hill, J.; Murphy, C.; Kidgell, D.J.; Tallent, J. Corticospinal and spinal adaptations following lower limb motor skill training: A meta-analysis with best evidence synthesis. Exp. Brain Res. 2023, 24, 807–824. [Google Scholar] [CrossRef]
- Fattorini, L.; Ferraresi, A.; Rodio, A.; Azzena, G.B.; Filippi, G.M. Motor performance changes induced by muscle vibration. Eur. J. Appl. Physiol. 2006, 98, 79–87. [Google Scholar] [CrossRef]
Study | Origin of the Deficit | Sbjts | FV Frequency & Amplitude | Single Application Duration & Repetition | Muscle Body Part Treated/Muscle Contraction | Tests | 1st Test and Last Test | Maximal After-Effect |
---|---|---|---|---|---|---|---|---|
Brunetti et al., 2006 [16] | ACL reconstruction | 30 | 100 Hz; 0.2–0.5 mm | 10 min; 3 times a day during 3 consecutive days | Quadriceps/Yes | Stability (cop area, velocity); extensor muscle peak torque | 24 h; 270 days | Reduction sway (closed eyes) -40% *; extensor peak force difference vibrated/not vibrated +25% * |
Filippi et al., 2009 [34] | Ageing | 60 | 100 Hz; 0.2–0.5 mm | 11 min; 3 times a day during 3 consecutive days | Quadriceps/Yes | Stability (cop area, velocity); vertical jump height; muscle power | 24 h; 90 days | Power ≈ +50% *; height ≈ +90% *; sway Area ≈ –35% * |
Pietrangelo et al. 2009 [17] | Ageing | 9 | 300 Hz; N.R. | 15 min; 1–3 times a week for 12 weeks | Quadriceps/No | MVC | Immediately after treatment ending; 16 weeks | MVC ≈ +51% * |
Bakhtiary et al., 2011 [37] | Limited hamstring extendibility | 30 | 50 Hz; N.R. | 20–60 sec; 3 times a day, 3 times a week for 8 weeks | Hamstring/no | Passive knee extension | Immediately after treatment ending | Knee extension +46% * |
Celletti et al., 2011 [18] | Joint hypermobility syndrome | 15 | 100 Hz; 0.2–0.5 mm | 10 min; 3 times a day for 3 consecutive days | Quadriceps/Yes | Berg balance scale | 10 and 40 days | Berg balance +27% * |
Zaho et al., 2011 [19] | Immobilisation | 30 | 100 Hz; 0,3 mm | 1 min; 48 times a day for 2 weeks | Soleus/No | V-wave/M-wave | Immediately after treatment ending | Soleus V/M did not change in treated individuals. Untreated showed—30.78% ** |
Brunetti et al., 2012 [35] | Volleyball players | 18 | 100 Hz; 0.2–0.5 mm | 10 min; 3 times a day for 3 consecutive days | Quadriceps/Yes | Explosive and reactive leg power | 24 h; 240 days | Treated group explosive leg power +26% **, reactive power +13% **; control group explosive leg power +11% *, reactive power +7.8% * |
Tankisheva et al., 2015 [22] | Ageing | 50 | 30–45 Hz; N.R. | 30–60 sec; 4–8 times a day for 26 weeks | Quadriceps, Gluteus maximum and medium/No | MVC | Immediately after treatment ending | Quadriceps MVC +13.84% * |
Rabini et al., 2015 [24] | Osteoarthritis | 50 | 100 Hz; 0.2–0.5 mm | 10 min; 3 times a day for 3 consecutive days | Quadriceps/Yes | WOMAC, SPPB. POMA | 3 and 6 months | WOMAC −30% **; SPPB +45% **; POMA +31% ** |
Celletti et al., 2015 [20] | Ageing | 350 | 100 Hz; 0.2–0.5 mm | 10 min; 3 times a day for 3 consecutive days | Quadriceps/Yes | POMA test | 1; 6 months | 59% of the tested individuals reached the full POMA score ** |
Brunetti et al., 2015 [36] | Ageing | 60 | 100 Hz; 0.2–0.5 mm | 10 min; 3 times a day for 3 consecutive days | Quadriceps/Yes | Stability (cop area, velocity); vertical jump height; muscle power | 1; 12 months | Sway −35% **; Vertical Jump + 40% **; Power + 40% ** |
Ribot-Ciscar et al., 2015 [23] | facio-scapulo-humeral muscular dystrophy | 9 | 80 Hz; 0.5 mm | 50 min; A total of 7 sessions, 1 every 4 days | Biceps brachialis; triceps brachialis; pectoralis major/No | Pain analogue visual scale; voluntarily shoulder abduction and flexion maximum amplitudes; MVC | Immediately after treatment ending | Pain analog visual scale, no significant changes; voluntarily shoulder abduction and flexion +20% *; MVC +41% * |
Paoloni et al., 2015 [21] | Foot drop | 44 | 120 Hz; 0,001 mm | 30 min; 3 times a week, for 12 weeks | Tibialis anterior, peroneus longus/N.R. | Gait analysis | 1 month | Improvements in ankle dorsiflexion, |
Pazzaglia et al., 2016 [25] | Charcot-Marie-Tooth 1A disease | 14 | 100 Hz; 0.2–0.5 mm | 10 min; 3 times a day for 3 consecutive days | Quadriceps/Yes | Berg Balance scale; Dynamic gait index; 6-min walking test; Muscular strength of lower limbs; Body balance; SF-36; | 1 week; 1 month | Berg Balance scale +8% *; Dynamic gait index +15% *; =6-min walking test; =Muscular strength of lower limbs; ↑Body balance (Sway path * and velocity *); =SF-36; |
Saggini et al., 2017 [27] | Ageing | 30 | 300 Hz; N.R. | 15 min; 2 times a week, for 6 months | Trapezius, triceps brachii, latissimus dorsi, rectus abdominis, gluteus maximus, rectus femoris, biceps femoris, and tibialis anterior/N.R. | Hand grip; knee extensores isokinetic strength; POMA test; ECOS-16 questionaire | Immediately after treatment ending | Grip +11% *; Isokinetic strength of the knee extensor +6% *; Poma Test + 5% *; Ecos-16 −17% * |
Celletti et al., 2017 [26] | postmastectomy recovery | 14 | 100 Hz; 0.2–0.5 mm | 10 min; 3 times a day for 3 consecutive days | Pectoralis minor and the biceps brachi/Yes | DASH; questionnaire, Body Image Scale, McGill pain questionnaire, Constant Scale, and Short Form 36 questionnaire. | Immediately after treatment ending | DASH scale −28% *; Constant scale +14% *; theMcGill pain questionnaire −23% *; ↑Short Form 36 questionnaire (=physical mental score) |
Benedetti et al., 2017 [28] | Ageing | 30 | 150 Hz; N.R. | 20 min; Once a day through five consecutive days, for 2 consecutive weeks | Rectus femoris, vastus medialis, and vastus lateralis | WOMAC; VAS; STAIR CLIMBING; TUG | 48 h | WOMAC −20% **; VAS −49% **; STAIR CLIMBING −13% **; TUG −11% ** |
Souron et al., 2018 [29] | Ageing | 17 | 100 Hz; 1 mm | 1 h; 3 times a week, for 4 weeks | Rectus femoris/No | MVC, Vertical jump performance | Immediately after treatment ending | MVC ≈ +11% *; Maximal jump heights SJ ≈ +15.2% *, CMJ ≈ +6.5% * |
Iodice et al., 2019 [31] | Athletes’ effects of eccentric exercise | 30 | 120 Hz; 1,2 mm | 15 min; once | Vastus intermedius, rectus femoris, vastus lateralis, vastus medialis, gluteus maximus, biceps femoris, adductor longus and magnus | isokinetic evaluation, stabilometric test, perceived soreness evaluation | 48 h | MVC ≈ +13% ** |
Attanasio et al., 2020 [30] | Ageing | 30 | 100 Hz; 0.2–0.5 mm | 10 min; 3 times a day for 3 consecutive days | Quadriceps/Yes | Body balance, POMA test, TUG test | 1 week | Sway ≈ −27% *; POMA test ≈ +20% **; TUG: rotation speed ≈ +8% **; duration ≈−19% *, standing up ≈ −13% ** |
Rippetoe et al., 2020 [32] | Diabetic Peripheral Neuropathy | 23 | 120 Hz; 1.2 mm | 10 min; 3 times a week, for 4 weeks | Tibialis anterior, quadriceps, and gastrocnemius/No | Gait Analysis | Immediately after treatment ending | ↑Gait speed *, ↑cadence *, ↑stride time *, ↑left and right stance time *, ↑duration of double limb support *, ↑left and right knee flexor moments* |
Coulandre et al., 2021 [33] | ACL reconstruction | 30 | 100 Hz; 1 mm | 1 h; only once | Quadriceps/No | MVC Rof force development | Immediately after treatment ending | Force decrease in vibrated subject −50% then unvibrated participants |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fattorini, L.; Rodio, A.; Filippi, G.M.; Pettorossi, V.E. Effectiveness of Focal Muscle Vibration in the Recovery of Neuromotor Hypofunction: A Systematic Review. J. Funct. Morphol. Kinesiol. 2023, 8, 103. https://doi.org/10.3390/jfmk8030103
Fattorini L, Rodio A, Filippi GM, Pettorossi VE. Effectiveness of Focal Muscle Vibration in the Recovery of Neuromotor Hypofunction: A Systematic Review. Journal of Functional Morphology and Kinesiology. 2023; 8(3):103. https://doi.org/10.3390/jfmk8030103
Chicago/Turabian StyleFattorini, Luigi, Angelo Rodio, Guido Maria Filippi, and Vito Enrico Pettorossi. 2023. "Effectiveness of Focal Muscle Vibration in the Recovery of Neuromotor Hypofunction: A Systematic Review" Journal of Functional Morphology and Kinesiology 8, no. 3: 103. https://doi.org/10.3390/jfmk8030103
APA StyleFattorini, L., Rodio, A., Filippi, G. M., & Pettorossi, V. E. (2023). Effectiveness of Focal Muscle Vibration in the Recovery of Neuromotor Hypofunction: A Systematic Review. Journal of Functional Morphology and Kinesiology, 8(3), 103. https://doi.org/10.3390/jfmk8030103