Effects of the Enriched Sports Activities-Program on Executive Functions in Italian Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measures
2.3.1. Executive Functions Assessment
2.3.2. The ESA-Program
- -
- 9 units for each expertise level: 9 for beginner level, 9 for intermediate level, and 9 for advanced level.
- -
- 3 units for each cognitive domains: 3 for inhibitory control, 3 for WM, and 3 for shifting.
2.4. Data Analysis
3. Results
3.1. Preliminary Analyses
3.2. Post-Test Analyses
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ESA | Enriched Sport Activities |
EF | executive functions |
IG | Intervention group |
CG | Control group |
WM | WM |
PA | physical activity |
SES | socio-economic status |
CUS | University Sport Centre |
T1 | pre-test evaluation |
T2 | post-test evaluation |
FDS | Forward Digit Span |
BDS | Backward Digit Span |
FDS 1 | Forward Digit Span maximum number of digits recalled correctly |
FDS 2 | Forward Digit Span maximum of digits recalled correctly before making two consecutive errors |
BDS 1 | Backward Digit Span maximum number of digits recalled correctly |
BDS 2 | Backward Digit Span maximum of digits recalled correctly before making two consecutive errors |
CT | Congruent trials |
IT | Incongruent trials |
ConT | Control trials |
TMT | Trail Making Test |
TMT Err | Trail Making Test Errors |
TMT T | Trail Making Test Time |
n | Number |
s | Seconds |
ANCOVA | Analysis of Covariance |
References
- Aadland, K.N.; Moe, V.F.; Aadland, E.; Anderssen, S.A.; Resaland, G.K.; Ommundsen, Y. Relationship between physical activity, sedentary time, aerobic fitness, motor skills and executive function and academic performance in children. Ment. Health Phys. Act 2017, 4, 10–18. [Google Scholar] [CrossRef]
- Diamond, A. Activities and programs that improve children’s executive functions. Curr. Dir. Psychol. Sci. 2012, 21, 335–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chomitz, V.R.; Slining, M.M.; McGowan, R.J.; Mitchell, S.E.; Dawson, G.F.; Hacker, K.A. Is there a relationship between physical fitness and academic achievement? Positive results from public school children in the North eastern United States. J. Sch. Health 2009, 79, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Alesi, M.; Bianco, A.; Padulo, J.; Vella, F.P.; Petrucci, M.; Paoli, A.; Pepi, A.; Palma, A. Motor and cognitive development: The role of karate. Muscle Ligaments Tendons J. 2014, 4, 114–120. [Google Scholar] [CrossRef]
- Best, J.R. Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Dev. Rev. 2010, 30, 331–551. [Google Scholar] [CrossRef]
- Erickson, K.I.; Raji, C.A.; Lopez, O.L.; Becker, J.T.; Rosano, C.; Newman, A.B.; Gach, A.B.; Thompson, P.M.; Ho, A.J.; Kuller, L.H. Physical activity predicts gray matter volume in late adulthood: The cardiovascular health study. J. Neurol. 2010, 75, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, A.M.; Voss, M.W.; Prakash, R.S.; Chaddock, L.; Szabo, A.; White, S.M.; Wojcicki, T.R.; Mailey, E.; McAuley, E.; Kramer, A.F.; et al. The association between aerobic fitness and executive function is mediate by prefrontal cortex volume. Brain. Behav. Immun. 2012, 26, 811–819. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q.; Erickson, K.I.; Simonsick, E.M.; Aizenstein, H.J.; Glynn, N.W.; Boudreau, R.M.; Newman, A.B.; Kritchevsky, S.B.; Yaffe, K.; Harris, T.B.; et al. Physical activity predicts microstructural integrity in memory-related networks in very old adults. J. Gerontol A Biol. Sci. Med. Sci. 2014, 69, 1284–1290. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A.; Lee, C. Interventions shown to aid executive function development in children 4 to 12 years old. Science 2011, 333, 959–964. [Google Scholar] [CrossRef] [Green Version]
- Chaddock-Heyman, L.; Erickson, K.I.; Holtrop, J.L.; Voss, M.W.; Pontifex, M.B.; Raine, L.B.; Hillman, C.H.; Kramer, A.F. Aerobic fitness is associated with greater white matter integrity in children. Front. Hum. Neurosci. 2014, 8, 584. [Google Scholar] [CrossRef]
- Esteban-Cornejo, I.; Cadena-Sanchez, C.; Contreras-Rodriguez, O.; Verdejo-Roman, J.; Mora-Gonzalez, J.; Migueles, J.H.; Henriksson, P.; Davis, C.L.; Verdejo-Garcia, A.; Catena, A.; et al. A whole brain volumetric approach in overweight/obese children: Examining the association with different physical fitness components and academic performance. The ActiveBrain project. Neuroimage 2017, 159, 346–454. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Cornejo, I.; Rodriguez-Ayllon, M.; Verdejo-Román, J.; Cadena-Sanchez, C.; Chaddock-Heyman, L.; Raine, L.B.; Stillman, C.M.; Kramer, A.F.; Erickson, K.I.; Catena, A.; et al. Physical Fitness, White Matter Volume and Academic Performance in Children: Findings From ActiveBrains and FITKids2 Projects. Front. Psychol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Ayllon, M.; Esteban-Cornejo, I.; Verdejo-Román, J.; Muetzel, R.L.; Migueles, J.H.; Mora-Gonzalez, J.; Solis-Urra, P.; Erickson, K.I.; Hillman, C.H.; Catena, A.; et al. Physical activity, sedentary behavior, and white matter microstructure in children with overweight or obersity. Med. Sci. Sport Exerc. 2019, 52, 1218–1226. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Van der Ven, S.H.G.; Kroesbergen, E.H.; Boom, J.; Leseman, P.P.M. The development of executive functions and early mathematics: A dynamic relationship. Br. J. Educ. Psycholy 2012, 82, 100–119. [Google Scholar] [CrossRef]
- Davis, E.E.; Pitchford, N.J.; Limback, E. The interrelation between cognitive and motor development in typically developing children aged 4e11 years is underpinned by visual processing and fine manual control. Br. J. Educ. Psycholy 2011, 102, 569–584. [Google Scholar] [CrossRef]
- Boucard, G.K.; Albinet, C.T.; Bugaiska, A.; Bouquet, C.A.; Clarys, D.; Audiffren, M. Impact of Physical Activity on Executive Functions in Aging: A Selective Effect on Inhibition Among Old Adults. J. Sport Exerc. Psychol. 2012, 34, 808–827. [Google Scholar] [CrossRef]
- Budde, H.; Voelcker-Rehage, C.; ßyk-Kendziorra, S.; Ribeiro, P.; Tidow, G. Acute coordinative exercise improves attentional performance in adolescents. Neurosci. Lett. 2008, 441, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Planinsêc, J.; Pisôt, R. Motor coordination and intelligence level in adolescents. J. Adolesc. 2006, 41, 667–676. [Google Scholar]
- Haapala, E.A. Cardiorespiratory Fitness and Motor Skills in Relation to Cognition and Academic Performance in Children—A Review. J. Hum. Kinet. 2013, 36, 55–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillman, C.H.; Buck, S.M.; Themanson, J.R.; Pontifex, M.B.; Castelli, D.M. Aerobic Fitness and Cognitive Development: Event-Related Brain Potential and Task Performance Indices of Executive Control in Preadolescent Children. Dev. Psychol. 2009, 45, 114–129. [Google Scholar] [CrossRef] [Green Version]
- Mora-Gonzalez, J.; Esteban-Cornejo, I.; Cadenas-Sanchez, C.; Higueles, J.H.; Molina-García, P.; Rodriguez-Ayllon, M.; Herniksson, P.; Pontifex, M.B.; Catena, A.; Ortega, F.B. Physical fitness, physical activity, and the executive function in children with overweight and obesity. J. Pediat. 2019, 208, 50–56. [Google Scholar] [CrossRef]
- van der Fels, I.M.J.; te Wierike, S.C.M.; Hartman, E.; Elferink-Gemser, M.T.; Smith, J.; Visscher, C. The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. J. Sci. Med. Sport 2015, 18, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Mora-Gonzalez, J.; Esteban-Cornejo, I.; Cadenas-Sanchez, C.; Higueles, J.H.; Rodriguez-Ayllon, M.; Molina-García, P.; Hillman, C.H.; Catena, A.; Pontifex, M.B.; Ortega, F.B. Fitness, physical activity, working memory, and neuroelectric activity in children with overweight/obesity. Scand J. Med. Sci. Sports 2019, 29, 1352–1363. [Google Scholar] [CrossRef] [PubMed]
- Crova, C.; Struzzolino, I.; Marchetti, R.; Masci, I.; Vannozzi, G.; Forte, R.; Pesce, C. Cognitively challenging physical activity benefits executive function in overweight children. J. Sports Sci. 2013, 32, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Pesce, C.; Masci, I.; Marchetti, R.; Vazou, S.; Saakslahti, A.; Tomporowski, P.D. Deliberate play and preparation jointly benefit motor and cognitive Development: Mediated and moderated effects. Front. Psychol. 2016, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Jäger, K.; Egger, F.; Roebers, C.M.; Conzelmann, A. Cognitively engaging chronic physical activity, but not aerobic exercise, affects executive functions in primary school children: A group-randomized controlled trial. J. Sport Exerc. Psychol. 2015, 37, 575–591. [Google Scholar] [CrossRef]
- Westendorp, M.; Houwen, S.; Hartman, E.; Mombarg, R.; Smith, J.; Visscher, C. Effect of a ball skill intervention on Children’s ball skills and cognitive functions. Med. Sci. Sports Exerc. 2014, 46, 414–422. [Google Scholar] [CrossRef]
- Alesi, M.; Bianco, A.; Luppina, G.; Palma, A.; Pepi, A. Improving Children’s Coordinative Skills and Executive Functions: The Effects of a Football Exercise Program. Percept. Mot. Skills 2016, 122, 27–46. [Google Scholar] [CrossRef]
- Diamond, A. Effects of Physical Exercise on Executive Functions: Going beyond Simply Moving to Moving with Thought. Ann. Sports Med. Res. 2015, 2, 1011. [Google Scholar]
- Sommerville, J.A.; Decety, J. Weaving the fabric of social interaction: Articulating developmental psychology and cognitive neuroscience in the domain of motor cognition. Psychon. Bull. Rev. 2006, 13, 179–200. [Google Scholar] [PubMed]
- Lumiley, F.; Calhoun, S. Memory span for words presented auditorially. J. Appl. Psychol. 1934, 18, 773–784. [Google Scholar]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar]
- Retain, R.M. Trail Making Test: Manual for Administration and Scoring; Retain Neuropsychology Laboratory: Tucson, AZ, USA, 1992. [Google Scholar]
- IBM. SPSS Statistic for Windows; Version 20.0; IBM Corp: Armonk, NY, USA, 2011. [Google Scholar]
- Myatching, I.; Lagae, L. Developmental changes in visuo-spatial working memory in normally developing children: Event-related potentials study. Brain Dev. 2013, 35, 853–864. [Google Scholar] [CrossRef]
- Van Breukelen, G.J.P. ANCOVA versus change from baseline had more power in randomized studies and more bias in nonrandomized studies. J. Clin. Epidemiol. 2006, 59, 920–925. [Google Scholar] [CrossRef] [PubMed]
- Van Breukelen, G.J.P. ANCOVA versus CHANGE from baseline in nonrandomized studies: The difference. Multivar. Behav. Res. 2013, 48, 895–922. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum Associates: Hillsdale, NJ, USA, 1988; p. 532. [Google Scholar]
- Brydges, C.R.; Fox, A.M.; Reid, C.L.; Anderson, M. The differentiation of executive functions in middle and late childhood: A longitudinal latent-variable analysis. Intelligence 2014, 47, 34–43. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Logie, R.H. Working memory, the multi-component model. In Models of Working Memory: Mechanism of Active Maintenance and Executive Control; Miyake, A., Shah, P., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 28–61. [Google Scholar]
- van der Niet, A.G.; Smith, J.; Oosterlaan, J.; Scherder, E.J.; Hartman, E.; Visscher, C. Effect of a cognitively demanding aerobic intervention during recess on children’s physical fitness and executive functioning. Pediatr. Exerc. Sci. 2016, 28, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Ludyga, S.; Gerber, M.; Kamijo, K.; Brand, S.; Pühse, U. The effects of a school-based exercise program on neurophysiological indices of working memory operations in adolescents. J. Sci. Med. Sport 2018, 21, 833–838. [Google Scholar] [CrossRef]
- Martins, A.Q.; Kavussanu, M.; Willoughby, A.; Ring, C. Moderate intensity exercise facilitates working memory. Psychol. Sport Exerc. 2013, 14, 323–328. [Google Scholar] [CrossRef]
- López-Vicente, M.; Garcia-Aymerich, J.; Torrent-Pallicer, J.; Forns, J.; Ibarluzea, J.; Lertxundi, N.; Gonzáles, L.; Valera-Gran, D.; Torrent, M.; Dadvand, P.; et al. Are Early Physical Activity and Sedentary Behaviors Related to WM at 7 and 14 Years of Age? J. Pediatr. 2017, 188, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaddock, L.; Erickson, K.I.; Prakash, R.S.; Kim, J.S.; Voss, M.W.; VanPatter, M.; Pontifex, M.B.; Raine, L.B.; Konkel, A.; Hillman, C.H. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preasdolescent children. Brain Res. 2010, 1358, 172–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaeffer, D.J.; Krafft, C.E.; Schwarz, N.F.; Chi, L.; Rodrigue, A.L.; Pierce, J.E.; Allison, J.D.; Yanasak, J.E.; Liu, T.; Davis, C.L.; et al. An 8-month exercise intervention alters frontotemporal white matter integrity in overweight children. Psychophysiology 2014, 51, 728–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krafft, C.; Krafft, C.E.; Schaeffer, D.J.; Schwarz, N.F.; Chi, L.; Weinberger, A.L.; Pierce, J.E.; Rodrigue, A.L.; Allison, J.D.; Yanasak, N.E. Improved frontoparietal white matter integrity in overweight children in associated with attendance at an after-school exercise program. Dev. Neurosci. 2014, 36, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, S.; Fung, D.; Chang, Y.; Tsai, H.; Huang, C. Differences in WM as a function of Physical Activity in Children. Neuropsychology 2018, 32, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Sato, D.; Yamashiro, K.; Tsubaki, A.; Takehara, N.; Uetake, Y.; Nakano, S.; Maruyama, A. Inter-individual differences in working memory improvement after acute mild and moderate aerobic exercise. PLoS ONE 2018, 13, e0210053. [Google Scholar] [CrossRef]
- Barenberg, J.; Berse, T.; Dutke, S. Executive functions in learning processes: Do they benefit from physical activity? Educ. Res. Rev. 2011, 6, 208–222. [Google Scholar] [CrossRef]
- Best, J.R.; Miller, P.H.; Jones, L.L. Executive functions after age 5: Changes and correlates. Dev. Rev. 2009, 29, 180–200. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Bull, R.; Ho, R.M. Developmental changes in executive functioning. Child Dev. 2013, 84, 1933–1953. [Google Scholar] [CrossRef]
- Xu, F.; Han, Y.; Sabbagh, M.A.; Wang, T.; Ren, X.; Li, C. Developmental differences in the structure of executive function in middle childhood and adolescence. PLoS ONE 2013, 8, e77770. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.; Bianco, A.; Tabacchi, G.; Marques da Silva, C.; Loureiro, N.; Basile, M.; Giaccone, M.; Sturm, D.J.; Şahin, F.N.; Güler, Ö.; et al. Effects of a Physical Activity Intervention on Physical Fitness of schoolchildren: The Enriched Sport Activity Program. Int. J. Environ. Res. Public Health 2020, 17, 1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Demographics | Total Sample | Control Group | Intervention Group |
---|---|---|---|
N | 141 | 80 | 61 |
Age (year)—Mean (SD) | 8.54 (1.23) | 8.69 (.87) | 8.34 (1.57) |
Gender | |||
Boys | 56% | 47.5% | 67.2% |
Girls | 44% | 52.5% | 32.8% |
Socio-economic status (%) | |||
Medium low | 20.1% | 27.8% | 10% |
Medium | 34.5% | 45.6% | 20% |
Medium high | 45.3% | 26.6% | 70% |
ESA 5 Beginner Level | |||||
---|---|---|---|---|---|
Setting | Course 10 m | ||||
Duration | 15–25 Minutes | ||||
Domain of Movement | Circuit | Balance on the line ahead/behind–Alternate leaps–Quadruped position | |||
Executive Function | Working Memory | ||||
Baseline Phase | |||||
Balance on the line—ahead/behind; ESA walk/Alternate leaps; Balance on the line—behind/ahead; Alternate leaps/ESA walk; Balance on the line—ahead/behind; ESA walk/Alternate leaps; Balance on the line—behind/ahead; Alternate leaps/ESA walk; Balance on the line—ahead/behind; ESA walk/Alternate leaps; Balance on the line—behind/ahead; Alternate leaps/ESA walk | |||||
Experimental Phase | |||||
Oral Command | Expected Movement | ||||
Balance on the line—ahead/behind; ESA walk/Alternate leaps; Balance on the line—behind/ahead; Balance on the line—ahead/behind; ESA walk/Alternate leaps; Balance on the line—behind/ahead; Alternate leaps/ESA walk; Balance on the line—ahead/behind; ESA walk/Alternate leaps; Balance on the line—behind/ahead; Alternate leaps/ESA walk | Balance on the line—behind/ahead; Alternate leaps/ESA walk; Balance on the line—ahead/behind; ESA walk/Alternate leaps; Balance on the line—behind/ahead; Alternate leaps/ESA walk; Balance on the line—ahead/behind; ESA walk/Alternate leaps; Balance on the line—behind/ahead; Alternate leaps/ESA walk; Balance on the line—ahead/behind; ESA walk/Alternate leaps. |
Pre-Test (T1) | Post-Test (T2) | Post-Test Effect Size CG vs. IG | |||
---|---|---|---|---|---|
CG (n = 80) | IG (n = 61) | CG (n = 80) | IG (n = 61) | ||
Outcome Variables | M (SD) | M (SD) | M (SD) | M (SD) | D |
FDS1 (n) | 4.94 (1.00) | 5.21 (0.95) | 5.1 (0.83) | 5.47 (1.07) | 0.37* |
FDS2 (n) | 4.53 (0.86) | 4.74 (0.81) | 4.57 (0.88) | 4.95 (1.07) | 0.43 ** |
BDS1 (n) | 4.16 (0.99) | 4.38 (1.00) | 4.11 (0.95) | 4.29 (1.08) | 0.13 |
BDS2 (n) | 3.75 (1.06) | 3.79 (1.02) | 3.6 (0.93) | 3.93 (1.21) | 0.42 * |
Stroop CT (s) | 133.87 (34.50) | 140.25 (36.64) | 121.73 (22.82) | 125.24 (31.85) | 0.05 |
Stroop IT (s) | 155.19 (45.92) | 160.28 (50.79) | 141.41 (35.80) | 149.40 (40.23) | 0.16 |
Stroop ConT (s) | 130.05 (28.67) | 137.54 (30.84) | 133.63 (125.75) | 134.83 (33.45) | 0.04 |
TMT A Err (n) | 3.60 (2.71) | 3.52 (3.14) | 2.39 (2.08) | 2.88 (3.05) | 0.14 |
TMT A T (s) | 13,731.06 (5216.95) | 13,103.31 (4564.69) | 10,614.89 (4570.09) | 11,635.82 (5077.09) | 0.31 |
TMT B Err (n) | 7.63 (5.53) | 8.33 (6.26) | 6.2 (3.88) | 5.80 (5.16) | 0.19 |
TMT B T (s) | 20,565.70 (8169.99) | 22,967.07 (11,569.65) | 18,034.01 (16,829.12) | 16,597.41 (6504.81) | 0.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alesi, M.; Giordano, G.; Giaccone, M.; Basile, M.; Costa, S.; Bianco, A. Effects of the Enriched Sports Activities-Program on Executive Functions in Italian Children. J. Funct. Morphol. Kinesiol. 2020, 5, 26. https://doi.org/10.3390/jfmk5020026
Alesi M, Giordano G, Giaccone M, Basile M, Costa S, Bianco A. Effects of the Enriched Sports Activities-Program on Executive Functions in Italian Children. Journal of Functional Morphology and Kinesiology. 2020; 5(2):26. https://doi.org/10.3390/jfmk5020026
Chicago/Turabian StyleAlesi, Marianna, Giulia Giordano, Marcello Giaccone, Michele Basile, Sebastiano Costa, and Antonino Bianco. 2020. "Effects of the Enriched Sports Activities-Program on Executive Functions in Italian Children" Journal of Functional Morphology and Kinesiology 5, no. 2: 26. https://doi.org/10.3390/jfmk5020026
APA StyleAlesi, M., Giordano, G., Giaccone, M., Basile, M., Costa, S., & Bianco, A. (2020). Effects of the Enriched Sports Activities-Program on Executive Functions in Italian Children. Journal of Functional Morphology and Kinesiology, 5(2), 26. https://doi.org/10.3390/jfmk5020026