The Effects of Short-Term High-Intensity Interval Training and Moderate Intensity Continuous Training on Body Fat Percentage, Abdominal Circumference, BMI and VO2max in Overweight Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participant Recruitment
2.2. Measurements
2.2.1. Anthropometric Evaluation
Estimated VO2max
2.2.2. 1-RM Estimation
2.3. RT Protocol
2.4. HIIT Protocol
2.5. MICT Protocol
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
VO2max | Maximal oxygen uptake |
HIIT | High-Intensity Interval Training |
MICT | Moderate-Intensity Continuous Training |
BMI | Body mass index |
References
- Gómez-Hernández, A.; Beneit, N.; Díaz-Castroverde, S.; Escribano, O. Differential Role of Adipose Tissues in Obesity and Related Metabolic and Vascular Complications. Int. J. Endocrinol. 2016, 2016, 1216783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, W.W.; Kraus, W.E.; Powell, K.E.; Haskell, W.L.; Janz, K.F.; Jakicic, J.M.; Troiano, R.P.; Sprow, K.; Torres, A.; Piercy, K.L.; et al. High-Intensity Interval Training for Cardiometabolic Disease Prevention. Med. Sci. Sports Exerc. 2019, 51, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine Position Stand. Appropriate Physical Activity Intervention Strategies for Weight Loss and Prevention of Weight Regain for Adults. Med. Sci. Sports Exerc. 2009, 41, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, M.M.; Zaepfel, A.; Bjornstad, P.; Nadeau, K.J. Age-related consequences of childhood obesity. Gerontology 2014, 60, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Annuario statistico italiano: Dati istat 2017. Available online: https://www.istat.it/it/archivio/annuario+statistico+italiano (accessed on 20 November 2019).
- American College of Sports Medicine Position Stand. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Maillard, F.; Pereira, B.; Boisseau, N. Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis. Sports Med. 2018, 48, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Kazakova, I.; Ludviksen, M.; Mehus, I.; Wisloff, U.; Kulseng, B.; Morgan, L.; King, N. High-Intensity Interval Training and Isocaloric Moderate-Intensity Continuous Training Result in Similar Improvements in Body Composition and Fitness in Obese Individuals. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.S.; Dalleck, L.C.; Tjonna, A.E.; Beetham, K.S.; Coombes, J.S. The impact of high-intensity interval training versus moderate intensity continuous training on vascular function: A systematic review and meta-analysis. Sports Med. 2015, 45, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Wewege, M.; van den Berg, R.; Ward, R.E.; Keech, A. The effects of high-intensity interval training vs.moderate-intensity continuous training on body composition in overweight and obese adults: Asystematic review and meta-analysis. Obes. Rev. 2017, 18, 635–646. [Google Scholar]
- Zhang, H.; Tong, T.K.; Qiu, W.; Wang, J.; Nie, J.; He, Y. Effect of high-intensity interval training protocol on abdominal fat reduction in overweight Chinese women: A randomized controlled trial. Kinesiology 2015, 47, 57–66. [Google Scholar]
- Alansare, A.; Alford, K.; Lee, S.; Church, T.; Jung, H.C. The Effects of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Heart Rate Variability in Physically Inactive Adults. Int. J. Environ. Res. Public Health 2018, 15, 1508. [Google Scholar] [CrossRef] [Green Version]
- Bianco, A.; Bellafiore, M.; Battaglia, G.; Paoli, A.; Caramazza, G.; Farina, F.; Palma, A. The Effects of Indoor Cycling Training in Sedentary Overweight Women. J. Sports Med. Phys. Fit. 2010, 50, 159–165. [Google Scholar]
- Bartlett, J.D.; Close, G.L.; MacLaren, D.P.; Gregson, W.; Drust, B.; Morton, J.P. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: Implications for exercise adherence. J. Sports Sci. 2011, 29, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Monks, L.; Seo, M.W.; Kim, H.B.; Jung, H.C.; Song, J.K. High-intensity interval training and athletic performance in Taekwondo athletes. Int. J. Sports Med. 2019, 40, 503–510. [Google Scholar]
- Hatle, H.; Støbakk, P.K.; Mølmen, H.E.; Brønstad, E.; Tjønna, A.E.; Steinshamn, S.; Skogvoll, E.; Wisløff, U.; Ingul, C.B.; Rognmo, Ø. Effect of 24 sessions of high-intensity aerobic interval training carried out at either high or moderate frequency, a randomized trial. PLoS ONE 2014, 9, e88375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, C.; Edwards, A.; Fysh, M.; Drust, B. Effects of high-intensity running training on soccer-specific fitness in professional male players. Appl. Physiol. Nutr. Metab. 2014, 39, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Laursen, P.B.; Shing, C.M.; Peake, J.M.; Coombes, J.S.; Jenkins, D.G. Interval training program optimization in highly trained endurance cyclists. Med. Sci. Sports Exerc. 2002, 34, 1801–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milanovic, Z.; Sporis, G.; Weston, M. Effectiveness of high intensity interval training (HIT) and continuous endurance training for VO2max improvements: A systematic review and meta-analysis of controlled trials. Sports Med. 2015, 45, 1469–1481. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Moro, T.; Marcolin, G.; Neri, M.; Bianco, A.; Palma, A.; Grimaldi, K. High-Intensity Interval Resistance Training (HIRT) Influences Resting Energy Expenditure and Respiratory Ratio in Non-Dieting Individuals. J. Transl. Med. 2012, 10, 237–244. [Google Scholar] [CrossRef]
- Batacan, R.B., Jr.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of high intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. Br. J. Sports Med. 2017, 51, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Jelleyman, C.; Yates, T.; O’Donovan, G.; Gray, L.J.; King, J.A.; Khunti, K.; Davies, M.J. The effects of high intensity interval training on glucose regulation and insulin resistance: A meta-analysis. Obes. Rev. 2015, 16, 942–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, H.S.; Sisson, S.B.; Short, K.R. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012, 42, 489–509. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Farland, C.V.; Guidotti, F.; Harbin, M.; Roberts, B.; Schuette, J.; Tuuri, A.; Doberstein, S.T.; Porcari, J.P. The Effects of High Intensity Interval Training vs. Steady State Training on Aerobic and Anaerobic Capacity. J. Sports Sci. Med. 2015, 14, 747–755. [Google Scholar] [PubMed]
- Caldeira, R.S.; Panissa, V.L.G.; Inoue, D.S.; Campos, E.Z.; Monteiro, P.A.; Giglio, B.M.; Pimentel, G.D.; Hofmann, P.; Lira, F.S. Impact to short-term high intensity intermittent training on different storages of body fat, leptin and soluble leptin receptor levels in physically active non-obese men: A pilot investigation. Clin. Nutr. ESPEN 2018, 28, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Keating, S.E.; Machan, E.A.; O’Connor, H.T.; Gerofi, J.A.; Sainsbury, A.; Caterson, I.D.; Johnson, N.A. Continuous exercise but not high intensity interval training improves fat distribution in overweight adults. J. Obes. 2014, 2014, 834865. [Google Scholar] [CrossRef] [PubMed]
- Winter, E.M.; Maughan, R.J. Requirements for ethics approvals. J. Sports Sci. 2009, 27, 985. [Google Scholar] [CrossRef] [PubMed]
- Katch, F.I.; Katch, V.L.; McArdle, E.D. Evaluation of Body Composition; Fitness Technologies: Santa Barbara, CA, USA, 2000. [Google Scholar]
- Ebbeling, C.B.; Ward, A.; Puleo, E.M.; Widrick, J.; Rippe, J.M. Development of a single-stage submaximal treadmill walking test. Med. Sci. Sports Exerc. 1991, 23, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Brzycki, M. A Practical Approach to Strength Training; McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- Golding, L.A. YMC Fitness Testing and Assessment Manual, 4th ed.; Human Kinetics: Champaign, IL, USA, 2000. [Google Scholar]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Macpherson, R.E.K.; Hazell, T.J.; Olver, T.D.; Paterson, D.H.; Lemon, P.W.R. Run Sprint Interval Training Improves Aerobic Performance but Not Maximal Cardiac Output. Med. Sci. Sports Exerc. 2011, 43, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Birkett, S.T.; Nichols, S.; Sawrey, R.; Gleadall Siddall, D.; McGregor, G.; Ingle, L. The effects of low volume high intensity interval training and circuit training on maximal oxygen uptake. Sport Sci. Health 2019, 15, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, B.J.; Tucker, W.J.; Bhammar, D.M.; Ryder, J.R.; Sweazea, K.L.; Gaesser, G.A. Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. J. Appl. Physiol. 2016, 121, 279–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baekkerud, F.H.; Solberg, F.; Leinan, I.M.; Wisloff, U.; Karlsen, T.; Rognmo, O. Comparison of three popular exercise modalities on VO2max in overweight and obese. Med. Sci. Sports Exerc. 2016, 48, 491–498. [Google Scholar] [CrossRef] [PubMed]
- McKay, B.R.; Paterson, D.H.; Kowalchuk, J.M. Effect of short term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. J. Appl. Physiol. 2009, 107, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Panissa, V.L.G.; Julio, U.F.; Hardt, F.; Kurashima, C.; Lira, F.S.; Takito, M.Y.; Franchini, E. Effect of exercise intensity and mode on acute appetite control in men and women. Appl. Physiol. Nutr. Metab. 2016, 41, 1083–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapp, E.G.; Chisholm, D.J.; Freund, J.; Boutcher, S.H. The effects of high- intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int. J. Obes. 2008, 32, 684–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keating, S.E.; Johnson, N.A.; Mielke, G.I.; Coombes, J.S. A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obes. Rev. 2017, 18, 943–964. [Google Scholar] [CrossRef] [PubMed]
- Helgerud, J.; Hoydal, K.; Wang, E.; Karlsen, T.; Berg, P.; Bjerkaas, M.; Simonsen, T.; Helgesen, C.; Hjorth, N.; Bach, R.; et al. Aerobic High-Intensity Intervals Improve VO2max More Than Moderate Training. Med. Sci. Sports Exerc. 2007, 39, 665–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibala, M.J.; Little, J.P.; Macdonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Vella, C.A.; Taylor, K.; Drummer, D. High-intensity interval and moderate-intensity continuous training elicit similar enjoyment and adherence levels in overweight and obese adults. Eur. J. Sport Sci. 2017, 17, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Reljic, D.; Lampe, D.; Wolf, F.; Zopf, Y.; Herrmann, H.J.; Fischer, J. Prevalence and predictors of dropout from high-intensity interval training in sedentary individuals: A meta-analysis. Scand. J. Med. Sci. Sports 2019, 29, 1288–1304. [Google Scholar] [CrossRef] [PubMed]
Age (y) | Gender | Site A | Site B | Site C |
18–26 | Males | Right upper arm | Abdomen | Right forearm |
18–26 | Females | Abdomen | Right thigh | Right forearm |
27–50 | Males | Buttocks | Abdomen | Right forearm |
27–50 | Females | Abdomen | Right thigh | Right calf |
Age (y) | Gender | Equations |
18–26 | Males | Constant A + Constant B − Constant C − 10.2 |
18–26 | Females | Constant A + Constant B − Constant C – 19.6 |
27–50 | Males | Constant A + Constant B − Constant C – 15 |
27–50 | Females | Constant A + Constant B − Constant C – 19.6 |
1st Stage 150 kgm/min for 3 min | ||||
HR: <80 bpm | HR: 80-89 bpm | HR: 90-100 bpm | HR: >100 bpm | |
2nd stage | 750 kgm/min | 600 kgm/min | 450 kgm/min | 300 kgm/min |
3rd stage | 900 kgm/min | 750 kgm/min | 600 kgm/min | 450 kgm/min |
4th stage | 1050 kgm/min | 900 kgm/min | 750 kgm/min | 600 kgm/min |
5th stage | 1200 kgm/min | 1050 kgm/min | 900 kgm/min | 750 kgm/min |
Parameters | HIIT | MICT |
Gender (M/F) | 3M/7F | 4M/6F |
Age (y) | 24 ± 3 | 26 ± 2 |
Height (m) | 1.65 ± 0.12 | 1.68 ± 0.09 |
Weight (kg) | 71.6 ± 10.9 | 73.7 ± 7.4 |
BMI (kg m−2) | 26.1 ± 1.1 | 25.9 ± 0.9 |
Body Fat percentage (%) | 26.3 ± 3 | 25.2 ± 2.9 |
Abdominal circumference (cm) | 92.1 ± 6.7 | 88.2 ± 4.3 |
VO2max (mL kg−1 min−1) | 38.6 ± 2.3 | 37.6 ± 2.1 |
Training | Δ Mean Percentage | SE | pValue | |
BMI (Kg/m2) | MICT HIIT | −4.3 −3.4 | 0.9 0.3 | 0.28 |
Fat mass % | MICT HIIT | −5.7 −8.2 | 0.7 0.9 | 0.06 |
Abdominal Circumference (cm) | MICT HIIT | −1.6 −1.1 | 0.3 0.4 | 0.30 |
VO2max (mL/Kg/min) | MICT HIIT | +3.2 +5.7 | 0.5 0.9 | 0.05 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russomando, L.; Bono, V.; Mancini, A.; Terracciano, A.; Cozzolino, F.; Imperlini, E.; Orrù, S.; Alfieri, A.; Buono, P. The Effects of Short-Term High-Intensity Interval Training and Moderate Intensity Continuous Training on Body Fat Percentage, Abdominal Circumference, BMI and VO2max in Overweight Subjects. J. Funct. Morphol. Kinesiol. 2020, 5, 41. https://doi.org/10.3390/jfmk5020041
Russomando L, Bono V, Mancini A, Terracciano A, Cozzolino F, Imperlini E, Orrù S, Alfieri A, Buono P. The Effects of Short-Term High-Intensity Interval Training and Moderate Intensity Continuous Training on Body Fat Percentage, Abdominal Circumference, BMI and VO2max in Overweight Subjects. Journal of Functional Morphology and Kinesiology. 2020; 5(2):41. https://doi.org/10.3390/jfmk5020041
Chicago/Turabian StyleRussomando, Luca, Vincenzo Bono, Annamaria Mancini, Alessia Terracciano, Francesca Cozzolino, Esther Imperlini, Stefania Orrù, Andreina Alfieri, and Pasqualina Buono. 2020. "The Effects of Short-Term High-Intensity Interval Training and Moderate Intensity Continuous Training on Body Fat Percentage, Abdominal Circumference, BMI and VO2max in Overweight Subjects" Journal of Functional Morphology and Kinesiology 5, no. 2: 41. https://doi.org/10.3390/jfmk5020041
APA StyleRussomando, L., Bono, V., Mancini, A., Terracciano, A., Cozzolino, F., Imperlini, E., Orrù, S., Alfieri, A., & Buono, P. (2020). The Effects of Short-Term High-Intensity Interval Training and Moderate Intensity Continuous Training on Body Fat Percentage, Abdominal Circumference, BMI and VO2max in Overweight Subjects. Journal of Functional Morphology and Kinesiology, 5(2), 41. https://doi.org/10.3390/jfmk5020041