Body Fat Assessment in International Elite Soccer Referees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FIFA Big Count 2006. Available online: http://www.fifa.com/mm/document/fifafacts/bcoffsurv/bigcount.statspackage_7024.pdf (accessed on 14 March 2019).
- Caballero, J.A.R.; Ojeda, E.B.; Sarmiento, S.; Valdivielso, M.N.; García-Manso, J.M.; García-Aranda, J.M.; Mallo, J.; Helsen, W. Physiological profile of national-level Spanish soccer referees. Int. Sportmed. J. 2011, 51, 633–638. [Google Scholar]
- Weston, M.; Castagna, C.; Impellizzeri, F.M.; Bizzini, M.; Williams, A.M.; Gregson, W. Science and medicine applied to soccer refereeing: An update. Sports Med. 2012, 42, 615–631. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, V.H.; Gonçalves, L.; Meneses, T.; Moreira, P. Nutritional intake of elite football referees. J. Sports Sci. 2014, 32, 1279–1285. [Google Scholar] [CrossRef]
- Helsen, W.; Bultynck, J.B. Physical and perceptual-cognitive demands of top-class refereeing in association football. J. Sports Sci. 2004, 22, 179–189. [Google Scholar] [CrossRef]
- Bizzini, M.; Junge, A.; Bahr, R.; Dvorak, J. Female soccer referees selected for the FIFA Women’s World Cup 2007: Survey of injuries and musculoskeletal problems. Br. J. Sports Med. 2009, 43, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Krustrup, P.; Helsen, W.; Randers, M.B.; Christensen, J.F.; Macdonald, C.; Rebelo, A.N.; Bangsbo, J. Activity profile and physical demands of football referees and assistant referees in international games. J. Sports Sci. 2009, 27, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Mallo, J.; Veiga, S.; Lopez de Subijana, C.; Navarro, E. Activity profile of top-class female soccer refereeing in relation to the position of the ball. J. Sci. Med. Sport 2010, 13, 129–132. [Google Scholar] [CrossRef]
- Weston, M.; Drust, B.; Gregson, W. Intensities of exercise during match-play in FA Premier League referees and players. J. Sports Sci. 2011, 29, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Barnes, C.; Archer, D.T.; Hogg, B.; Bush, M.; Bradley, P.S. The evolution of physical and technical performance parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef]
- Casajús, J.A.; Gonzalez-Aguero, A. Body composition evolution in elite referees; an eleven-years retrospective study. Int. J. Sports Med. 2015, 36, 550–553. [Google Scholar] [CrossRef]
- Schenk, K.; Bizzini, M.; Gatterer, H. Exercise physiology and nutritional perspectives of elite soccer referee ing. Scand. J. Med. Sci. Sports 2018, 28, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Gregson, W. Special populations: The referee and assistant referee. J. Sports Sci. 2006, 24, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Matias, C.N.; Marini, E.; Heymsfield, S.B.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Identifying Athlete Body Fluid Changes During a Competitive Season With Bioelectrical Impedance Vector Analysis. Int. J. Sports Physiol. Perform. 2020, 15, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Marini, E.; Campa, F.; Toselli, S.; Stagi, S.; Matias, C.N.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Phase Angle and Bioelectrical Impedance Vector Analysis in the Evaluation of Body Composition in Athletes. Clin. Nutr. 2020, 39, 447–454. [Google Scholar] [CrossRef]
- Núñez, J.; Diego, M.I.; Suárez- Arrones, L. Validity of Field Methods to Estimate Fat-Free Mass Changes Throughout the Season in Elite Youth Soccer Players. Front. Physiol. 2020, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Milsom, J.; Naughton, R.; O’Boyle, A.; Iqbal, Z.; Morgans, R.; Drust, B.; Morton, J.P. Body composition assessment of English premier league soccer players: A comparative DXA analysis of first team, U21 and U18 squads. J. Sports Sci. 2015, 33, 1799–1806. [Google Scholar] [CrossRef]
- Toselli, S.; Campa, F. Anthropometry and Functional Movement Patterns in Elite Male Volleyball Players of Different Competitive Levels. J. Strength Cond. Res. 2018, 32, 2601–2611. [Google Scholar] [CrossRef]
- Campa, F.; Semprini, G.; Júdice, P.B.; Messina, G.; Toselli, S. Anthropometry, Physical and Movement Features, and Repeated-sprint Ability in Soccer Players. Int. J. Sports Med. 2019, 40, 100–109. [Google Scholar] [CrossRef]
- Campa, F.; Piras, A.; Raffi, M.; Toselli, S. Functional Movement Patterns and Body Composition of High-Level Volleyball, Soccer, and Rugby Players. J. Sport Rehabil. 2019, 28, 740–745. [Google Scholar] [CrossRef]
- Yuhasz, M.S. The Effects of Sports Training on Body Fat in Man with Predictions of Optimal Body Weight; University of Illinois at Urbana-Champaign: Urbana, IL, USA, 1962. [Google Scholar]
- Faulkner, J.A. Physiology of Swimming and Diving; Baltimore Academic Press: New York, NY, USA, 1968; pp. 415–446. [Google Scholar]
- Durnin, J.V.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [Green Version]
- Eston, R.G.; Rowlands, A.V.; Charlesworth, S.; Davies, A.; Hoppitt, T. Prediction of DXA-determined whole body fat from skinfolds: Importance of including skinfolds from the thigh and calf in young, healthy men and women. Eur. J. Clin. Nutr. 2005, 59, 695–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reilly, T.; George, K.; Marfell-Jones, M.; Scott, M.; Sutton, L.; Wallace, J.A. How well do skinfold equations predict percent body fat in elite soccer players? Int. J. Sports Med. 2009, 30, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arrones, L.; Petri, C.; Maldonado, R.A.; Torreno, N.; Munguía-Izquierdo, D.; Di Salvo, V.; Méndez-Villanueva, A. Body fat assessment in elite soccer players: Cross-validation of different field methods. Sci. Med. Footb. 2018, 2, 203–208. [Google Scholar] [CrossRef]
- Mascherini, G.; Petri, C.; Galanti, G. Integrated total body composition and localized fat-free mass assessment. Sport Sci. Health 2015, 11, 217–225. [Google Scholar] [CrossRef]
- Steward, A.; Marfell-Jones, M. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2014. [Google Scholar]
- Carter, J.E.L. The Heath-Carter Anthropometric Somatotype; San Diego State University: San Diego, CA, USA, 2002. [Google Scholar]
- Siri, W.E. The gross composition of the body. Adv. Biol. Med. Phys. 1956, 4, 239–280. [Google Scholar] [PubMed]
- Wells, J.C.K. The Evolutionary Biology of Human Body Fatness: Thrift and Control; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Rodriguez-Sanchez, N.; Galloway, S.D. Errors in dual energy x-ray absorptiometry estimation of body composition induced by hypohydration. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nana, A.; Slater, G.J.; Hopkins, W.G.; Halson, S.L.; Martin, D.T.; West, N.P.; Burke, L.M. Importance of standardized DXA protocol for assessing physique changes in athletes. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 259–267. [Google Scholar] [CrossRef]
- Malina, R.M. Body composition in athletes: Assessment and estimated fatness. Clin. Sports Med. 2007, 26, 37–68. [Google Scholar] [CrossRef]
- Campa, F.; Matias, C.; Gatterer, H.; Toselli, S.; Koury, J.C.; Andreoli, A.; Melchiorri, G.; Sardinha, L.B.; Silva, A.M. Classic Bioelectrical Impedance Vector Reference Values for Assessing Body Composition in Male and Female Athletes. Int. J. Environ. Res. Public Health 2019, 16, 5066. [Google Scholar] [CrossRef] [Green Version]
- Campa, F.; Toselli, S. Bioimpedance Vector Analysis of Elite, Subelite, and Low-Level Male Volleyball Players. Int. J. Sports Physiol. Perform. 2018, 13, 1250–1253. [Google Scholar] [CrossRef]
- Jeukendrup, A.; Gleeson, M. Sport Nutrition: An Introduction to Energy Production and Performance; Human Kinetics Publishers: Champaign, IL, USA, 2010. [Google Scholar]
- Campa, F.; Silva, A.M.; Iannuzzi, V.; Mascherini, G.; Benedetti, L.; Toselli, S. The role of somatic maturation on bioimpedance patterns and body composition in male elite youth soccer players. Int. J. Environ. Res. Public Health 2019, 16, 4711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campa, F.; Silva, A.M.; Talluri, J.; Matias, C.N.; Badicu, G.; Toselli, S. Somatotype and Bioimpedance Vector Analysis: A New Target Zone for Male Athletes. Sustainability 2020, 12, 4365. [Google Scholar] [CrossRef]
- Garrido-Chamorro, R.; Sirvent-Belando, J.E.; González-Lorenzo, M.; Blasco-Lafarga, C.; Roche, E. Skinfold sum: Reference values for top athletes. Int. J. Morphol. 2012, 30, 803–809. [Google Scholar] [CrossRef] [Green Version]
- Santos, D.A.; Dawson, J.A.; Matias, C.N.; Rocha, P.M.; Minderico, C.S. Reference Values for Body Composition and Anthropometric Measurements in Athletes. PLoS ONE 2014, 9, 97846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascherini, G.; Petri, C.; Ermini, E.; Pizzi, A.; Ventura, A.; Galanti, G. Eating Habits and Body Composition of International Elite Soccer Referees. J. Hum. Kinet. 2020, 71, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Campa, F.; Piras, A.; Raffi, M.; Trofè, A.; Perazzolo, M.; Mascherini, G.; Toselli, S. The Effects of Dehydration on Metabolic and Neuromuscular Functionality during Cycling. Int. J. Environ. Res. Public Health 2020, 17, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Mean | SD | Minimum | Maximum |
---|---|---|---|---|
Age (year) | 38.8 | 3.6 | 29.5 | 44.1 |
Body Mass (kg) | 75.7 | 6.5 | 61.0 | 94.0 |
Height (m) | 1.8 | 0.1 | 1.7 | 1.9 |
Body mass index (kg/m2) | 23.1 | 1.3 | 20.6 | 25.8 |
Endomorphy | 2.7 | 0.9 | 1.2 | 5.1 |
Mesomorphy | 6.5 | 1.2 | 4.2 | 8.5 |
Ectomorphy | 2.9 | 0.7 | 1.2 | 4.6 |
Fat Mass by DXA (%) | 18.2 | 4.1 | 11.5 | 28.0 |
Fat Mass by Eston et al. [24] (%) | 12.0 | 2.4 | 9.4 | 18.8 |
Fat Mass by Yuhasz [21] (%) | 12.8 | 2.5 | 8.8 | 21.0 |
Fat Mass by Faulkner [22] (%) | 12.7 | 2.1 | 9.2 | 18.5 |
Fat Mass by Reilly et al. [25] (%) | 11.0 | 1.7 | 8.2 | 16.5 |
Fat Mass by Suarez et al. [26] (%) | 15.6 | 2.4 | 12.6 | 24.6 |
Fat Mass by Durnin and Womersley [23] (%) | 13.3 | 2.9 | 8.5 | 20.5 |
Fat Mass by Mean (%) | 12.9 | 2.2 | 9.7 | 19.4 |
∑2sk (mm) | 14.1 | 5.0 | 7.8 | 29.6 |
∑4sk-a (mm) | 32.4 | 8.5 | 21.0 | 57.3 |
∑4sk-b (mm) | 38.6 | 11.4 | 21.6 | 75.6 |
∑5sk (mm) | 41.7 | 10.7 | 27.9 | 74.5 |
∑6sk (mm) | 59.6 | 16.4 | 34.0 | 112.6 |
∑7sk (mm) | 62.9 | 16.6 | 38.9 | 116.8 |
∑9sk (mm) | 73.7 | 18.2 | 46.5 | 130.8 |
Variable | r | R2 | p-Value |
---|---|---|---|
∑2sk | 0.41 | 0.165 | 0.007 |
∑4sk | 0.75 | 0.559 | <0.001 |
∑4sk | 0.70 | 0.491 | <0.001 |
∑5sk | 0.72 | 0.519 | <0.001 |
∑6sk | 0.76 | 0.585 | <0.001 |
∑7sk | 0.77 | 0.588 | <0.001 |
∑9sk | 0.76 | 0.581 | <0.001 |
Fat Mass by Eston et al. [24] | 0.60 | 0.363 | <0.001 |
Fat Mass by Yuhasz [21] | 0.76 | 0.585 | <0.001 |
Fat Mass by Faulkner [22] | 0.77 | 0.598 | <0.001 |
Fat Mass by Reilly et al. [25] | 0.71 | 0.497 | <0.001 |
Fat Mass by Suarez et al. [26] | 0.74 | 0.549 | <0.001 |
Fat Mass by Durnin and Womersley [23] | 0.76 | 0.580 | <0.001 |
Fat Mass by Mean | 0.78 | 0.606 | <0.001 |
Variable | r | R2 | p-Value |
---|---|---|---|
Biceps | 0.25 | 0.060 | 0.113 |
Triceps | 0.57 | 0.321 | <0.001 |
Subscapular | 0.63 | 0.394 | <0.001 |
Iliac crest | 0.71 | 0.510 | <0.001 |
Supraspinal | 0.53 | 0.285 | <0.001 |
Pectoral | 0.02 | 0.001 | 0.885 |
Abdominal | 0.68 | 0.464 | <0.001 |
Anterior thigh | 0.37 | 0.135 | 0.016 |
Medial calf | 0.39 | 0.154 | 0.009 |
BMI | 0.10 | 0.011 | 0.505 |
Variable | Coefficient | R2 | SEE (%) |
---|---|---|---|
Model 1 | 0.510 | 2.90 | |
Intercept | 9.727 | ||
Iliac crest skinfold (mm) | 0.714 | ||
Model 2 | 0.610 | 2.62 | |
Intercept | 8.386 | ||
Iliac crest skinfold (mm) | 0.478 | ||
Abdominal skinfold (mm) | 0.395 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petri, C.; Campa, F.; Hugo Teixeira, V.; Izzicupo, P.; Galanti, G.; Pizzi, A.; Badicu, G.; Mascherini, G. Body Fat Assessment in International Elite Soccer Referees. J. Funct. Morphol. Kinesiol. 2020, 5, 38. https://doi.org/10.3390/jfmk5020038
Petri C, Campa F, Hugo Teixeira V, Izzicupo P, Galanti G, Pizzi A, Badicu G, Mascherini G. Body Fat Assessment in International Elite Soccer Referees. Journal of Functional Morphology and Kinesiology. 2020; 5(2):38. https://doi.org/10.3390/jfmk5020038
Chicago/Turabian StylePetri, Cristian, Francesco Campa, Vitor Hugo Teixeira, Pascal Izzicupo, Giorgio Galanti, Angelo Pizzi, Georgian Badicu, and Gabriele Mascherini. 2020. "Body Fat Assessment in International Elite Soccer Referees" Journal of Functional Morphology and Kinesiology 5, no. 2: 38. https://doi.org/10.3390/jfmk5020038
APA StylePetri, C., Campa, F., Hugo Teixeira, V., Izzicupo, P., Galanti, G., Pizzi, A., Badicu, G., & Mascherini, G. (2020). Body Fat Assessment in International Elite Soccer Referees. Journal of Functional Morphology and Kinesiology, 5(2), 38. https://doi.org/10.3390/jfmk5020038