Human Dental Pulp Tissue during Orthodontic Tooth Movement: An Immunofluorescence Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Selection
2.2. Clinical Procedures
2.3. Immunofluorescence
2.4. Statistic Analysis
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anastasi, G.; Cordasco, G.; Matarese, G.; Nucera, R.; Rizzo, G.; Mazza, M.; Militi, A.; Portelli, M.; Cutroneo, G.; Favaloro, A. An immunohistochemical, histological, and electron-microscopic study of the human periodontal ligament during orthodontic treatment. Int. J. Mol. Med. 2008, 21, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Militi, A.; Cutroneo, G.; Favaloro, A.; Matarese, G.; Di Mauro, D.; Lauritano, F.; Centofanti, A.; Cervino, G.; Nicita, F.; Bramanti, A.; et al. An Immunofluorescence Study on VEGF and Extracellular Matrix Proteins in Human Periodontal Ligament during Tooth Movement. Heliyon 2019, 5, e02572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumrind, S. A reconsideration of the propriety of the “pressure-tension” hypothesis. Am. J. Orthod. 1969, 55, 12–22. [Google Scholar] [CrossRef]
- Cutroneo, G.; Centofanti, A.; Speciale, F.; Rizzo, G.; Favaloro, A.; Santoro, G.; Bruschetta, D.; Milardi, D.; Micali, A.; Di Mauro, D.; et al. Sarcoglycan Complex in Masseter and Sternocleidomastoid Muscles of Baboons: An Immunohistochemical Study. Eur. J. Histochem. 2015, 59, 2509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutroneo, G.; Vermiglio, G.; Centofanti, A.; Rizzo, G.; Runci, M.; Favaloro, A.; Piancino, M.G.; Bracco, P.; Ramieri, G.; Bianchi, F.; et al. Morphofunctional Compensation of Masseter Muscles in Unilateral Posterior Crossbite Patients. Eur. J. Histochem. 2016, 60, 2605. [Google Scholar] [CrossRef] [PubMed]
- Abtahi, M.; Eslami, N.; Abadi, R.Z.M.; Rezaei, S.P. The Effect of Intrusive Orthodontic Force on Dental Pulp of Adults versus Adolescents. Dent. Res. J. 2016, 13, 367–372. [Google Scholar]
- Javed, F.; Al-Kheraif, A.; Romanos, E.A.; Romanos, G.E. Influence of Orthodontic Forces on Human Dental Pulp: A Systematic Review. Arch. Oral Boil. 2015, 60, 347–356. [Google Scholar] [CrossRef]
- Abella, F.; Patel, S.; Duran-Sindreu, F.; Mercadè, M.; Bueno, R.; Roig, M. An Evaluation of the Periapical Status of Teeth with Necrotic Pulps Using Periapical Radiography and Cone-Beam Computed Tomography. Int. Endod. J. 2013, 47, 387–396. [Google Scholar] [CrossRef]
- Lazzaretti, D.; Bortoluzzi, G.; Torres Fernandez, L.; Rodriguez, R.; Grehs, R.; Hartmann Martins, M.S. Histologic Evaluation of Human Pulp Tissue After Orthodontic Intrusion. J. Endod. 2014, 40, 1537–1540. [Google Scholar] [CrossRef]
- Han, G.; Hu, M.; Zhang, Y.; Jiang, H. Pulp Vitality and Histologic Changes in Human Dental Pulp after the Application of Moderate and Severe Intrusive Orthodontic Forces. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 518–522. [Google Scholar] [CrossRef]
- Subay, R.K.; Kaya, H.; Tarim, B.; Subay, A.; Cox, C.F. Response of Human Pulpal Tissue to Orthodontic Extrusive Applications. J. Endod. 2001, 27, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Kindelan, S.A.; Day, P.; Kindelan, J.; Spencer, J.; Duggal, M.J. Dental Trauma: An Overview of Its Influence on the Management of Orthodontic Treatment. J. Orthod. 2008, 35, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Massaro, C.; Consolaro, R.B.; Santamaria, M.; Martins-Ortiz Consolaro, M.F.; Consolaro, A. Analysis of the Dentin-Pulp Complex in Teeth Submitted to Orthodontic Movement in Rats. J. Appl. Oral Sci. 2009, 17, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Tripuwabhrut, P.; Brudvik, P.; Fristad, I.; Rethnam, S. Experimental Orthodontic Tooth Movement and Extensive Root Resorption: Periodontal and Pulpal Changes. Eur. J. Oral Sci. 2010, 118, 596–603. [Google Scholar] [CrossRef]
- Ren, Y.; Maltha, J.; Kuijpers-jagtman, A.M. Optimum Force Magnitude for Orthodontic Tooth Movement: A Systematic Literature Review. Angle Orthod. 2003, 73, 86–92. [Google Scholar]
- Sabuncuoglu, F.A.; Ersahan, S. Changes in maxillary molar pulp blood flow during orthodontic intrusion. Aust. Orthod. J. 2014, 30, 152–160. [Google Scholar]
- De Ponte, F.S.; Catalfamo, L.; Micali, G.; Runci, M.; Cutroneo, G.; Vermiglio, G.; Centofanti, A.; Rizzo, G. Effect of Bisphosphonates on the Mandibular Bone and Gingival Epithelium of Rats Without Tooth Extraction. Exp. Ther. Med. 2016, 11, 1678–1684. [Google Scholar] [CrossRef] [Green Version]
- De Ponte, F.S.; Cutroneo, G.; Falzea, R.; Rizzo, G.; Catalfamo, L.; Favaloro, A.; Vermiglio, G.; Runci, M.; Centofanti, A.; Anastasi, G. Histochemical and Morphological Aspects of Fresh Frozen Bone: A Preliminary Study. Eur. J. Histochem. 2016, 60, 2642. [Google Scholar] [CrossRef]
- Irrera, N.; Arcoraci, V.; Mannino, F.; Vermiglio, G.; Pallio, G.; Minutoli, L.; Bagnato, G.; Anastasi, G.P.; Mazzon, E.; Bramanti, P.; et al. Activation of A2A Receptor by PDRN Reduces Neuronal Damage and Stimulates WNT/β-CATENIN Driven Neurogenesis in Spinal Cord Injury. Front. Pharmacol. 2018, 9, 506. [Google Scholar] [CrossRef] [Green Version]
- Di Domenico, M.; D’Apuzzo, F.; Feola, A.; Cito, L.; Monsurrò, A.; Pierantoni, G.M.; Berrino, L.; De Rosa, A.; Polimeni, A.; Perillo, L. Cytokines and VEGF Induction in Orthodontic Movement in Animal Models. J. Biomed. Biotechnol. 2012, 2012, 201689. [Google Scholar] [CrossRef]
- De Ponte, F.S.; Favaloro, A.; Nastro Siniscalchi, E.; Centofanti, A.; Runci, M.; Cutroneo, G.; Catlfamo, L. Sarcoglycans and Integrins in Bisphosphonate Treatment: Immunohistochemical and Scanning Electron Microscopy Study. Oncol. Rep. 2013, 30, 2639–2646. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, R.; Talic, N.F.; Loreto, C. MMP-13 (collagenase 3) immunolocalization during initial orthodontic tooth movement in rats. Acta Histochem. 2007, 109, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Muraglia, S.; Musumeci, G.; Loreto, C.; Leonardi, R.M. Role of ADAMTS4 and ADAMTS5 during early orthodontic tooth movement. J. Biol. Regul. Homeost. Agents 2019, 33, 649–655. [Google Scholar]
- Consolaro, A.; Consolaro, R.B. There is no pulp necrosis or calcific metamorphosis of pulp induced by orthodontic treatment: Biological basis. Dent. Press J. Orthod. 2018, 23, 36–42. [Google Scholar] [CrossRef]
- Uribe, F.; Dutra, E.; Chandhoke, T. Effect of cyclical forces on orthodontic tooth movement from animals to humans. Orthod. Cranio-fac. Res. 2017, 20, 68–71. [Google Scholar] [CrossRef]
- Wenjing, Y.; Zhang, Y.; Jiang, C.; Wei, H.; Yating, Y.; Jun, W. Orthodontic treatment mediates dental pulp microenvironment via IL17A. Arch. Oral Boil. 2016, 66, 22–29. [Google Scholar]
- Popescu, M.R.; Deva, V.; Dragomir, L.P.; Searpe, M.; Vătu, M.; Stefârţă, A.; Rauten, A.M. Study on the Histopathological Modifications of the Dental Pulp in Occlusal Trauma. Rom. J. Morphol. Embryol. 2011, 52, 425–430. [Google Scholar]
- Hui, T.; Zhao, Y.; Yang, J.; Ye, L.; Wang, C. EZH2 regulates dental pulp inflammation by direct effect on inflammatory factors. Arch. Oral Boil. 2018, 85, 16–22. [Google Scholar] [CrossRef]
- Timpl, R.; Wiedemann, H.; Van Delden, V.; Furthmayr, H.; Kuhn, K. A network model for the organization of type IV collagen molecules in basement membranes. Eur. J. Biochem. 1981, 120, 203–211. [Google Scholar] [CrossRef]
- Engel, J.; Odermatt, E.; Engel, A.; Madri, J.A.; Furthmay, H.; Rohde, H.; Timpl, R. Shapes, domain, organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J. Mol. Boil. 1981, 150, 97–120. [Google Scholar] [CrossRef]
- Lew, K.K. Orthodontically induced microvascular injuries in the tension zone of the periodontal ligament. J. Nihon Univ. Sch. Dent. 1989, 31, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Kaku, M.; Motokawa, M.; Tohma, Y.; Tsuka, N.; Koseki, H.; Sunagawa, H.; Arturo Marquez Hernandes, R.; Ohtani, J.; Fujita, T.; Kawata, T.; et al. VEGF and M-CSF levels in periodontal tissue during tooth movement. Biomed. Res. 2008, 29, 181–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomao, M.F.; Reis, S.R.; Vale, V.L.; Machado, C.V.; Meyer, R.; Nascimento, I.L. Immunolocalization of FGF-2 and VEGF in rat periodontal ligament during experimental tooth movement. Dent. Press J. Orthod. 2014, 19, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, R.; Nicita, F.; Puleio, F.; Alibrandi, A.; Cervino, G.; Lizio, A.S.; Pantaleo, G. Accuracy of periapical radiography and CBCT in endodontic evaluation. Int. J. Dent. 2018, 2018, 2514243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vermiglio, G.; Centofanti, A.; Matarese, G.; Militi, A.; Matarese, M.; Arco, A.; Nicita, F.; Cutroneo, G. Human Dental Pulp Tissue during Orthodontic Tooth Movement: An Immunofluorescence Study. J. Funct. Morphol. Kinesiol. 2020, 5, 65. https://doi.org/10.3390/jfmk5030065
Vermiglio G, Centofanti A, Matarese G, Militi A, Matarese M, Arco A, Nicita F, Cutroneo G. Human Dental Pulp Tissue during Orthodontic Tooth Movement: An Immunofluorescence Study. Journal of Functional Morphology and Kinesiology. 2020; 5(3):65. https://doi.org/10.3390/jfmk5030065
Chicago/Turabian StyleVermiglio, Giovanna, Antonio Centofanti, Giovanni Matarese, Angela Militi, Marco Matarese, Alba Arco, Fabiana Nicita, and Giuseppina Cutroneo. 2020. "Human Dental Pulp Tissue during Orthodontic Tooth Movement: An Immunofluorescence Study" Journal of Functional Morphology and Kinesiology 5, no. 3: 65. https://doi.org/10.3390/jfmk5030065
APA StyleVermiglio, G., Centofanti, A., Matarese, G., Militi, A., Matarese, M., Arco, A., Nicita, F., & Cutroneo, G. (2020). Human Dental Pulp Tissue during Orthodontic Tooth Movement: An Immunofluorescence Study. Journal of Functional Morphology and Kinesiology, 5(3), 65. https://doi.org/10.3390/jfmk5030065