The Effects of Asparagus Racemosus Supplementation Plus 8 Weeks of Resistance Training on Muscular Strength and Endurance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Familiarization Visit
2.3. Pre-Training Test Visit
2.4. Training Visits
2.5. Post-Training Test Visit
2.6. Reliability of Bench Press 1RM and Endurance
2.7. Statistical Analyses
3. Results
3.1. Reliability
3.2. Adverse Events, Adherence, Compliance, and Dietary Recall
3.3. Bench Press 1RM and Bench Press Repetitions to Failure
3.4. Training Load
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Govindarajan, R.; Vijayakumar, M.; Pushpangadan, P. Antioxidant approach to disease management and the role of ‘Rasayana’ herbs of Ayurveda. J. Ethnopharmacol. 2005, 99, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Bopana, N.; Saxena, S. Asparagus racemosus—Ethnopharmacological evaluation and conservation needs. J. Ethnopharmacol. 2007, 110, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Rege, N.N.; Thatte, U.M.; Dahanukar, S.A. Adaptogenic properties of six rasayana herbs used in Ayurvedic medicine. Phytother. Res. 1999, 13, 275–291. [Google Scholar] [CrossRef]
- Alok, S.; Jain, S.K.; Verma, A.; Kumar, M.; Mahor, A.; Sabharwal, M. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): A review. Asian Pac. J. Trop. Dis. 2013, 3, 242–251. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Singh, N.; Kaur, A. Saponins in pulses and their health promoting activities: A review. Food Chem. 2017, 233, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Güçlü-Üstündağ, Ö.; Mazza, G. Saponins: Properties, Applications and Processing. Crit. Rev. Food Sci. Nutr. 2007, 47, 231–258. [Google Scholar] [CrossRef]
- Gurfinkel, D.M.; Rao, A.V. Soyasaponins: The relationship between chemical structure and colon anticarcinogenic activity. Nutr. Cancer 2003, 47, 24–33. [Google Scholar] [CrossRef]
- Liu, J.; Henkel, T. Traditional Chinese medicine (TCM): Are polyphenols and saponins the key ingredients triggering biological activities? Curr. Med. Chem. 2002, 9, 1483–1485. [Google Scholar] [CrossRef]
- Pingitore, A.; Lima, G.P.P.; Mastorci, F.; Quinones, A.; Iervasi, G.; Vassalle, C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition 2015, 31, 916–922. [Google Scholar] [CrossRef]
- McKenna, M.J.; Medved, I.; Goodman, C.A.; Brown, M.J.; Bjorksten, A.R.; Murphy, K.T.; Petersen, A.C.; Sostaric, S.; Gong, X. N-acetylcysteine attenuates the decline in muscle Na+,K+-pump activity and delays fatigue during prolonged exercise in humans. J. Physiol. 2006, 576, 279–288. [Google Scholar] [CrossRef]
- Levers, K.; Dalton, R.; Galvan, E.; Goodenough, C.; O’Connor, A.; Simbo, S.; Barringer, N.; Mertens-Talcott, S.U.; Rasmussen, C.; Greenwood, M.; et al. Effects of powdered Montmorency tart cherry supplementation on an acute bout of intense lower body strength exercise in resistance trained males. J. Int. Soc. Sports Nutr. 2015, 12, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wankhede, S.; Langade, D.; Joshi, K.; Sinha, S.R.; Bhattacharyya, S. Examining the effect of Withania somnifera supplementation on muscle strength and recovery: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2015, 12, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, A.; Datta, S.; Rhea, B.; Sinha, M.; Veeraragavan, M.; Gordillo, G.; Roy, S. The Human Skeletal Muscle Transcriptome in Response to Oral Shilajit Supplementation. J. Med. Food 2016, 19, 701–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, J.L.; Housh, T.J.; Hill, E.C.; Smith, C.M.; Schmidt, R.J.; Johnson, G.O. The effects of Shilajit supplementation on fatigue-induced decreases in muscular strength and serum hydroxyproline levels. J. Int. Soc. Sports Nutr. 2019, 16, 3. [Google Scholar] [CrossRef]
- Tanabe, Y.; Maeda, S.; Akazawa, N.; Zempo-Miyaki, A.; Choi, Y.; Ra, S.-G.; Imaizumi, A.; Otsuka, Y.; Nosaka, K. Attenuation of indirect markers of eccentric exercise-induced muscle damage by curcumin. Eur. J. Appl. Physiol. 2015, 115, 1949–1957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar]
- American College of Sports Medicine; Riebe, D.; Ehrman, J.K.; Liguori, G.; Magal, M. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2018; ISBN 978-1-4963-3906-5. [Google Scholar]
- Miller, T.A. NSCA’s Guide to Tests and Assessments; Human Kinetics: Champagne, IL, USA, 2012; ISBN 978-1-4925-8278-6. [Google Scholar]
- Roberts, M.D.; Haun, C.T.; Mobley, C.B.; Mumford, P.W.; Romero, M.A.; Roberson, P.A.; Vann, C.G.; McCarthy, J.J. Physiological Differences Between Low Versus High Skeletal Muscle Hypertrophic Responders to Resistance Exercise Training: Current Perspectives and Future Research Directions. Front. Physiol. 2018, 9, 834. [Google Scholar] [CrossRef]
- Kamat, J.P.; Boloor, K.K.; Devasagayam, T.P.; Venkatachalam, S.R. Antioxidant properties of Asparagus racemosus against damage induced by gamma-radiation in rat liver mitochondria. J. Ethnopharmacol. 2000, 71, 425–435. [Google Scholar] [CrossRef]
- Jackson, M.J. Control of reactive oxygen species production in contracting skeletal muscle. Antioxid. Redox Signal. 2011, 15, 2477–2486. [Google Scholar] [CrossRef]
- Moylan, J.S.; Reid, M.B. Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 2007, 35, 411–429. [Google Scholar] [CrossRef]
- Reid, M.B. Reactive Oxygen Species as Agents of Fatigue. Med. Sci. Sports Exerc. 2016, 48, 2239–2246. [Google Scholar] [CrossRef] [PubMed]
- Patlevič, P.; Vašková, J.; Švorc, P.; Vaško, L.; Švorc, P. Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr. Med. Res. 2016, 5, 250–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, S.K.; Jackson, M.J. Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiol. Rev. 2008, 88, 1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiboonpun, N.; Phuwapraisirisan, P.; Tip-pyang, S. Identification of antioxidant compound from Asparagus racemosus. Phytother. Res. 2004, 18, 771–773. [Google Scholar] [CrossRef]
- Ismaeel, A.; Holmes, M.; Papoutsi, E.; Panton, L.; Koutakis, P. Resistance Training, Antioxidant Status, and Antioxidant Supplementation. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 539–547. [Google Scholar] [CrossRef]
- Merry, T.L.; Ristow, M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J. Physiol. 2016, 594, 5135–5147. [Google Scholar] [CrossRef]
- Aguiló, A.; Tauler, P.; Sureda, A.; Cases, N.; Tur, J.; Pons, A. Antioxidant diet supplementation enhances aerobic performance in amateur sportsmen. J. Sports Sci. 2007, 25, 1203–1210. [Google Scholar] [CrossRef]
- Bowtell, J.L.; Sumners, D.P.; Dyer, A.; Fox, P.; Mileva, K.N. Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Med. Sci. Sports Exerc. 2011, 43, 1544–1551. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine (U.S.) (Ed.) Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academies Press: Washington, DC, USA, 2005; ISBN 978-0-309-08525-0. [Google Scholar]
- Food-Based Assessment of Dietary Intake. In Dietary Risk Assessment in the WIC Program; National Academies Press (US): Washington, DC, USA, 2002.
Asparagus Racemosus | Placebo | |
---|---|---|
Age (years) | 20.1 ± 1.2 | 20.7 ± 1.1 |
Height (cm) | 180.7 ± 6.3 | 178.6 ± 5.5 |
Body Mass (kg) | ||
Pre-Training | 88.2 ± 12.8 | 81.4 ± 11.0 |
Post-Training | 88.6 ± 13.0 | 80.5 ± 11.6 |
Visit 1 (Mean ± SD) | Visit 2 (Mean ± SD) | p-Value | ICC | ICC 95% CI | SEM | CV (%) | MD | |
---|---|---|---|---|---|---|---|---|
1RM (kg) | 104.8 ± 22.7 | 105.6 ± 22.6 | 0.440 | 0.994 | 0.98–0.99 | 2.53 | 2.4 | 7.01 |
Repetitions to Failure | 13.8 ± 1.5 | 14.4 ± 1.3 | 0.051 | 0.90 | 0.58–0.97 | 0.68 | 4.8 | 1.90 |
Pre-Training | Post-Training | |||
---|---|---|---|---|
Asparagus Racemosus | Placebo | Asparagus Racemosus | Placebo | |
Total Calories (kcal) | 1623.1 ± 524.2 | 1639.0 ± 505.1 | 1544.1 ± 432.15 | 1953.2 ± 946.6 |
Carbohydrate (g) | 154.1 ± 45.1 | 170.5 ± 55.5 | 138.6 ± 50.5 | 218.7 ± 151.2 |
Fat (g) | 61.0 ± 23.5 | 54.4 ± 19.1 | 73.9 ± 45.4 | 65.5 ± 27.2 |
Protein (g) | 112.8 ± 83.3 | 102.3 ± 35.0 | 97.8 ± 53.5 | 118.6 ± 45.6 |
Participant | Pre-Training 1RM (kg) | Post-Training 1RM (kg) | Absolute Change (kg) | Percent Change (%) |
---|---|---|---|---|
Asparagus Racemosus Group | ||||
1 | 70.3 | 83.9 | 13.6 * | 19.3 |
2 | 79.4 | 93.0 | 13.6 * | 17.1 |
3 | 124.7 | 124.7 | 0.0 | 0.0 |
4 | 83.9 | 102.1 | 18.2 * | 21.6 |
5 | 115.7 | 124.7 | 9.1 * | 7.8 |
6 | 102.1 | 115.7 | 13.6 * | 13.3 |
7 | 52.2 | 65.8 | 13.6 * | 26.1 |
8 | 90.7 | 97.5 | 6.8 | 7.5 |
9 | 102.1 | 115.7 | 13.6 * | 13.3 |
10 | 79.4 | 93.0 | 13.6 * | 17.1 |
Mean | 90.0 ± 21.7 | 101.6 ± 18.9 | 11.6 ± 5.1 | 14.3 ± 7.7 ** |
Adjusted Mean | 106.1 ± 5.1 | |||
Placebo Group | ||||
1 | 83.9 | 93.0 | 9.1 * | 10.8 |
2 | 79.4 | 81.7 | 2.3 | 2.9 |
3 | 65.8 | 68.0 | 2.3 | 3.5 |
4 | 142.9 | 154.2 | 11.3 * | 7.9 |
5 | 102.1 | 115.7 | 13.6 * | 13.3 |
6 | 111.1 | 117.9 | 6.8 | 6.1 |
7 | 97.5 | 111.1 | 13.6 * | 14.0 |
8 | 120.2 | 124.7 | 4.5 | 3.8 |
Mean | 100.4 ± 24.6 | 108.3 ± 26.9 | 7.9 ± 4.7 | 7.8 ± 4.5 |
Adjusted Mean | 102.7 ± 5.1 |
Participant | Pre-Training Repetitions | Post-Training Repetitions | Absolute Change (Repetitions) | Percent Change (%) |
---|---|---|---|---|
Asparagus Racemosus Group | ||||
1 | 12 | 20 | 8 * | 66.7 |
2 | 14 | 15 | 1 | 7.1 |
3 | 14 | 13 | 1 | 7.0 |
4 | 13 | 18 | 5 * | 38.5 |
5 | 15 | 18 | 3 * | 20.0 |
6 | 15 | 17 | 2 * | 13.3 |
7 | 10 | 19 | 9 * | 90.0 |
8 | 15 | 19 | 4 * | 26.7 |
9 | 11 | 16 | 5 * | 45.5 |
10 | 17 | 20 | 3 * | 17.6 |
Mean | 13.6 ± 2.1 | 17.5 ± 2.3 | 4.1 ± 2.7 | 33.2 ± 27.4 |
Adjusted Mean | 17.5 ± 2.2 ** | |||
Placebo Group | ||||
1 | 14 | 14 | 0 | 0.0 |
2 | 14 | 14 | 0 | 0.0 |
3 | 11 | 12 | 1 | 9.1 |
4 | 11 | 14 | 3 * | 27.3 |
5 | 14 | 15 | 1 | 7.1 |
6 | 14 | 15 | 1 | 7.1 |
7 | 15 | 19 | 4 * | 26.7 |
8 | 15 | 18 | 3 * | 20.0 |
Mean | 13.5 ± 1.6 | 15.1 ± 2.3 | 1.6 ± 1.5 | 12.2 ± 11.1 |
Adjusted Mean | 15.2 ± 2.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anders, J.P.V.; Keller, J.L.; Smith, C.M.; Hill, E.C.; Housh, T.J.; Schmidt, R.J.; Johnson, G.O. The Effects of Asparagus Racemosus Supplementation Plus 8 Weeks of Resistance Training on Muscular Strength and Endurance. J. Funct. Morphol. Kinesiol. 2020, 5, 4. https://doi.org/10.3390/jfmk5010004
Anders JPV, Keller JL, Smith CM, Hill EC, Housh TJ, Schmidt RJ, Johnson GO. The Effects of Asparagus Racemosus Supplementation Plus 8 Weeks of Resistance Training on Muscular Strength and Endurance. Journal of Functional Morphology and Kinesiology. 2020; 5(1):4. https://doi.org/10.3390/jfmk5010004
Chicago/Turabian StyleAnders, John Paul V., Joshua L. Keller, Cory M. Smith, Ethan C. Hill, Terry J. Housh, Richard J. Schmidt, and Glen O. Johnson. 2020. "The Effects of Asparagus Racemosus Supplementation Plus 8 Weeks of Resistance Training on Muscular Strength and Endurance" Journal of Functional Morphology and Kinesiology 5, no. 1: 4. https://doi.org/10.3390/jfmk5010004
APA StyleAnders, J. P. V., Keller, J. L., Smith, C. M., Hill, E. C., Housh, T. J., Schmidt, R. J., & Johnson, G. O. (2020). The Effects of Asparagus Racemosus Supplementation Plus 8 Weeks of Resistance Training on Muscular Strength and Endurance. Journal of Functional Morphology and Kinesiology, 5(1), 4. https://doi.org/10.3390/jfmk5010004