Intermittent Pneumatic Compression and Cold Water Immersion Effects on Physiological and Perceptual Recovery during Multi-Sports International Championship
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Instruments and Procedures
2.3.1. Muscle Mechanical Function
2.3.2. Perceived Recovery and Pain
2.3.3. Hydration Status
2.3.4. Post-Competition Recovery Protocols
2.4. Statistical Analysis
3. Results
3.1. Muscle Mechanical Function
3.2. Perceived Recovery
3.3. Hydration Status
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Terrados, N.; Mielgo-AyuSo, J.; Delextrat, A.; Ostojic, S.M.; Calleja-Gonzalez, J. Dietetic-nutritional, physical and physiological recovery methods post-competition in team sports. J. Sport. Med. Phys. Fit. 2019, 59, 415–428. [Google Scholar] [CrossRef]
- Rojas-Valverde, D.; Gutiérrez-Vargas, R.; Rodríguez-Montero, A.; Pereira, L.A.; Loturco, I.; Martín-Rodríguez, S. Reduced muscle contractile function in elite young soccer players after a short-congested fixture period. P. I. Mech. Eng. P J. Spo. 2019, 233, 249–257. [Google Scholar] [CrossRef]
- Pino-Ortega, J.; Rojas-Valverde, D.; Gómez-Carmona, C.D.; Bastida-Castillo, A.; Hernández-Belmonte, A.; García-Rubio, J.; Nakamura, F.Y.; Ibáñez, S.J. Impact of contextual factors on external load during a congested-fixture tournament in elite U’18 basketball players. Front. Physiol. 2019, 10, 1100. [Google Scholar] [CrossRef] [Green Version]
- Dello Iacono, A.; Eliakim, A.; Padulo, J.; Laver, L.; Ben-Zaken, S.; Meckel, Y. Neuromuscular and inflammatory responses to handball small-sided games: The effects of physical contact. Scand. J. Med. Sci. Sports 2017, 27, 1122–1129. [Google Scholar] [CrossRef]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Berkelmans, D.M.; Milanović, Z. The activity demands and physiological responses encountered during basketball match-play: A systematic review. Sports. Med. 2018, 48, 111–135. [Google Scholar] [CrossRef]
- Duffield, R.; Murphy, A.; Snape, A.; Minett, G.M.; Skein, M. Post-match changes in neuromuscular function and the relationship to match demands in amateur rugby league matches. J. Sci. Med. Sport. 2012, 15, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Nédélec, M.; McCall, A.; Carling, C.; Legall, F.; Berthoin, S.; Dupont, G. Recovery in soccer: Part I—post-match fatigue and time course of recovery. Sports. Med. 2012, 42, 997–1015. [Google Scholar] [PubMed]
- Kellmann, M.; Bertollo, M.; Bosquet, L.; Brink, M.; Coutts, A.J.; Duffield, R.; Erlacher, D.; Halson, S.L.; Hecksteden, A.; Heidari, J. Recovery, and performance in sport: Consensus statement. Int. J. Sports. Physiol. Perform. 2018, 13, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Halson, S. Monitoring fatigue and recovery. Sport. Sci. 2014, 27, 1–6. [Google Scholar]
- Issurin, V.B. New horizons for the methodology and physiology of training periodization. Sports. Med. 2010, 40, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Higgins, T.R.; Greene, D.A.; Baker, M.K. Effects of cold water immersion and contrast water therapy for recovery from team sport: A systematic review and meta-analysis. J. Strength. Cond. Res. 2017, 31, 1443–1460. [Google Scholar] [CrossRef]
- Reilly, T.; Ekblom, B. The use of recovery methods post-exercise. J. Sports. Sci. 2005, 23, 619–627. [Google Scholar] [CrossRef]
- Hing, W.A.; White, S.G.; Lee, P.; Bouaaphone, A. The use of contrast therapy recovery within the New Zealand elite sports setting. Nz. J. Sports. Med. 2010, 37, 8–11. [Google Scholar]
- Crowther, F.; Sealey, R.; Crowe, M.; Edwards, A.; Halson, S. Team sport athletes’ perceptions and use of recovery strategies: A mixed-methods survey study. BMC Sports. Sci. Med. Rehabil. 2017, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Venter, R.E.; Potgieter, J.R.; Barnard, J.G. The use of recovery modalities by elite South African team athletes. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2010, 32, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Machado, A.F.; Ferreira, P.H.; Micheletti, J.K.; de Almeida, A.C.; Lemes, Í.R.; Vanderlei, F.M.; Junior, J.N.; Pastre, C.M. Can water temperature and immersion time influence the effect of cold water immersion on muscle soreness? A systematic review and meta-analysis. Sports. Med. 2016, 46, 503–514. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Ureña, B.A.; Barrantes-Brais, K.; Ureña-Bonilla, P.; Calleja-González, J.; Ostojic, S. Effect of water immersion on recovery from fatigue: A meta-analysis. Eur. J. Hum. Mov. 2015, 34, 1–14. [Google Scholar]
- Calleja-González, J.; Mielgo-Ayuso, J.; Ostojic, S.M.; Jones, M.T.; Marques-Jiménez, D.; Caparros, T.; Terrados, N. Evidence-based post-exercise recovery strategies in rugby: A narrative review. Phys. Sportsmed. 2019, 47, 137–147. [Google Scholar] [CrossRef]
- Wilcock, I.M.; Cronin, J.B.; Hing, W.A. Physiological response to water immersion. Sports. Med. 2006, 36, 747–765. [Google Scholar] [CrossRef]
- Sánchez–Ureña, B.; Martínez–Guardado, I.; Crespo, C.; Timón, R.; Calleja-González, J.; Ibañez, S.J.; Olcina, G. The use of continuous vs. intermittent cold water immersion as a recovery method in basketball players after training: A randomized controlled trial. Phys. Sportsmed. 2017, 45. [Google Scholar]
- Elias, G.P.; Wyckelsma, V.L.; Varley, M.C.; McKenna, M.J.; Aughey, R.J. Effectiveness of water immersion on postmatch recovery in elite professional footballers. Int. J. Sports. Physiol. Perform. 2013, 8, 243–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, C.A.; Da Mota, G.R.; Marocolo, M. Cold water immersion is acutely detrimental but increases performance post-12 h in rugby players. Int. J. Sports Med. 2016, 37, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.; Ramos-Castro, J.; Rodas, G.; Tarragó, J.R.; Capdevila, L. Individual recovery profiles in basketball players. Span. J. Psychol. 2015, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Uzkeser, H.; Karatay, S.; Erdemci, B.; Koc, M.; Senel, K. Efficacy of manual lymphatic drainage and intermittent pneumatic compression pump use in the treatment of lymphedema after mastectomy: A randomized controlled trial. J. Breast. Cancer. 2015, 22, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.D.; Badowski, N.; Chin, J.; Stuempfle, K.J. A randomized controlled trial of massage and pneumatic compression for ultramarathon recovery. J. Orthop. Sports. Phys. 2016, 46, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Kölling, S.; Duffield, R.; Erlacher, D.; Venter, R.; Halson, S.L. Sleep-related issues for recovery and performance in athletes. Int. J. Sports. Physiol. Perform. 2019, 14, 144–148. [Google Scholar] [CrossRef]
- Balk, Y.A.; de Jonge, J.; Oerlemans, W.G.; Geurts, S.A. Physical recovery, mental detachment and sleep as predictors of injury and mental energy. J. Health. Psychol. 2019, 24, 1828–1838. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.-R.; Paiva, T. Poor precompetitive sleep habits, nutrients’ deficiencies, inappropriate body composition and athletic performance in elite gymnasts. Eur. J. Sport. Sci. 2016, 16, 726–735. [Google Scholar] [CrossRef]
- Malhotra, R.K. Sleep, recovery, and performance in sports. Neurol. Clin. 2017, 35, 547–557. [Google Scholar] [CrossRef]
- Brandt, R.; Bevilacqua, G.G.; Andrade, A. Perceived sleep quality, mood states, and their relationship with performance among Brazilian elite athletes during a competitive period. J. Strength. Cond. Res. 2017, 31, 1033–1039. [Google Scholar] [CrossRef]
- Luke, A.; Lazaro, R.M.; Bergeron, M.F.; Keyser, L.; Benjamin, H.; Brenner, J.; d’Hemecourt, P.; Grady, M.; Philpott, J.; Smith, A. Sports-related injuries in youth athletes: Is overscheduling a risk factor? Clin. J. Sport. Med. 2011, 21, 307–314. [Google Scholar] [CrossRef]
- Von Rosen, P.; Frohm, A.; Kottorp, A.; Friden, C.; Heijne, A. Too little sleep and an unhealthy diet could increase the risk of sustaining a new injury in adolescent elite athletes. Scand. J. Med. Sci. Sports. 2017, 27, 1364–1371. [Google Scholar] [CrossRef]
- Sánchez-Ureña, B.; Rojas-Valverde, D.; Gutiérrez-Vargas, R. Effectiveness of two cold water immersion protocols on neuromuscular function recovery: A tensiomyography study. Front. Physiol. 2018, 9, 766. [Google Scholar] [CrossRef]
- Gutiérrez-Vargas, R.; Martín-Rodríguez, S.; Sánchez-Ureña, B.; Rodríguez-Montero, A.; Salas-Cabrera, J.; Gutiérrez-Vargas, J.C.; Simunic, B.; Rojas-Valverde, D. Biochemical and muscle mechanical postmarathon changes in hot and humid conditions. J. Strength. Cond. Res. 2020, 34, 847–856. [Google Scholar] [CrossRef]
- Tous-Fajardo, J.; Moras, G.; Rodríguez-Jiménez, S.; Usach, R.; Doutres, D.M.; Maffiuletti, N.A. Inter-rater reliability of muscle contractile property measurements using non-invasive tensiomyography. J. Electromyogr. Kinesiol. 2010, 20, 761–766. [Google Scholar] [CrossRef]
- De Paula Simola, R.Á.; Raeder, C.; Wiewelhove, T.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; Ferrauti, A. Muscle mechanical properties of strength and endurance athletes and changes after one week of intensive training. J. Electromyogr. Kinesiol. 2016, 30, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Kenttä, G.; Hassmén, P. Overtraining and recovery. Sports Med. 1998, 26, 1–16. [Google Scholar] [CrossRef]
- Gulick, D.T.; Kimura, I.F.; Sitler, M.; Paolone, A.; Kelly IV, J.D. Various treatment techniques on signs and symptoms of delayed onset muscle soreness. J. Athl. Train. 1996, 31, 145–152. [Google Scholar]
- Cappelleri, J.C.; Bushmakin, A.G.; McDermott, A.M.; Sadosky, A.B.; Petrie, C.D.; Martin, S. Psychometric properties of a single-item scale to assess sleep quality among individuals with fibromyalgia. Health. Qual. Life. Outcomes. 2009, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human kinetics: Champaign, IL, USA, 1998; ISBN 978-0-8801-1623-7. [Google Scholar]
- Wyness, S.P.; Hunsaker, J.J.; Snow, T.M.; Genzen, J.R. Evaluation and analytical validation of a handheld digital refractometer for urine specific gravity measurement. Pr. Lab. Med. 2016, 5, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casa, D.J.; Armstrong, L.E.; Hillman, S.K.; Montain, S.J.; Reiff, R.V.; Rich, B.S.; Roberts, W.O.; Stone, J.A. National Athletic Trainers’ Association position statement: Fluid replacement for athletes. J. Athl. Train. 2000, 35, 212. [Google Scholar]
- Hanson, E.; Stetter, K.; Li, R.; Thomas, A. An intermittent pneumatic compression device reduces blood lactate concentrations more effectively than passive recovery after Wingate testing. J. Athl. Enhanc. 2013, 2, 18–25. [Google Scholar]
- Winke, M.; Williamson, S. Comparison of a pneumatic compression device to a compression garment during recovery from DOMS. Int. J. Exerc. Sci. 2018, 11, 375–383. [Google Scholar] [PubMed]
- Chleboun, G.S.; Howell, J.N.; Baker, H.L.; Ballard, T.N.; Graham, J.L.; Hallman, H.L.; Perkins, L.E.; Schauss, J.H.; Conatser, R.R. Intermittent pneumatic compression effect on eccentric exercise-induced swelling, stiffness, and strength loss. Arch. Phys. Med. Rehabil. 1995, 76, 744–749. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Loturco, I.; Gil, S.; de Souza Laurino, C.F.; Roschel, H.; Kobal, R.; Abad, C.C.C.; Nakamura, F.Y. Differences in muscle mechanical properties between elite power and endurance athletes: A comparative study. J. Strength. Cond. Res. 2015, 29, 1723–1728. [Google Scholar] [CrossRef]
- Križaj, D.; Šimunič, B.; Žagar, T. Short-term repeatability of parameters extracted from radial displacement of muscle belly. J. Electromyogr. Kinesiol. 2008, 18, 645–651. [Google Scholar] [CrossRef]
- García-Manso, J.M.; Rodríguez-Matoso, D.; Rodríguez-Ruiz, D.; Sarmiento, S.; de Saa, Y.; Calderón, J. Effect of cold-water immersion on skeletal muscle contractile properties in soccer players. Am. J. Phys. Med. Rehabil. 2011, 90, 356–363. [Google Scholar] [CrossRef]
- Billaut, F.; Bishop, D. Muscle fatigue in males and females during multiple-sprint exercise. Sports. Med. 2009, 39, 257–278. [Google Scholar] [CrossRef]
- Wüst, R.C.I.; Morse, C.I.; De Haan, A.; Jones, D.A.; Degens, H. Sex differences in contractile properties and fatigue resistance of human skeletal muscle. Exp. Physiol. 2008, 93, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Selmi, O.; Gonçalves, B.; Ouergui, I.; Sampaio, J.; Bouassida, A. Influence of well-being variables and recovery state in physical enjoyment of professional soccer players during small-sided games. Res. Sports. Med. 2018, 26, 199–210. [Google Scholar] [CrossRef]
- Sánchez-Ureña, B.; Martínez-Guardado, I.; Espinoza-Acuña, G.; Camacho-Cardeñosa, M.; Camacho-Cardeñosa, A.; Timón, R.; Olcina, G. Comparison of cold water immersion protocols in female handball players after match training. J. Hum. Sport. Exerc. 2018, 13, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Duffield, R.; Murphy, A.; Kellett, A.; Reid, M. Recovery from repeated on-court tennis sessions: Combining cold-water immersion, compression, and sleep interventions. Int. J. Sports. Physiol. Perform. 2014, 9, 273–282. [Google Scholar] [CrossRef]
- Timoteo, T.F.; Seixas, M.B.; Almeida Falci, M.F.; Debien, P.B.; Miloski, B.; Miranda, R.; Bara Filho, M.G. Impact of consecutive games on workload, state of recovery and well-being of professional volleyball players. J. Exerc. Physiol. Online. 2017, 20, 130–140. [Google Scholar]
- Peiffer, J.J.; Abbiss, C.R.; Watson, G.; Nosaka, K.; Laursen, P.B. Effect of cold-water immersion duration on body temperature and muscle function. J. Sports. Sci. 2009, 27, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Robey, E.; Dawson, B.; Halson, S.; Gregson, W.; King, S.; Goodman, C.; Eastwood, P. Effect of evening postexercise cold water immersion on subsequent sleep. Med. Sci. Sports. Exerc. 2013, 45, 1394–1402. [Google Scholar] [CrossRef]
- Koikawa, N.; Shimada, S.; Suda, S.; Murata, A.; Kasai, T. Sex differences in subjective sleep quality, sleepiness, and health-related quality of life among collegiate soccer players. Sleep. Biol. Rhythm. 2016, 14, 377–386. [Google Scholar] [CrossRef]
- Armstrong, L.E. Assessing hydration status: The elusive gold standard. J. Am. Coll. Nutr. 2007, 26, 575S–584S. [Google Scholar] [CrossRef]
Muscle | Parameter | Sex | Pre Matches | 1st Match | 2nd Match | 3rd Match | F match (p-Value) | ωp2 (Rating) |
---|---|---|---|---|---|---|---|---|
Biceps Femoris | Tc (ms) | Male | 31.3 ± 10.03 | 32.91 ± 12.79 | 34.96 ± 13.53 | 35.64 ± 15.21 | 5–14 (0.005) | 0.25 (Large) |
Female | 35.46 ± 11.33 | 48.79 ± 17.51 | 43.87 ± 16.24 | 53.18 ± 17.49 | ||||
F sex (p-value) | 11.13 (0.002) | F Interaction (p-value) | ||||||
ωp2 (rating) | 0.46 (Large) | 2.58 (0.058) | ||||||
Dm (mm) | Male | 4.6 ± 2.63 | 4.73 ± 2.73 | 5.34 ± 2.72 | 5.63 ± 3.09 | 3.5 (0.03) | 0.17 (Large) | |
Female | 5.81 ± 1.92 | 7.21 ± 2.35 | 7.42 ± 2.45 | 7.28 ± 2.35 | ||||
F sex (p-value) | 5.61 (0.024) | F Interaction (p-value) | ||||||
ωp2 (rating) | 0.28 (Large) | 1.1 (0.35) | ||||||
Rectus Femoris | Tc (ms) | Male | 28.65 ± 5.53 | 27.11 ± 4.95 | 26.61 ± 5.06 | 27.36 ± 5.69 | 3.23 (0.04) | 0.16 (Large) |
Female | 28.17 ± 3.21 | 27.27 ± 4.09 | 26.08 ± 3.03 | 26.52 ± 2.12 | ||||
F sex (p-value) | 0.1 (0.77) | F Interaction (p-value) | ||||||
ωp2 (rating) | 0.08 (Small) | 0.19 (0.9) | ||||||
Dm (mm) | Male | 6.26 ± 1.72 | 6.85 ± 2.16 | 6.81 ± 2.24 | 7.13 ± 2.19 | 2.05 (0.13) | 0.08 (Medium) | |
Female | 7.08 ± 2.31 | 8.06 ± 2.16 | 7.93 ± 1.97 | 7.84 ± 1.95 | ||||
F sex (p-value) | 2.79 (0.104) | F Interaction (p-value) | ||||||
ωp2 (rating) | 0.13 (Medium) | 0.23 (0.88) |
Parameter | Sex | Pre Matches | 1st Match | 2nd Match | 3rd Match | F match (p-Value) | ωp2 (Rating) |
---|---|---|---|---|---|---|---|
Total Quality Recovery | Male | 16.99 ± 1.57 | 17.5 ± 1.16 | 18.21 ± 1.25 | 17.21 ± 1.19 | 2.47 (0.087) | 0.13 (Medium) |
Female | 16.79 ± 2.64 | 16.79 ± 1.02 | 16.5 ± 1.69 | 16.43 ± 1.87 | |||
F sex (p-value) | 2.6 (0.12) | F Interaction (p-value) | |||||
ωp2 (rating) | 0.13 (Medium) | 1.23 (0.31) | |||||
Delayed Onset Muscle Soreness | Male | 0.14 ± 0.53 | 0.43 ± 1.59 | 0.39 ± 1.24 | 0.86 ± 2.21 | 1.53 (0.233) | 0.02 (Small) |
Female | 0.71 ± 1.98 | 0.29 ± 1.07 | 0.64 ± 1.45 | 1.21 ± 1.53 | |||
F sex (p-value) | 1.095 (0.31) | F Interaction (p-value) | |||||
ωp2 (rating) | 0.01 (Small) | 0.493 (0.69) | |||||
Sleep Quality | Male | 8.79 ± 0.98 | 7.29 ± 0.61 | 8.07 ± 0.83 | 7.93 ± 1.07 | 18.91(<0.01) | 0.6 (Large) |
Female | 7.86 ± 0.54 | 8.21 ± 0.58 | 8.64 ± 0.84 | 7.29 ± 0.47 | |||
F sex (p-value) | 0.01 (0.923) | F Interaction (p-value) | |||||
ωp2 (rating) | 0.08 (Small) | 12.12 (<0.01) | |||||
Sleep hours | Male | 8.79 ± 0.58 | 8.64 ± 0.75 | 8.64 ± 1.15 | 8.64 ± 1.01 | 5.05 (0.007) | 0.25 (Large) |
Female | 9.5 ± 0.76 | 8.99 ± 1.04 | 9.14 ± 1.03 | 7.79 ± 1.31 | |||
F sex (p-value) | 0.45 (0.51) | F Interaction (p-value) | |||||
ωp2 (rating) | 0.05 (Small) | 5.67 (0.001) | |||||
Rate of Perceived Exertion | Male | NA | 6.21 ± 1.72 | 6.49 ± 2.59 | 6.29 ± 2.23 | 0.34 (0.72) | 0.05 (Small) |
Female | NA | 7.78 ± 1.48 | 6.99 ± 2.54 | 7.69 ± 1.37 | |||
F sex (p-value) | 3.61 (0.07) | F Interaction (p-value) | |||||
ωp2 (rating) | 0.18 (Large) | 0.841 (0.44) |
Parameter | Sex | Pre Matches | 1st Match | 2nd Match | 3rd Match | F match (p-Value) | ωp2 (Rating) |
---|---|---|---|---|---|---|---|
Urine Specific Gravity | Male | 1.02 ± 0.01 | 1.018 ± 0.01 | 1.016 ± 0.01 | 1.019 ± 0.01 | 0.51 (0.682) | 0.08 (Small) |
Female | 1.015 ± 0.004 | 1.015 ± 0.01 | 1.087 ± 0.27 | 1.016 ± 0.01 | |||
F sex (p-value) | 0.729 (0.401) | F Interaction (p-value) | |||||
ωp2 (rating) | 0.08 (Small) | 1.08 (0.362) | |||||
Urine Solids | Male | 4.82 ± 1.55 | 4.31 ± 1.4 | 3.71 ± 1.17 | 4.37 ± 1.79 | 2.34 (0.099) | 0.1 (Medium) |
Female | 3.64 ± 1.24 | 3.56 ± 1.38 | 3.53 ± 1.31 | 3.99 ± 1.42 | |||
F sex (p-value) | 2.39 (0.14) | F Interaction (p-value) | |||||
ωp2 (rating) | 0.1 (Medium) | 1.137 (0.34) | |||||
Body Weight | Male | 84.68 ± 17.48 | 85.29 ± 17.36 | 84.87 ± 17.35 | 84.91 ± 17.27 | 3.62 (0.028) | 0.18 (Large) |
Female | 66.01 ± 8.68 | 65.94 ± 8.89 | 65.92 ± 8.89 | 66.08 ± 8.92 | |||
F sex (p-value) | 13.24 (0.001) | F Interaction (p-value) | |||||
ωp2 (rating) | 0.5 (Large) | 0.01 (0.924) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Guardado, I.; Rojas-Valverde, D.; Gutiérrez-Vargas, R.; Ugalde Ramírez, A.; Gutiérrez-Vargas, J.C.; Sánchez-Ureña, B. Intermittent Pneumatic Compression and Cold Water Immersion Effects on Physiological and Perceptual Recovery during Multi-Sports International Championship. J. Funct. Morphol. Kinesiol. 2020, 5, 45. https://doi.org/10.3390/jfmk5030045
Martínez-Guardado I, Rojas-Valverde D, Gutiérrez-Vargas R, Ugalde Ramírez A, Gutiérrez-Vargas JC, Sánchez-Ureña B. Intermittent Pneumatic Compression and Cold Water Immersion Effects on Physiological and Perceptual Recovery during Multi-Sports International Championship. Journal of Functional Morphology and Kinesiology. 2020; 5(3):45. https://doi.org/10.3390/jfmk5030045
Chicago/Turabian StyleMartínez-Guardado, Ismael, Daniel Rojas-Valverde, Randall Gutiérrez-Vargas, Alexis Ugalde Ramírez, Juan Carlos Gutiérrez-Vargas, and Braulio Sánchez-Ureña. 2020. "Intermittent Pneumatic Compression and Cold Water Immersion Effects on Physiological and Perceptual Recovery during Multi-Sports International Championship" Journal of Functional Morphology and Kinesiology 5, no. 3: 45. https://doi.org/10.3390/jfmk5030045
APA StyleMartínez-Guardado, I., Rojas-Valverde, D., Gutiérrez-Vargas, R., Ugalde Ramírez, A., Gutiérrez-Vargas, J. C., & Sánchez-Ureña, B. (2020). Intermittent Pneumatic Compression and Cold Water Immersion Effects on Physiological and Perceptual Recovery during Multi-Sports International Championship. Journal of Functional Morphology and Kinesiology, 5(3), 45. https://doi.org/10.3390/jfmk5030045