The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Resistance Training
Abstract
:1. Introduction
2. Biomechanical Analytics of Resistance Training Exercises
Highlight by Micah Gross and Silvio Lorenzetti
3. Velocity-Based Monitoring of Resistance Training
Highlight by Jan Seiler, Fabian Lüthy, and Micah Gross
4. Resistance Training for Adults with Musculoskeletal Deficits
Highlight by Federico Roggio and Giuseppe Musumeci
5. The Role of Capillarization on Skeletal Muscle Adaptation to Resistance Training
Highlight by Antonio Paoli and Tatiana Moro
6. What Makes Eccentric More Effective than Concentric and Isometric Muscle Actions?
Highlight by Helmi Chaabene
Funding
Conflicts of Interest
References
- Lopes, J.S.S.; Machado, A.F.; Micheletti, J.K.; de Almeida, A.C.; Cavina, A.P.; Pastre, C.M. Effects of training with elastic resistance versus conventional resistance on muscular strength: A systematic review and meta-analysis. SAGE Open Med. 2019, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Effects of Resistance Training Frequency on Measures of Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 1689–1697. [Google Scholar] [CrossRef] [PubMed]
- Chaves, T.S.; Pires de Campos Biazon, T.M.; Marcelino Eder Dos Santos, L.; Libardi, C.A. Effects of resistance training with controlled versus self-selected repetition duration on muscle mass and strength in untrained men. PeerJ 2020, 8, e8697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musumeci, G. The Use of Vibration as Physical Exercise and Therapy. J. Funct. Morphol. Kinesiol. 2017, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.P.; Ravalli, S.; Carlson, L.; Bridgeman, L.A.; Roggio, F.; Scuderi, S.; Maniaci, M.; Cortis, C.; Fusco, A.; Musumeci, G. The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Utility and Advantages of the Eccentric Training through the Isoinertial System. J. Funct. Morphol. Kinesiol. 2020, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Musumeci, G. Sarcopenia and Exercise “The State of the Art”. J. Funct. Morphol. Kinesiol. 2017, 2, 40. [Google Scholar] [CrossRef] [Green Version]
- American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef]
- Weakley, J.J.S.; Till, K.; Read, D.B.; Phibbs, P.J.; Roe, G.; Darrall-Jones, J.; Jones, B.L. The Effects of Superset Configuration on Kinetic, Kinematic, and Perceived Exertion in the Barbell Bench Press. J. Strength Cond. Res. 2020, 34, 65–72. [Google Scholar] [CrossRef]
- Wetmore, A.B.; Wagle, J.P.; Sams, M.L.; Taber, C.B.; DeWeese, B.H.; Sato, K.; Stone, M.H. Cluster Set Loading in the Back Squat: Kinetic and Kinematic Implications. J. Strength Cond. Res. 2019, 33 (Suppl. S1), S19–S25. [Google Scholar] [CrossRef]
- Morales-Artacho, A.J.; Garcia-Ramos, A.; Perez-Castilla, A.; Padial, P.; Gomez, A.M.; Peinado, A.M.; Perez-Cordoba, J.L.; Feriche, B. Muscle Activation During Power-Oriented Resistance Training: Continuous Vs. Cluster Set Configurations. J. Strength Cond. Res. 2019, 33 (Suppl. S1), S95–S102. [Google Scholar] [CrossRef]
- Eliassen, W.; Saeterbakken, A.H.; van den Tillaar, R. Comparison of Bilateral and Unilateral Squat Exercises on Barbell Kinematics and Muscle Activation. Int. J. Sports Phys. Ther. 2018, 13, 871–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mausehund, L.; Skard, A.E.; Krosshaug, T. Muscle Activation in Unilateral Barbell Exercises: Implications for Strength Training and Rehabilitation. J. Strength Cond. Res. 2019, 33 (Suppl. S1), S85–S94. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, J.; Mann, J.; Weston, G.; Poulsen, N.; Edmundsen, C.J.; Bentley, I.; Stone, M. Acute Effects Of knee Wraps/Sleeve On kinetics, Kinematics And muscle Forces During the barbell Back Squat. Sport Sci. Health 2019. [Google Scholar] [CrossRef]
- Lee, S.P.; Gillis, C.B.; Ibarra, J.J.; Oldroyd, D.F.; Zane, R.S. Heel-Raised Foot Posture Does Not Affect Trunk and Lower Extremity Biomechanics During a Barbell Back Squat in Recreational Weight Lifters. J. Strength Cond. Res. 2019, 33, 606–614. [Google Scholar] [CrossRef]
- Charlton, J.M.; Hammond, C.A.; Cochrane, C.K.; Hatfield, G.L.; Hunt, M.A. The Effects of a Heel Wedge on Hip, Pelvis and Trunk Biomechanics During Squatting in Resistance Trained Individuals. J. Strength Cond. Res. 2017, 31, 1678–1687. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.M.; Kreutzer, A.; Jenke, S.C.; Phillips, M.D.; Mitchell, J.B.; Jones, M.T. Velocity Drives Greater Power Observed During Back Squat Using Cluster Sets. J. Strength Cond. Res. 2016, 30, 235–243. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, J.J.; Sanchez-Medina, L. Movement Velocity as a Measure of Loading Intensity in Resistance Training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Courel-Ibanez, J.; Martinez-Cava, A.; Moran-Navarro, R.; Escribano-Penas, P.; Chavarren-Cabrero, J.; Gonzalez-Badillo, J.J.; Pallares, J.G. Reproducibility and Repeatability of Five Different Technologies for Bar Velocity Measurement in Resistance Training. Ann. Biomed. Eng. 2019, 47, 1523–1538. [Google Scholar] [CrossRef] [PubMed]
- Orange, S.T.; Metcalfe, J.W.; Marshall, P.; Vince, R.V.; Madden, L.A.; Liefeith, A. Test-Retest Reliability of a Commercial Linear Position Transducer (Gymaware Powertool) to Measure Velocity and Power in the Back Squat and Bench Press. J. Strength Cond. Res. 2020, 34, 728–737. [Google Scholar] [CrossRef] [Green Version]
- Perez-Castilla, A.; Piepoli, A.; Delgado-Garcia, G.; Garrido-Blanca, G.; Garcia-Ramos, A. Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities During the Bench Press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef]
- Izquierdo, M.; Gonzalez-Badillo, J.J.; Hakkinen, K.; Ibanez, J.; Kraemer, W.J.; Altadill, A.; Eslava, J.; Gorostiaga, E.M. Effect of Loading on Unintentional Lifting Velocity Declines During Single Sets of Repetitions to Failure During Upper and Lower Extremity Muscle Actions. Int. J. Sports Med. 2006, 27, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Medina, L.; Gonzalez-Badillo, J.J. Velocity Loss as an Indicator of Neuromuscular Fatigue During Resistance Training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- Banyard, H.G.; Tufano, J.J.; Delgado, J.; Thompson, S.W.; Nosaka, K. Comparison of the Effects of Velocity-Based Training Methods and Traditional 1rm-Percent-Based Training Prescription on Acute Kinetic and Kinematic Variables. Int. J. Sports Physiol. Perform. 2019, 14, 246–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorrell, H.F.; Smith, M.F.; Gee, T.I. Comparison of Velocity-Based and Traditional Percentage-Based Loading Methods on Maximal Strength and Power Adaptations. J. Strength Cond. Res. 2020, 34, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Ribas-Serna, J.; Lopez-Lopez, C.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Gonzalez-Badillo, J.J. Acute and Delayed Response to Resistance Exercise Leading or Not Leading to Muscle Failure. Clin. Physiol. Funct. Imaging 2017, 37, 630–639. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Morales-Alamo, D.; Perez-Suarez, I.; Calbet, J.A.L.; et al. Effects of Velocity Loss During Resistance Training on Athletic Performance, Strength Gains and Muscle Adaptations. Scand. J. Med. Sci. Sports 2017, 27, 724–735. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Rosell, D.; Yanez-Garcia, J.M.; Mora-Custodio, R.; Pareja-Blanco, F.; Ravelo-Garcia, A.G.; Ribas-Serna, J.; Gonzalez-Badillo, J.J. Velocity-Based Resistance Training: Impact of Velocity Loss in the Set on Neuromuscular Performance and Hormonal Response. Appl. Physiol. Nutr. Metab. 2020, in press. [Google Scholar] [CrossRef]
- Vernon, A.; Joyce, C.; Banyard, H.G. Readiness to Train: Return to Baseline Strength and Velocity Following Strength or Power Training. Int. J. Sports Sci. Coach. 2020, in press. [Google Scholar] [CrossRef]
- Nagata, A.; Doma, K.; Yamashita, D.; Hasegawa, H.; Mori, S. The Effect of Augmented Feedback Type and Frequency on Velocity-Based Training-Induced Adaptation and Retention. J. Strength Cond. Res. 2018, in press. [Google Scholar] [CrossRef]
- Hirsch, S.M.; Frost, D.M. Considerations for Velocity-Based Training: The Instruction to Move “as Fast as Possible” Is Less Effective Than a Target Velocity. J. Strength Cond. Res. 2019, in press. [Google Scholar] [CrossRef]
- Jukic, I.; Tufano, J.J. Rest Redistribution Functions as a Free and Ad-Hoc Equivalent to Commonly Used Velocity-Based Training Thresholds During Clean Pulls at Different Loads. J. Hum. Kinet. 2019, 68, 5–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stasinski, A.-N.; Zaras, N.; Methenitis, S.; Bogdanis, G.; Terzis, G. Rate of Force Development and Muscle Architecture after Fast and Slow Velocity Eccentric Training. Sports 2019, 7, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilk, M.; Golas, A.; Krzysztofik, M.; Nawrocka, M.; Zajac, A. The Effects of Eccentric Cadence on Power and Velocity of the Bar During the Concentric Phase of the Bench Press Movement. J. Sports Sci. Med. 2019, 18, 191–197. [Google Scholar] [PubMed]
- Suchomel, T.; Wagle, J.P.; Douglas, J.; Taber, C.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing Eccentric Resistance Training—Part 1: A Brief Review of Existing Methods. J. Funct. Morphol. Kinesiol. 2019, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Naili, J.E.; Wretenberg, P.; Lindgren, V.; Iversen, M.D.; Hedström, M.; Broström, E.W. Improved knee biomechanics among patients reporting a good outcome in knee-related quality of life one year after total knee arthroplasty. BMC Musculoskelet. Disord. 2017, 18, 122. [Google Scholar] [CrossRef] [Green Version]
- Pietrosimone, B.; Blackburn, J.T.; Padua, D.A.; Pfeiffer, S.J.; Davis, H.C.; Luc-Harkey, B.A.; Harkey, M.S.; Stanley Pietrosimone, L.; Frank, B.S.; Creighton, R.A.; et al. Walking gait asymmetries 6 months following anterior cruciate ligament reconstruction predict 12-month patient-reported outcomes. J. Orthop. Res. 2018, 36, 2932–2940. [Google Scholar] [CrossRef]
- Papa, E.V.; Dong, X.; Hassan, M. Resistance training for activity limitations in older adults with skeletal muscle function deficits: A systematic review. Clin. Interv. Aging. 2017, 12, 955–961. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, J.T.; Pietrosimone, B.; Harkey, M.S.; Luc, B.A.; Pamukoff, D.N. Quadriceps function and gait kinetics after anterior cruciate ligament reconstruction. Med. Sci. Sports Exerc. 2016, 48, 1664–1670. [Google Scholar] [CrossRef]
- Lewek, M.; Rudolph, K.; Axe, M.; Snyder-Mackler, L. The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin. Biomech. 2002, 17, 56–63. [Google Scholar] [CrossRef]
- Quittan, M. Aspects of physical medicine and rehabilitation in the treatment of deconditioned patients in the acute care setting: The role of skeletal muscle. Wien Med. Wochenschr. 2016, 166, 28–38. [Google Scholar] [CrossRef]
- Washabaugh, E.P.; Krishnan, C. A wearable resistive robot facilitates locomotor adaptations during gait. Restor. Neurol. Neurosci. 2018, 36, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Washabaugh, E.P.; Claflin, E.S.; Gillespie, R.B.; Krishnan, C. A novel application of eddy current braking for functional strength training during gait. Ann. Biomed. Eng. 2016, 44, 2760–2773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravalli, S.; Castrogiovanni, P.; Musumeci, G. Exercise as medicine to be prescribed in osteoarthritis. World J. Orthop. 2019, 10, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Browning, R.C.; Modica, J.R.; Kram, R.; Goswami, A. The effects of adding mass to the legs on the energetics and biomechanics of walking. Med. Sci. Sports Exerc. 2007, 39, 515–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeves, N.D.; Narici, M.V.; Maganaris, C.N. Effect of resistance training on skeletal muscle-specific force in elderly humans. J. Appl. Physiol. 2004, 96, 885–892. [Google Scholar] [CrossRef]
- Washabaugh, E.P.; Augenstein, T.E.; Krishnan, C. Functional resistance training during walking: Mode of application differentially affects gait biomechanics and muscle activation patterns. Gait Posture 2020, 75, 129–136. [Google Scholar] [CrossRef]
- Mun, K.R.; Yeo, B.B.S.; Guo, Z.; Chung, S.C.; Yu, H. Resistance training using a novel robotic walker for over-ground gait rehabilitation: A preliminary study on healthy subjects. Med. Biol. Eng. Comput. 2017, 55, 1873–1881. [Google Scholar] [CrossRef]
- Lawrence, M.; Hartigan, E.; Tu, C. Lower limb moments differ when towing a weighted sled with different attachment points. Sports Biomech. 2013, 12, 186–194. [Google Scholar] [CrossRef]
- Moro, T.; Brightwell, C.R.; Phalen, D.E.; McKenna, C.F.; Lane, S.J.; Porter, C.; Volpi, E.; Rasmussen, B.B.; Fry, C.S. Low skeletal muscle capillarization limits muscle adaptation to resistance exercise training in older adults. Exp. Gerontol. 2019, 127, 110723. [Google Scholar] [CrossRef]
- Snijders, T.; Nederveen, J.P.; Joanisse, S.; Leenders, M.; Verdijk, L.B.; van Loon, L.J.; Parise, G. Muscle fibre capillarization is a critical factor in muscle fibre hypertrophy during resistance exercise training in older men. J. Cachexia Sarcopenia Muscle 2017, 8, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Snijders, T.; Nederveen, J.P.; McKay, B.R.; Joanisse, S.; Verdijk, L.B.; van Loon, L.J.; Parise, G. Satellite cells in human skeletal muscle plasticity. Front. Physiol. 2015, 6, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nederveen, J.P.; Joanisse, S.; Snijders, T.; Ivankovic, V.; Baker, S.K.; Phillips, S.M.; Parise, G. Skeletal muscle satellite cells are located at a closer proximity to capillaries in healthy young compared with older men. J. Cachexia Sarcopenia Muscle 2016, 7, 547–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmerman, K.L.; Dhanani, S.; Glynn, E.L.; Fry, C.S.; Drummond, M.J.; Jennings, K.; Rasmussen, B.B.; Volpi, E. A moderate acute increase in physical activity enhances nutritive flow and the muscle protein anabolic response to mixed nutrient intake in older adults. Am. J. Clin. Nutr. 2012, 95, 1403–1412. [Google Scholar] [CrossRef] [PubMed]
- Moro, T.; Brightwell, C.R.; Deer, R.R.; Graber, T.G.; Galvan, E.; Fry, C.S.; Volpi, E.; Rasmussen, B.B. Muscle protein anabolic resistance to essential amino acids does not occur in healthy older adults before or after resistance exercise training. J. Nutr. 2018, 148, 900–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzog, W. Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions. J. Appl. Physiol. 2014, 116, 1407–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishikawa, K.C.; Monroy, J.A.; Uyeno, T.E.; Yeo, S.H.; Pai, D.K.; Lindstedt, S.L. Is titin a ‘winding filament’? A new twist on muscle contraction. Proc. R. Soc. B Biol. Sci. 2012, 279, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Hessel, A.L.; Lindstedt, S.L.; Nishikawa, K.C. Physiological mechanisms of eccentric contraction and its applications: A role for the giant titin protein. Front. Physiol. 2017, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Monroy, J.A.; Powers, K.L.; Gilmore, L.A.; Uyeno, T.A.; Lindstedt, S.L.; Nishikawa, K.C. What is the role of titin in active muscle? Exerc. Sport Sci. Rev. 2012, 40, 73–78. [Google Scholar] [CrossRef]
- Penailillo, L.; Blazevich, A.; Numazawa, H.; Nosaka, K. Metabolic and muscle damage profiles of concentric versus repeated eccentric cycling. Med. Sci. Sports Exerc. 2013, 45, 1773–1781. [Google Scholar] [CrossRef]
- Hoppeler, H. Moderate load eccentric exercise; a distinct novel training modality. Front. Physiol. 2016, 7, 483. [Google Scholar] [CrossRef] [Green Version]
- Duchateau, J.; Enoka, R.M. Neural control of lengthening contractions. J. Exp. Biol. 2016, 219, 197–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigland-Ritchie, B.; Woods, J.J. Integrated electromyogram and oxygen uptake during positive and negative work. J. Physiol. 1976, 260, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Pasquet, B.; Carpentier, A.; Duchateau, J.; Hainaut, K. Muscle fatigue during concentric and eccentric contractions. Muscle Nerve 2000, 23, 1727–1735. [Google Scholar] [CrossRef]
- Hortobágyi, T.; Katch, F.I. Eccentric and concentric torque-velocity relationships during arm flexion and extension. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 60, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Hollander, D.B.; Kraemer, R.R.; Kilpatrick, M.W.; Ramadan, Z.G.; Reeves, G.V.; Francois, M.; Hebert, E.P.; Tryniecki, J.L. Maximal eccentric and concentric strength discrepancies between young men and women for dynamic resistance exercise. J. Strength Cond. Res. 2007, 21, 34. [Google Scholar] [CrossRef] [PubMed]
- Roig, M.; O’brien, K.; Kirk, G.; Murray, R.; Mckinnon, P.; Shadgan, B.; Reid, W. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: A systematic review with meta-analysis. Br. J. Sports Med. 2009, 43, 556–568. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; Mcguigan, M. Chronic adaptations to eccentric training: A systematic review. Sports Med. 2017, 47, 917–941. [Google Scholar] [CrossRef]
- Hyldahl, R.D.; Olson, T.; Welling, T.; Groscost, L.; Parcell, A.C. Satellite cell activity is differentially affected by contraction mode in human muscle following a work-matched bout of exercise. Front. Physiol. 2014, 5, 485. [Google Scholar] [CrossRef] [Green Version]
- Vogt, M.; Hoppeler, H.H. Eccentric exercise: Mechanisms and effects when used as training regime or training adjunct. J. Appl. Physiol. 2014, 116, 1446–1454. [Google Scholar] [CrossRef] [Green Version]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paoli, A.; Moro, T.; Lorenzetti, S.; Seiler, J.; Lüthy, F.; Gross, M.; Roggio, F.; Chaabene, H.; Musumeci, G. The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Resistance Training. J. Funct. Morphol. Kinesiol. 2020, 5, 25. https://doi.org/10.3390/jfmk5020025
Paoli A, Moro T, Lorenzetti S, Seiler J, Lüthy F, Gross M, Roggio F, Chaabene H, Musumeci G. The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Resistance Training. Journal of Functional Morphology and Kinesiology. 2020; 5(2):25. https://doi.org/10.3390/jfmk5020025
Chicago/Turabian StylePaoli, Antonio, Tatiana Moro, Silvio Lorenzetti, Jan Seiler, Fabian Lüthy, Micah Gross, Federico Roggio, Helmi Chaabene, and Giuseppe Musumeci. 2020. "The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Resistance Training" Journal of Functional Morphology and Kinesiology 5, no. 2: 25. https://doi.org/10.3390/jfmk5020025
APA StylePaoli, A., Moro, T., Lorenzetti, S., Seiler, J., Lüthy, F., Gross, M., Roggio, F., Chaabene, H., & Musumeci, G. (2020). The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Resistance Training. Journal of Functional Morphology and Kinesiology, 5(2), 25. https://doi.org/10.3390/jfmk5020025