The Effects of Short-Term High-Intensity Interval Training and Moderate Intensity Continuous Training on Body Fat Percentage, Abdominal Circumference, BMI and VO2max in Overweight Subjects
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participant Recruitment
2.2. Measurements
2.2.1. Anthropometric Evaluation
Estimated VO2max
2.2.2. 1-RM Estimation
2.3. RT Protocol
2.4. HIIT Protocol
2.5. MICT Protocol
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
VO2max | Maximal oxygen uptake |
HIIT | High-Intensity Interval Training |
MICT | Moderate-Intensity Continuous Training |
BMI | Body mass index |
References
- Gómez-Hernández, A.; Beneit, N.; Díaz-Castroverde, S.; Escribano, O. Differential Role of Adipose Tissues in Obesity and Related Metabolic and Vascular Complications. Int. J. Endocrinol. 2016, 2016, 1216783. [Google Scholar] [CrossRef] [PubMed]
- Campbell, W.W.; Kraus, W.E.; Powell, K.E.; Haskell, W.L.; Janz, K.F.; Jakicic, J.M.; Troiano, R.P.; Sprow, K.; Torres, A.; Piercy, K.L.; et al. High-Intensity Interval Training for Cardiometabolic Disease Prevention. Med. Sci. Sports Exerc. 2019, 51, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine Position Stand. Appropriate Physical Activity Intervention Strategies for Weight Loss and Prevention of Weight Regain for Adults. Med. Sci. Sports Exerc. 2009, 41, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, M.M.; Zaepfel, A.; Bjornstad, P.; Nadeau, K.J. Age-related consequences of childhood obesity. Gerontology 2014, 60, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Annuario statistico italiano: Dati istat 2017. Available online: https://www.istat.it/it/archivio/annuario+statistico+italiano (accessed on 20 November 2019).
- American College of Sports Medicine Position Stand. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Maillard, F.; Pereira, B.; Boisseau, N. Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis. Sports Med. 2018, 48, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Kazakova, I.; Ludviksen, M.; Mehus, I.; Wisloff, U.; Kulseng, B.; Morgan, L.; King, N. High-Intensity Interval Training and Isocaloric Moderate-Intensity Continuous Training Result in Similar Improvements in Body Composition and Fitness in Obese Individuals. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.S.; Dalleck, L.C.; Tjonna, A.E.; Beetham, K.S.; Coombes, J.S. The impact of high-intensity interval training versus moderate intensity continuous training on vascular function: A systematic review and meta-analysis. Sports Med. 2015, 45, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Wewege, M.; van den Berg, R.; Ward, R.E.; Keech, A. The effects of high-intensity interval training vs.moderate-intensity continuous training on body composition in overweight and obese adults: Asystematic review and meta-analysis. Obes. Rev. 2017, 18, 635–646. [Google Scholar]
- Zhang, H.; Tong, T.K.; Qiu, W.; Wang, J.; Nie, J.; He, Y. Effect of high-intensity interval training protocol on abdominal fat reduction in overweight Chinese women: A randomized controlled trial. Kinesiology 2015, 47, 57–66. [Google Scholar]
- Alansare, A.; Alford, K.; Lee, S.; Church, T.; Jung, H.C. The Effects of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Heart Rate Variability in Physically Inactive Adults. Int. J. Environ. Res. Public Health 2018, 15, 1508. [Google Scholar] [CrossRef]
- Bianco, A.; Bellafiore, M.; Battaglia, G.; Paoli, A.; Caramazza, G.; Farina, F.; Palma, A. The Effects of Indoor Cycling Training in Sedentary Overweight Women. J. Sports Med. Phys. Fit. 2010, 50, 159–165. [Google Scholar]
- Bartlett, J.D.; Close, G.L.; MacLaren, D.P.; Gregson, W.; Drust, B.; Morton, J.P. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: Implications for exercise adherence. J. Sports Sci. 2011, 29, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Monks, L.; Seo, M.W.; Kim, H.B.; Jung, H.C.; Song, J.K. High-intensity interval training and athletic performance in Taekwondo athletes. Int. J. Sports Med. 2019, 40, 503–510. [Google Scholar]
- Hatle, H.; Støbakk, P.K.; Mølmen, H.E.; Brønstad, E.; Tjønna, A.E.; Steinshamn, S.; Skogvoll, E.; Wisløff, U.; Ingul, C.B.; Rognmo, Ø. Effect of 24 sessions of high-intensity aerobic interval training carried out at either high or moderate frequency, a randomized trial. PLoS ONE 2014, 9, e88375. [Google Scholar] [CrossRef] [PubMed]
- Wells, C.; Edwards, A.; Fysh, M.; Drust, B. Effects of high-intensity running training on soccer-specific fitness in professional male players. Appl. Physiol. Nutr. Metab. 2014, 39, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Laursen, P.B.; Shing, C.M.; Peake, J.M.; Coombes, J.S.; Jenkins, D.G. Interval training program optimization in highly trained endurance cyclists. Med. Sci. Sports Exerc. 2002, 34, 1801–1807. [Google Scholar] [CrossRef] [PubMed]
- Milanovic, Z.; Sporis, G.; Weston, M. Effectiveness of high intensity interval training (HIT) and continuous endurance training for VO2max improvements: A systematic review and meta-analysis of controlled trials. Sports Med. 2015, 45, 1469–1481. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Moro, T.; Marcolin, G.; Neri, M.; Bianco, A.; Palma, A.; Grimaldi, K. High-Intensity Interval Resistance Training (HIRT) Influences Resting Energy Expenditure and Respiratory Ratio in Non-Dieting Individuals. J. Transl. Med. 2012, 10, 237–244. [Google Scholar] [CrossRef]
- Batacan, R.B., Jr.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of high intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. Br. J. Sports Med. 2017, 51, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Jelleyman, C.; Yates, T.; O’Donovan, G.; Gray, L.J.; King, J.A.; Khunti, K.; Davies, M.J. The effects of high intensity interval training on glucose regulation and insulin resistance: A meta-analysis. Obes. Rev. 2015, 16, 942–961. [Google Scholar] [CrossRef] [PubMed]
- Kessler, H.S.; Sisson, S.B.; Short, K.R. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012, 42, 489–509. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Farland, C.V.; Guidotti, F.; Harbin, M.; Roberts, B.; Schuette, J.; Tuuri, A.; Doberstein, S.T.; Porcari, J.P. The Effects of High Intensity Interval Training vs. Steady State Training on Aerobic and Anaerobic Capacity. J. Sports Sci. Med. 2015, 14, 747–755. [Google Scholar] [PubMed]
- Caldeira, R.S.; Panissa, V.L.G.; Inoue, D.S.; Campos, E.Z.; Monteiro, P.A.; Giglio, B.M.; Pimentel, G.D.; Hofmann, P.; Lira, F.S. Impact to short-term high intensity intermittent training on different storages of body fat, leptin and soluble leptin receptor levels in physically active non-obese men: A pilot investigation. Clin. Nutr. ESPEN 2018, 28, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Keating, S.E.; Machan, E.A.; O’Connor, H.T.; Gerofi, J.A.; Sainsbury, A.; Caterson, I.D.; Johnson, N.A. Continuous exercise but not high intensity interval training improves fat distribution in overweight adults. J. Obes. 2014, 2014, 834865. [Google Scholar] [CrossRef] [PubMed]
- Winter, E.M.; Maughan, R.J. Requirements for ethics approvals. J. Sports Sci. 2009, 27, 985. [Google Scholar] [CrossRef] [PubMed]
- Katch, F.I.; Katch, V.L.; McArdle, E.D. Evaluation of Body Composition; Fitness Technologies: Santa Barbara, CA, USA, 2000. [Google Scholar]
- Ebbeling, C.B.; Ward, A.; Puleo, E.M.; Widrick, J.; Rippe, J.M. Development of a single-stage submaximal treadmill walking test. Med. Sci. Sports Exerc. 1991, 23, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Brzycki, M. A Practical Approach to Strength Training; McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- Golding, L.A. YMC Fitness Testing and Assessment Manual, 4th ed.; Human Kinetics: Champaign, IL, USA, 2000. [Google Scholar]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef]
- Macpherson, R.E.K.; Hazell, T.J.; Olver, T.D.; Paterson, D.H.; Lemon, P.W.R. Run Sprint Interval Training Improves Aerobic Performance but Not Maximal Cardiac Output. Med. Sci. Sports Exerc. 2011, 43, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Birkett, S.T.; Nichols, S.; Sawrey, R.; Gleadall Siddall, D.; McGregor, G.; Ingle, L. The effects of low volume high intensity interval training and circuit training on maximal oxygen uptake. Sport Sci. Health 2019, 15, 443–451. [Google Scholar] [CrossRef]
- Sawyer, B.J.; Tucker, W.J.; Bhammar, D.M.; Ryder, J.R.; Sweazea, K.L.; Gaesser, G.A. Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. J. Appl. Physiol. 2016, 121, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Baekkerud, F.H.; Solberg, F.; Leinan, I.M.; Wisloff, U.; Karlsen, T.; Rognmo, O. Comparison of three popular exercise modalities on VO2max in overweight and obese. Med. Sci. Sports Exerc. 2016, 48, 491–498. [Google Scholar] [CrossRef] [PubMed]
- McKay, B.R.; Paterson, D.H.; Kowalchuk, J.M. Effect of short term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. J. Appl. Physiol. 2009, 107, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Panissa, V.L.G.; Julio, U.F.; Hardt, F.; Kurashima, C.; Lira, F.S.; Takito, M.Y.; Franchini, E. Effect of exercise intensity and mode on acute appetite control in men and women. Appl. Physiol. Nutr. Metab. 2016, 41, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Trapp, E.G.; Chisholm, D.J.; Freund, J.; Boutcher, S.H. The effects of high- intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int. J. Obes. 2008, 32, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Keating, S.E.; Johnson, N.A.; Mielke, G.I.; Coombes, J.S. A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obes. Rev. 2017, 18, 943–964. [Google Scholar] [CrossRef] [PubMed]
- Helgerud, J.; Hoydal, K.; Wang, E.; Karlsen, T.; Berg, P.; Bjerkaas, M.; Simonsen, T.; Helgesen, C.; Hjorth, N.; Bach, R.; et al. Aerobic High-Intensity Intervals Improve VO2max More Than Moderate Training. Med. Sci. Sports Exerc. 2007, 39, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; Little, J.P.; Macdonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Vella, C.A.; Taylor, K.; Drummer, D. High-intensity interval and moderate-intensity continuous training elicit similar enjoyment and adherence levels in overweight and obese adults. Eur. J. Sport Sci. 2017, 17, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Reljic, D.; Lampe, D.; Wolf, F.; Zopf, Y.; Herrmann, H.J.; Fischer, J. Prevalence and predictors of dropout from high-intensity interval training in sedentary individuals: A meta-analysis. Scand. J. Med. Sci. Sports 2019, 29, 1288–1304. [Google Scholar] [CrossRef] [PubMed]
Age (y) | Gender | Site A | Site B | Site C |
18–26 | Males | Right upper arm | Abdomen | Right forearm |
18–26 | Females | Abdomen | Right thigh | Right forearm |
27–50 | Males | Buttocks | Abdomen | Right forearm |
27–50 | Females | Abdomen | Right thigh | Right calf |
Age (y) | Gender | Equations |
18–26 | Males | Constant A + Constant B − Constant C − 10.2 |
18–26 | Females | Constant A + Constant B − Constant C – 19.6 |
27–50 | Males | Constant A + Constant B − Constant C – 15 |
27–50 | Females | Constant A + Constant B − Constant C – 19.6 |
1st Stage 150 kgm/min for 3 min | ||||
HR: <80 bpm | HR: 80-89 bpm | HR: 90-100 bpm | HR: >100 bpm | |
2nd stage | 750 kgm/min | 600 kgm/min | 450 kgm/min | 300 kgm/min |
3rd stage | 900 kgm/min | 750 kgm/min | 600 kgm/min | 450 kgm/min |
4th stage | 1050 kgm/min | 900 kgm/min | 750 kgm/min | 600 kgm/min |
5th stage | 1200 kgm/min | 1050 kgm/min | 900 kgm/min | 750 kgm/min |
Parameters | HIIT | MICT |
Gender (M/F) | 3M/7F | 4M/6F |
Age (y) | 24 ± 3 | 26 ± 2 |
Height (m) | 1.65 ± 0.12 | 1.68 ± 0.09 |
Weight (kg) | 71.6 ± 10.9 | 73.7 ± 7.4 |
BMI (kg m−2) | 26.1 ± 1.1 | 25.9 ± 0.9 |
Body Fat percentage (%) | 26.3 ± 3 | 25.2 ± 2.9 |
Abdominal circumference (cm) | 92.1 ± 6.7 | 88.2 ± 4.3 |
VO2max (mL kg−1 min−1) | 38.6 ± 2.3 | 37.6 ± 2.1 |
Training | Δ Mean Percentage | SE | pValue | |
BMI (Kg/m2) | MICT HIIT | −4.3 −3.4 | 0.9 0.3 | 0.28 |
Fat mass % | MICT HIIT | −5.7 −8.2 | 0.7 0.9 | 0.06 |
Abdominal Circumference (cm) | MICT HIIT | −1.6 −1.1 | 0.3 0.4 | 0.30 |
VO2max (mL/Kg/min) | MICT HIIT | +3.2 +5.7 | 0.5 0.9 | 0.05 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russomando, L.; Bono, V.; Mancini, A.; Terracciano, A.; Cozzolino, F.; Imperlini, E.; Orrù, S.; Alfieri, A.; Buono, P. The Effects of Short-Term High-Intensity Interval Training and Moderate Intensity Continuous Training on Body Fat Percentage, Abdominal Circumference, BMI and VO2max in Overweight Subjects. J. Funct. Morphol. Kinesiol. 2020, 5, 41. https://doi.org/10.3390/jfmk5020041
Russomando L, Bono V, Mancini A, Terracciano A, Cozzolino F, Imperlini E, Orrù S, Alfieri A, Buono P. The Effects of Short-Term High-Intensity Interval Training and Moderate Intensity Continuous Training on Body Fat Percentage, Abdominal Circumference, BMI and VO2max in Overweight Subjects. Journal of Functional Morphology and Kinesiology. 2020; 5(2):41. https://doi.org/10.3390/jfmk5020041
Chicago/Turabian StyleRussomando, Luca, Vincenzo Bono, Annamaria Mancini, Alessia Terracciano, Francesca Cozzolino, Esther Imperlini, Stefania Orrù, Andreina Alfieri, and Pasqualina Buono. 2020. "The Effects of Short-Term High-Intensity Interval Training and Moderate Intensity Continuous Training on Body Fat Percentage, Abdominal Circumference, BMI and VO2max in Overweight Subjects" Journal of Functional Morphology and Kinesiology 5, no. 2: 41. https://doi.org/10.3390/jfmk5020041
APA StyleRussomando, L., Bono, V., Mancini, A., Terracciano, A., Cozzolino, F., Imperlini, E., Orrù, S., Alfieri, A., & Buono, P. (2020). The Effects of Short-Term High-Intensity Interval Training and Moderate Intensity Continuous Training on Body Fat Percentage, Abdominal Circumference, BMI and VO2max in Overweight Subjects. Journal of Functional Morphology and Kinesiology, 5(2), 41. https://doi.org/10.3390/jfmk5020041