The Influence of Applied Blood Flow Restriction Cuffs on Kinematics of Submaximal Sprinting
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Abe, T.; Loenneke, J.P.; Fahs, C.A.; Rossow, L.M.; Thiebaud, R.S.; Bemben, M.G. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: A brief review. Clin. Physiol. Funct. Imaging 2012, 32, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Loenneke, J.P.; Wilson, J.M.; Marin, P.J.; Zourdos, M.C.; Bemben, M.G. Low intensity blood flow restriction training: A meta-analysis. Eur. J. Appl. Physiol. 2011, 112, 1849–1859. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Abe, T.; Brechue, W.F.; Iida, H.; Takano, H.; Meguro, K.; Kurano, M.; Nakajima, T. Venous blood gas and metabolite response to low-intensity muscle contractions with external limb compression. Metabolism 2012, 59, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Ellefsen, S.; Hammarstrom, D.; Strand, T.A.; Zacharoff, E.; Whist, J.E.; Rauk, I.; Nygaard, H.; Vegge, G.; Hanestadhaugen, M.; Wernbom, M.; et al. Blood flow-restricted strength training displays high functional and biological efficacy in women: A within-subject comparison with high-load strength training. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R767–R779. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, M.; Abe, T.; Sato, Y.; Bemben, M.G. The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur. J. Appl. Physiol. 2010, 108, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Laurentino, G.C.; Ugrinowitsch, C.; Roschel, H.; Aoki, M.S.; Soares, A.G.; Neves, M.J.; Aihara, A.Y.; Fernandes, A.R.; Tricoli, Y. Strength training with blood flow restriction diminishes myostatin gene expression. Med. Sci. Sports Exerc. 2012, 44, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Fujita, S.; Nakajima, T.; Sakamaki, M.; Ozaki, H.; Ogasawara, R.; Sugaya, M.; Kudo, M.; Kurano, M.; Yasuda, T.; et al. Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2max in young men. J. Sports Sci. Med. 2010, 9, 452–458. [Google Scholar] [PubMed]
- Ozaki, H.; Sakamaki, M.; Yasuda, T.; Fujita, S.; Ogasawara, R.; Sugaya, M.; Nakajima, T.; Abe, T. Increases in thigh muscle volume and strength by walk training with leg blood flow reduction in older participants. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, J.K.; Choi, H.; Kim, H.G.; Beekley, M.D.; Nho, H. Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. Eur. J. Appl. Physiol. 2010, 109, 591–600. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, M.F.; Caputo, F.; Corvino, R.B.; Denadai, B.C. Short-term low-intensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scand. J. Med. Sci. Sports 2016, 26, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Behringer, M.; Behlau, D.; Montag, J.; McCourt, M.; Mester, J. Low intensity sprint training with blood flow restriction improves 100 m dash. J. Strength Cond. Res. 2017, 31, 2462–2472. [Google Scholar] [CrossRef] [PubMed]
- Lins, C.A.; Neto, F.L.; Amorim, A.B.; Macedo, L.D.B.; Brasileiro, J.S. Kinesio Taping(R) does not alter neuromuscular performance of femoral quadriceps or lower limb function in healthy subjects: Randomized, blind, controlled, clinical trial. Man. Ther. 2013, 18, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Chinn, L.; Dicharry, J.; Hart, J.M.; Saliba, S.; Wilder, R.; Hertel, J. Gait kinematics after taping in participants with chronic ankle instability. J. Athl. Train. 2014, 49, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Slawinski, J.; Termoz, N.; Rabita, G.; Guilhem, G.; Dorel, S.; Morin, J.B.; Samozino, P. How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand. J. Med. Sci. Sports 2017, 27, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Loenneke, J.P.; Allen, K.M.; Mouser, J.G.; Thiebaud, R.S.; Kim, D.; Abe, T.; Bemben, M.D. Blood flow restriction in the upper and lower limbs is predicted by limb circumference and systolic blood pressure. Eur. J. Appl. Physiol. 2015, 115, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Loenneke, J.P.; Thiebaud, R.S.; Fahs, C.A.; Rossow, L.M.; Abe, T.; Bemben, M.G. Effect of cuff type on arterial occlusion. Clin. Physiol. Funct. Imag. 2013, 33, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Counts, B.R.; Dankel, S.J.; Barnett, B.E.; Kim, D.; Mouser, J.G.; Allen, K.M.; Thiebaud, R.S.; Abe, T.; Bemben, M.G.; Loenneke, J.P. Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve 2016, 53, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Nagahara, R.; Matsubayashi, T.; Matsuo, A.; Zushi, K. Kinematics of transition during human accelerated sprinting. Biol. Open 2014, 3, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Frishberg, B.A. An analysis of overground and treadmill sprinting. Med. Sci. Sports Exerc. 1983, 15, 478–485. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.; Riches, P.E. A comparison of sprinting kinematics on two types of treadmill and over-ground. Scand. J. Med. Sci. Sports 2007, 17, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Ae, M. Body segment inertia parameters for Japanese children and athletes. Jpn. J. Sports Sci. 1996, 15, 155–162. [Google Scholar]
- Nagahara, R.; Zushi, K. Determination of foot strike and toe-off event timing during maximal sprint using kinematic data. Int. J. Sport Health Sci. 2013, 11, 96–100. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 10 0805802835. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Belli, A.; Kyrolainen, H.; Komi, P.V. Moment and power of lower limb joints in running. Int. J. Sports Med. 2002, 23, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.R. The dynamics of running. In Biomechanics in Sport; Zatsiorsky, V., Ed.; Blackwell Sciences Ltd.: Oxford, UK, 2000; pp. 161–183. ISBN 10 0632053925. [Google Scholar]
Variables (Units) | Normal | BFR | Difference | p Values | Effect Size | Correlation Coefficients (p Value) |
---|---|---|---|---|---|---|
Running speed (m/s) | 6.61 ± 0.31 | 6.63 ± 0.35 | 0.02 ± 0.13 | 0.870 | 0.074 | 0.923 (<0.001) |
Step length (m) | 2.07 ± 0.15 | 2.07 ± 0.16 | −0.01 ± 0.02 | 0.925 | 0.043 | 0.991 (<0.001) |
Step frequency (Hz) | 3.19 ± 0.16 | 3.22 ± 0.14 | 0.02 ± 0.05 | 0.762 | 0.138 | 0.953 (<0.001) |
Support time (s) | 0.143 ± 0.010 | 0.144 ± 0.010 | 0.001 ± 0.003 | 0.811 | 0.108 | 0.956 (<0.001) |
Flight time (s) | 0.171 ± 0.016 | 0.168 ± 0.016 | −0.003 ± 0.003 | 0.653 | 0.204 | 0.983 (<0.001) |
Variables (Units) | Normal | BFR | Difference | p Values | Effect Size | Correlation Coefficients (p Value) | |
---|---|---|---|---|---|---|---|
Right | Hip angle at FS (deg) | 146.0 ± 4.5 | 145.8 ± 4.8 | −0.1 ± 1.5 | 0.948 | 0.030 | 0.952 (<0.001) |
Hip angle at TO (deg) | 201.4 ± 3.2 | 200.6 ± 4.1 | −0.8 ± 1.7 | 0.642 | 0.211 | 0.929 (<0.001) | |
Knee angle at FS (deg) | 157.2 ± 3.2 | 157.0 ± 3.4 | −0.2 ± 1.1 | 0.918 | 0.047 | 0.948 (<0.001) | |
Knee angle at TO (deg) | 161.4 ± 4.1 | 160.0 ± 4.0 | −1.4 ± 1.5 | 0.455 | 0.342 | 0.928 (<0.001) | |
Hip angular velocity at FS (deg/s) | 125 ± 45 | 111 ± 35 | −14 ± 21 | 0.445 | 0.349 | 0.889 (0.001) | |
Hip angular velocity at TO (deg/s) | 245 ± 44 | 268 ± 58 | 22 ± 30 | 0.352 | 0.427 | 0.867 (0.001) | |
Knee angular velocity at FS (deg/s) | −387 ± 60 | −412 ± 54 | −25 ± 31 | 0.343 | 0.435 | 0.854 (0.002) | |
Knee angular velocity at TO (deg/s) | −78 ± 79 | −35 ± 80 | 43 ± 41 | 0.244 | 0.538 | 0.866 (0.001) | |
Left | Hip angle at FS (deg) | 144.2 ± 4.4 | 144.0 ± 4.8 | −0.2 ± 1.0 | 0.911 | 0.050 | 0.981 (<0.001) |
Hip angle at TO (deg) | 202.3 ± 3.3 | 201.8 ± 4.3 | −0.5 ± 1.9 | 0.791 | 0.121 | 0.904 (<0.001) | |
Knee angle at FS (deg) | 156.2 ± 5.0 | 155.7 ± 5.0 | −0.5 ± 0.8 | 0.832 | 0.096 | 0.988 (<0.001) | |
Knee angle at TO (deg) | 162.2 ± 2.7 | 161.4 ± 3.5 | −0.8 ± 2.2 | 0.563 | 0.263 | 0.788 (0.007) | |
Hip angular velocity at FS (deg/s) | 141 ± 44 | 136 ± 50 | −5 ± 24 | 0.816 | 0.105 | 0.872 (0.001) | |
Hip angular velocity at TO (deg/s) | 254 ± 61 | 270 ± 63 | 17 ± 28 | 0.551 | 0.271 | 0.900 (<0.001) | |
Knee angular velocity at FS (deg/s) | −385 ± 66 | −397 ± 70 | −12 ± 36 | 0.705 | 0.172 | 0.866 (0.001) | |
Knee angular velocity at TO (deg/s) | −99 ± 95 | −70 ± 91 | 29 ± 38 | 0.491 | 0.314 | 0.917 (<0.001) |
Variables (Units) | Normal | BFR | Difference | p Values | Effect Size | Correlation Coefficients (p Value) | |
---|---|---|---|---|---|---|---|
Right | Hip Max. Flexion angle (deg) | 117.6 ± 3.1 | 118.7 ± 4.0 | 1.1 ± 1.6 | 0.496 | 0.311 | 0.931 (<0.001) |
Hip Max. Extension angle (deg) | 204.2 ± 2.5 | 204.1 ± 3.9 | −0.1 ± 1.9 | 0.964 | 0.020 | 0.910 (<0.001) | |
Knee Max. Flexion angle (deg) | 37.5 ± 4.9 | 38.6 ± 4.7 | 1.1 ± 1.6 | 0.608 | 0.234 | 0.946 (<0.001) | |
Knee Max. Extension angle (deg) | 169.4 ± 4.9 | 169.4 ± 5.6 | >−0.1 ± 1.6 | 0.994 | 0.003 | 0.963 (<0.001) | |
Hip Max. Flexion angular velocity (deg/s) | −656 ± 35 | −660 ± 37 | −4 ± 20 | 0.819 | 0.104 | 0.854 (0.002) | |
Hip Max. Extension angular velocity (deg/s) | 660 ± 39 | 647 ± 36 | −14 ± 30 | 0.428 | 0.362 | 0.684 (0.029) | |
Knee Max. Flexion angular velocity (deg/s) | −737 ± 82 | −748 ± 79 | −11 ± 25 | 0.765 | 0.135 | 0.952 (<0.001) | |
Knee Max. Extension angular velocity (deg/s) | 921 ± 64 | 936 ± 68 | 15 ± 32 | 0.623 | 0.224 | 0.888 (0.001) | |
Left | Hip Max. Flexion angle (deg) | 118.9 ± 5.9 | 119.5 ± 7.0 | 0.6 ± 1.7 | 0.850 | 0.086 | 0.980 (<0.001) |
Hip Max. Extension angle (deg) | 205.6 ± 3.1 | 205.9 ± 4.5 | 0.2 ± 1.9 | 0.892 | 0.062 | 0.931 (<0.001) | |
Knee Max. Flexion angle (deg) | 37.5 ± 4.5 | 38.8 ± 4.1 | 1.3 ± 1.4 | 0.517 | 0.296 | 0.955 (<0.001) | |
Knee Max. Extension angle (deg) | 170.5 ± 6.1 | 170.1 ± 6.8 | −0.4 ± 1.1 | 0.880 | 0.068 | 0.991 (<0.001) | |
Hip Max. Flexion angular velocity (deg/s) | −674 ± 48 | −675 ± 59 | >−1 ± 20 | 0.990 | 0.006 | 0.955 (<0.001) | |
Hip Max. Extension angular velocity (deg/s) | 692 ± 46 | 684 ± 46 | −8 ± 32 | 0.711 | 0.168 | 0.758 (0.011) | |
Knee Max. Flexion angular velocity (deg/s) | −757 ± 70 | −767 ± 62 | −11 ± 30 | 0.722 | 0.162 | 0.906 (<0.001) | |
Knee Max. Extension angular velocity(deg/s) | 922 ± 43 | 917 ± 39 | −6 ± 26 | 0.758 | 0.140 | 0.804 (0.005) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagahara, R.; Abe, T. The Influence of Applied Blood Flow Restriction Cuffs on Kinematics of Submaximal Sprinting. J. Funct. Morphol. Kinesiol. 2017, 2, 45. https://doi.org/10.3390/jfmk2040045
Nagahara R, Abe T. The Influence of Applied Blood Flow Restriction Cuffs on Kinematics of Submaximal Sprinting. Journal of Functional Morphology and Kinesiology. 2017; 2(4):45. https://doi.org/10.3390/jfmk2040045
Chicago/Turabian StyleNagahara, Ryu, and Takashi Abe. 2017. "The Influence of Applied Blood Flow Restriction Cuffs on Kinematics of Submaximal Sprinting" Journal of Functional Morphology and Kinesiology 2, no. 4: 45. https://doi.org/10.3390/jfmk2040045
APA StyleNagahara, R., & Abe, T. (2017). The Influence of Applied Blood Flow Restriction Cuffs on Kinematics of Submaximal Sprinting. Journal of Functional Morphology and Kinesiology, 2(4), 45. https://doi.org/10.3390/jfmk2040045