Acute Effect of Normobaric Hypoxia on Performance in Repeated Wingate Tests with Longer Recovery Periods and Neuromuscular Fatigue in Triathletes: Sex Differences
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Altitude Simulation
2.4. Oxygen Saturation
2.5. Neuromuscular Assessment
2.6. Repeated Wingate Protocol
2.7. Heart Rate, RPE and Muscle Soreness
2.8. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
6. Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RW | Repeated Wingate |
NOR | Normoxia |
HYP | Hypoxia |
FiO2 | Fraction of inspired oxygen |
O2 | Oxygen |
CO2 | Carbon dioxide |
RSA | Repeated-sprint ability |
VO2 max | Maximal oxygen uptake |
HR | Heart rate |
CMJ | Countermovement jump |
RPE | Rating of perceived exertion |
VAS | Visual analogy scale |
SpO2 | Pulse oxygen saturation |
MPO | Mean power output |
PPO | Peak power output |
FI | Fatigue index |
References
- Lepers, R.; Knechtle, B.; Stapley, P.J. Trends in Triathlon Performance: Effects of Sex and Age. Sports Med. 2013, 43, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Bentley, D.J.; Millet, G.P.; Vleck, V.E.; McNaughton, L.R. Specific Aspects of Contemporary Triathlon: Implications for Physiological Analysis and Performance. Sports Med. 2002, 32, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Custodio, A.; Crespo, C.; Timón, R.; Olcina, G. Effects of a Combined Method of Normobaric Hypoxia on the Repeated Sprint Ability Performance of a Nine-Time World Champion Triathlete: A Case Report. Behav. Sci. 2024, 14, 1084. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.; Girard, O.; Mendez-Villanueva, A. Repeated-Sprint Ability—Part II: Recommendations for Training. Sports Med. 2011, 41, 741–756. [Google Scholar] [CrossRef]
- Bar-Or, O. The Wingate Anaerobic Test an Update on Methodology, Reliability and Validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef]
- MacInnis, M.J.; Gibala, M.J. Physiological Adaptations to Interval Training and the Role of Exercise Intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef]
- Breenfeldt Andersen, A.; Bejder, J.; Bonne, T.; Olsen, N.V.; Nordsborg, N. Repeated Wingate Sprints Is a Feasible High-Quality Training Strategy in Moderate Hypoxia. PLoS ONE 2020, 15, e0242439. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P.B. High-Intensity Interval Training, Solutions to the Programming Puzzle: Part I: Cardiopulmonary Emphasis. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef]
- Harbili, S. The Effect of Different Recovery Duration on Repeated Anaerobic Performance in Elite Cyclists. J. Hum. Kinet. 2015, 49, 171. [Google Scholar] [CrossRef]
- Lopez, E.-I.D.; Smoliga, J.M.; Zavorsky, G.S. The Effect of Passive versus Active Recovery on Power Output over Six Repeated Wingate Sprints. Res. Q. Exerc. Sport 2014, 85, 519–526. [Google Scholar] [CrossRef]
- Takei, N.; Soo, J.; Hatta, H.; Girard, O. Performance, Metabolic, and Neuromuscular Consequences of Repeated Wingates in Hypoxia and Normoxia: A Pilot Study. Int. J. Sports Physiol. Perform. 2021, 16, 1208–1212. [Google Scholar] [CrossRef] [PubMed]
- Takei, N.; Kakinoki, K.; Girard, O.; Hatta, H. Short-Term Repeated Wingate Training in Hypoxia and Normoxia in Sprinters. Front. Sports Act. Living 2020, 2, 43. [Google Scholar] [CrossRef] [PubMed]
- Takei, N.; Kakehata, G.; Inaba, T.; Morita, Y.; Sano, H.; Girard, O.; Hatta, H. Effect of Hypoxic Sprint Interval Exercise and Normoxic Recovery on Performance and Acute Physiological Responses. Eur. J. Sport. Sci. 2024, 24, 279–288. [Google Scholar] [CrossRef]
- Takei, N.; Kakinoki, K.; Girard, O.; Hatta, H. No Influence of Acute Moderate Normobaric Hypoxia on Performance and Blood Lactate Concentration Responses to Repeated Wingates. Int. J. Sports Physiol. Perform. 2020, 16, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Powell, F.L.; Garcia, N. Physiological Effects of Intermittent Hypoxia. High. Alt. Med. Biol. 2000, 1, 125–136. [Google Scholar] [CrossRef]
- Kon, M.; Ohiwa, N.; Honda, A.; Matsubayashi, T.; Ikeda, T.; Akimoto, T.; Suzuki, Y.; Hirano, Y.; Russell, A.P. Effects of Systemic Hypoxia on Human Muscular Adaptations to Resistance Exercise Training. Physiol. Rep. 2014, 2, e12033. [Google Scholar] [CrossRef]
- Girard, O.; Brocherie, F.; Millet, G.P. Effects of Altitude/Hypoxia on Single-and Multiple-Sprint Performance: A Comprehensive Review. Sports Med. 2017, 47, 1931–1949. [Google Scholar] [CrossRef]
- Bowtell, J.L.; Cooke, K.; Turner, R.; Mileva, K.N.; Sumners, D.P. Acute Physiological and Performance Responses to Repeated Sprints in Varying Degrees of Hypoxia. J. Sci. Med. Sport. 2014, 17, 399–403. [Google Scholar] [CrossRef]
- Racinais, S.; Bishop, D.; Denis, R.; Lattier, G.; Mendez-Villaneuva, A.; Perrey, S. Muscle Deoxygenation and Neural Drive to the Muscle during Repeated Sprint Cycling. Med. Sci. Sports Exerc. 2007, 39, 268–274. [Google Scholar] [CrossRef]
- McLellan, T.M.; Kavanagh, M.F.; Jacobs, I. The Effect of Hypoxia on Performance during 30 s or 45 s of Supramaximal Exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 60, 155–161. [Google Scholar] [CrossRef]
- Calbet, J.A.L.; De Paz, J.A.; Garatachea, N.; Cabeza de Vaca, S.; Chavarren, J. Anaerobic Energy Provision Does Not Limit Wingate Exercise Performance in Endurance-Trained Cyclists. J. Appl. Physiol. 2003, 94, 668–676. [Google Scholar] [CrossRef]
- Raberin, A.; Elmer, J.; Willis, S.; Richard, T.; Vernillo, G.; Iaia, M.; Girard, O.; Malatesta, D.; Millet, G. The Oxidative-Glycolytic Balance Influenced by Sprint Duration Is Key during Repeated Sprints in Hypoxia. Med. Sci. Sports Exerc. 2022, 55, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, M.J.; Martin, D.T.; Hahn, A.G.; Gore, C.J.; Hawley, J.A. Impaired Interval Exercise Responses in Elite Female Cyclists at Moderate Simulated Altitude. J. Appl. Physiol. 2000, 89, 1819–1824. [Google Scholar] [CrossRef] [PubMed]
- Raberin, A.; Burtscher, J.; Citherlet, T.; Manferdelli, G.; Krumm, B.; Bourdillon, N.; Antero, J.; Rasica, L.; Malatesta, D.; Brocherie, F. Women at Altitude: Sex-Related Physiological Responses to Exercise in Hypoxia. Sports Med. 2023, 54, 271–287. [Google Scholar] [CrossRef] [PubMed]
- Faiss, R.; Raberin, A.; Brocherie, F.; Millet, G.P. Repeated-Sprint Training in Hypoxia: A Review with 10 Years of Perspective. J. Sports Sci. 2024, 1–15. [Google Scholar] [CrossRef]
- Cowley, E.S.; Olenick, A.A.; McNulty, K.L.; Ross, E.Z. “Invisible Sportswomen”: The Sex Data Gap in Sport and Exercise Science Research. Women Sport. Phys. Act. J. 2021, 29, 146–151. [Google Scholar] [CrossRef]
- Kasai, N.; Kojima, C.; Goto, K. Metabolic and Performance Responses to Sprint Exercise under Hypoxia among Female Athletes. Sports Med. Int. Open 2018, 2, E71–E78. [Google Scholar] [CrossRef]
- Bouten, J.; Brick, M.; Saboua, A.; Hadjadj, J.-L.; Piscione, J.; Margot, C.; Doucende, G.; Bourrel, N.; Millet, G.P.; Brocherie, F. Effects of 2 Different Protocols of Repeated-Sprint Training in Hypoxia in Elite Female Rugby Sevens Players during an Altitude Training Camp. Int. J. Sports Physiol. Perform. 2023, 18, 953–959. [Google Scholar] [CrossRef]
- Hunter, S.K. The Relevance of Sex Differences in Performance Fatigability. Med. Sci. Sports Exerc. 2016, 48, 2247. [Google Scholar] [CrossRef]
- Santisteban, K.J.; Lovering, A.T.; Halliwill, J.R.; Minson, C.T. Sex Differences in VO2max and the Impact on Endurance-Exercise Performance. Int. J. Environ. Res. Public Health 2022, 19, 4946. [Google Scholar] [CrossRef]
- Piperi, A.; Warnier, G.; de Ten Ryen, S.V.D.; Benoit, N.; Antoine, N.; Copine, S.; Francaux, M.; Deldicque, L. Repeated Sprint Training in Hypoxia Improves Repeated Sprint Ability to Exhaustion Similarly in Active Males and Females. Med. Sci. Sports Exerc. 2024, 56, 1988–1999. [Google Scholar] [CrossRef] [PubMed]
- Vitale, K.; Getzin, A. Nutrition and Supplement Update for the Endurance Athlete: Review and Recommendations. Nutrients 2019, 11, 1289. [Google Scholar] [CrossRef] [PubMed]
- Alba-Jiménez, C.; Moreno-Doutres, D.; Peña, J. Trends Assessing Neuromuscular Fatigue in Team Sports: A Narrative Review. Sports 2022, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Vancouver, BC, Canada, 1998. [Google Scholar]
- Brocherie, F.; Millet, G.P.; Girard, O. Psychophysiological Responses to Repeated-Sprint Training in Normobaric Hypoxia and Normoxia. Int. J. Sports Physiol. Perform. 2017, 12, 115–123. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Maldonado-Rodriguez, N.; Bentley, D.J.; Logan-Sprenger, H.M. Acute Physiological Response to Different Sprint Training Protocols in Normobaric Hypoxia. Int. J. Environ. Res. Public Health 2022, 19, 2607. [Google Scholar] [CrossRef]
- Camacho-Cardenosa, A.; Camacho-Cardenosa, M.; Tomas-Carus, P.; Timón, R.; Olcina, G.; Burtscher, M. Acute Physiological Response to a Normobaric Hypoxic Exposure: Sex Differences. Int. J. Biometeorol. 2022, 66, 1495–1504. [Google Scholar] [CrossRef]
- Glaister, M. Multiple Sprint Work: Physiological Responses, Mechanisms of Fatigue and the Influence of Aerobic Fitness. Sports Med. 2005, 35, 757–777. [Google Scholar] [CrossRef]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-Sprint Ability—Part I: Factors Contributing to Fatigue. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef]
- Gaitanos, G.C.; Williams, C.; Boobis, L.H.; Brooks, S. Human Muscle Metabolism during Intermittent Maximal Exercise. J. Appl. Physiol. 1993, 75, 712–719. [Google Scholar] [CrossRef]
- Haseler, L.J.; Hogan, M.C.; Richardson, R.S. Skeletal Muscle Phosphocreatine Recovery in Exercise-Trained Humans Is Dependent on O2availability. J. Appl. Physiol. 1999, 86, 2013–2018. [Google Scholar] [CrossRef]
- Feriche, B.; Delgado, M.; Calderón, C.; Lisbona, O.; Chirosa, I.J.; Miranda, M.T.; Fernandez, J.M.; Alvarez, J. The Effect of Acute Moderate Hypoxia on Accumulated Oxygen Deficit during Intermittent Exercise in Nonacclimatized Men. J. Strength Cond. Res. 2007, 21, 413–418. [Google Scholar]
- Glaister, M.; Stone, M.H.; Stewart, A.M.; Hughes, M.; Moir, G.L. The Influence of Recovery Duration on Multiple Sprint Cycling Performance. J. Strength Cond. Res. 2005, 19, 831–837. [Google Scholar]
- Selmi, M.A.; Sassi, R.H.; Yahmed, M.H.; Moalla, W.; Elloumi, M. Effect of Between-Set Recovery Durations on Repeated Sprint Ability in Young Soccer Players. Biol. Sport. 2016, 33, 165–172. [Google Scholar] [CrossRef]
- Dawson, B.; Goodman, C.; Lawrence, S.; Preen, D.; Polglaze, T.; Fitzsimons, M.; Fournier, P. Muscle Phosphocreatine Repletion Following Single and Repeated Short Sprint Efforts. Scand. J. Med. Sci. Sports 1997, 7, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.P.; Faiss, R. Hypoxic Conditions and Exercise-to-Rest Ratio Are Likely Paramount. Sports Med. 2012, 42, 1081–1083. [Google Scholar] [PubMed]
- Billaut, F.; Smith, K. Sex Alters Impact of Repeated Bouts of Sprint Exercise on Neuromuscular Activity in Trained Athletes. Appl. Physiol. Nutr. Metab. 2009, 34, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Laurent, C.M.; Green, J.M.; Bishop, P.A.; Sjökvist, J.; Schumacker, R.E.; Richardson, M.T.; Curtner-Smith, M. Effect of Gender on Fatigue and Recovery Following Maximal Intensity Repeated Sprint Performance. J. Sports Med. Phys. Fit. 2010, 50, 243–253. [Google Scholar]
- Miller, A.; MacDougall, J.D.; Tarnopolsky, M.A.; Sale, D.G. Gender Differences in Strength and Muscle Fiber Characteristics. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 66, 254–262. [Google Scholar] [CrossRef]
- Willis, S.J.; Alvarez, L.; Millet, G.P.; Borrani, F. Changes in Muscle and Cerebral Deoxygenation and Perfusion during Repeated Sprints in Hypoxia to Exhaustion. Front. Physiol. 2017, 8, 846. [Google Scholar] [CrossRef]
- Billaut, F.; Buchheit, M. Repeated-sprint Performance and Vastus Lateralis Oxygenation: Effect of Limited O 2 Availability. Scand. J. Med. Sci. Sports 2013, 23, e185–e193. [Google Scholar] [CrossRef] [PubMed]
- Grassi, B.; Quaresima, V.; Marconi, C.; Ferrari, M.; Cerretelli, P. Blood Lactate Accumulation and Muscle Deoxygenation during Incremental Exercise. J. Appl. Physiol. 1999, 87, 348–355. [Google Scholar] [CrossRef]
- Fulco, C.S.; Rock, P.B.; Muza, S.R.; Lammi, E.; Braun, B.; Cymerman, A.; Moore, L.G.; Lewis, S.F. Gender Alters Impact of Hypobaric Hypoxia on Adductor Pollicis Muscle Performance. J. Appl. Physiol. 2001, 91, 100–108. [Google Scholar] [CrossRef]
- Kitada, T.; Machida, S.; Naito, H. Influence of Muscle Fibre Composition on Muscle Oxygenation during Maximal Running. BMJ Open Sport Exerc. Med. 2015, 1, e000062. [Google Scholar] [CrossRef]
- Oliveira, A.L.M.B.; Rodrigues, G.D.; Silva, B.M.; de Azeredo Rohan, P.; da Silva Soares, P.P. Sex Differences in Cardiorespiratory Control under Hypoxia: The Roles of Oxygen Desaturation and Hypoxic Exposure Time. Front. Cardiovasc. Med. 2025, 12, 1473910. [Google Scholar] [CrossRef]
- Casey, D.P.; Joyner, M.J. Compensatory Vasodilatation during Hypoxic Exercise: Mechanisms Responsible for Matching Oxygen Supply to Demand. J. Physiol. 2012, 590, 6321–6326. [Google Scholar] [CrossRef]
- Behrendt, T.; Bielitzki, R.; Behrens, M.; Schega, L. Acute Performance, Physiological, and Perceptual Changes in Response to Repeated Cycling Sprint Exercise Combined with Systemic and Local Hypoxia in Young Males. Physiol. Behav. 2023, 267, 114217. [Google Scholar] [CrossRef]
Total (n = 12) | Men (n = 7) | Women (n = 5) | p | ||
---|---|---|---|---|---|
Age (years) | 21.91 ± 4.03 | 23.00 ± 4.04 | 20.40 ± 3.91 | 0.292 | |
Weight (kg) | 63.08 ± 8.06 | 67.57 ± 7.23 | 56.80 ± 3.96 | 0.013 | |
Height (m) | 1.71 ± 0.07 | 1.76 ± 0.04 | 1.64 ± 0.04 | 0.001 | |
Competition level (n) | Regional | 3 | 2 | 1 | |
National | 8 | 5 | 3 | ||
International | 1 | - | 1 | ||
Weekly training (last month) | Days | 5.91 ± 1.50 | 6.14 ± 1.21 | 5.60 ± 1.94 | 0.563 |
Hours | 13.25 ± 5.89 | 13.42 ± 4.61 | 13.0 ± 7.96 | 0.908 | |
Best time 5 km run race (min) | 17.25 ± 1.70 | 16.06 ± 0.71 | 18.92 ± 1.12 | <0.001 | |
Best time 10 km run race (min) | 37.07 ± 5.28 | 33.65 ± 1.67 | 42.20 ± 4.53 | 0.003 | |
MPO obtained in 5′ test (W) | 329.90 ± 57.13 | 357.00 ± 39.52 | 266.66 ± 37.85 | 0.010 | |
MPO obtained in 10′ test (W) | 275.50 ± 49.39 | 293.57 ± 41.37 | 233.33 ± 45.09 | 0.003 |
Sex | Time | NOR | HYP | S | T | C | S*T | S*C | T*C | S*T*C | |
---|---|---|---|---|---|---|---|---|---|---|---|
Flight time SJ (s) | Male | Pre | 0.472 ± 0.016 | 0.466 ± 0.020 | ** | NS | NS | NS | NS | NS | NS |
Post | 0.469 ± 0.029 | 0.459 ± 0.024 | |||||||||
% | −0.64 | −1.49 | |||||||||
Female | Pre | 0.391 ± 0.033 | 0.377 ± 0.046 | ||||||||
Post | 0.388 ± 0.028 | 0.379 ± 0.031 | |||||||||
% | −0.60 | 1.25 | |||||||||
Height SJ (s) | Male | Pre | 27.37 ± 2.02 | 26.70 ± 2.33 | ** | NS | NS | NS | NS | NS | NS |
Post | 27.10 ± 3.45 | 25.87 ± 2.80 | |||||||||
% | −1.16 | −2.51 | |||||||||
Female | Pre | 18.88 ± 3.18 | 17.60 ± 4.24 | ||||||||
Post | 18.58 ± 2.66 | 17.72 ± 2.81 | |||||||||
% | −1.12 | 3.15 | |||||||||
Flight time CMJ (s) | Male | Pre | 0.496 ± 0.181 | 0.490 ± 0.020 | ** | NS | NS | NS | NS | NS | NS |
Post | 0.488 ± 0.036 | 0.472 ± 0.022 | |||||||||
% | −1.48 | −3.44 | |||||||||
Female | Pre | 0.408 ± 0.038 | 0.392 ± 0.050 | ||||||||
Post | 0.397 ± 0.029 | 0.385 ± 0.040 | |||||||||
% | −2.31 | −1.37 | |||||||||
Height CMJ (s) | Male | Pre | 30.21 ± 2.17 | 29.47 ± 2.43 | ** | NS | NS | NS | NS | NS | NS |
Post | 29.42 ± 4.39 | 27.44 ± 2.62 | |||||||||
% | −2.48 | −6.49 | |||||||||
Female | Pre | 20.55 ± 3.85 | 19.10 ± 4.90 | ||||||||
Post | 19.45 ± 2.83 | 18.92 ± 3.21 | |||||||||
% | −4.28 | −2.45 |
Sex | Time | NOR | HYP | S | T | C | S*T | S*C | T*C | S*T*C | |
---|---|---|---|---|---|---|---|---|---|---|---|
PPO (W) | Male | REP 1 | 573.43 ± 58.67 | 572.71 ± 59.42 | ** | NS | NS | NS | NS | NS | NS |
REP 2 | 566.29 ± 66.49 | 565.86 ± 49.85 | |||||||||
REP 3 | 563.05 ± 58.66 | 560.00 ± 48.64 | |||||||||
Female | REP 1 | 354.40 ± 60.19 | 354.60 ± 54.59 | ||||||||
REP 2 | 351.80 ± 53.61 | 355.80 ± 54.54 | |||||||||
REP 3 | 354.00 ± 52.67 | 356.60 ± 46.05 | |||||||||
MPO (W) | Male | REP 1 | 508.00 ± 42.24 | 507.14 ± 43.41 | ** | NS | NS | NS | NS | NS | NS |
REP 2 | 501.86 ± 41.23 | 499.14 ± 38.48 | |||||||||
REP 3 | 487.00 ± 43.89 | 490.00 ± 40.07 | |||||||||
Female | REP 1 | 311.40 ± 43.38 | 315.20 ± 44.18 | ||||||||
REP 2 | 314.40 ± 44.12 | 315.20 ± 43.55 | |||||||||
REP 3 | 321.20 ± 43.35 | 314.60 ± 41.97 | |||||||||
FI (%) | Male | REP 1 | 22.17 ± 6.33 | 21.55 ± 6.38 | * | NS | NS | NS | NS | NS | NS |
REP 2 | 21.24 ± 6.00 | 22.96 ± 6.02 | |||||||||
REP 3 | 20.95 ± 6.74 | 25.64 ± 11.32 | |||||||||
Female | REP 1 | 20.20 ± 4.60 | 18.31 ± 3.11 | ||||||||
REP 2 | 17.24 ± 5.36 | 18.78 ± 4.88 | |||||||||
REP 3 | 16.60 ± 2.23 | 20.68 ± 2.16 |
Sex | Time | NOR | HYP | S | T | C | S*T | S*C | T*C | S*T*C | |
---|---|---|---|---|---|---|---|---|---|---|---|
HRrest (bpm) | Male | - | 70.86 ± 13.18 | 76.71 ± 15.45 | ** | - | NS | - | NS | - | - |
Female | - | 65.60 ± 10.73 | 66.40 ± 8.62 | ||||||||
HRmax (bpm) | Male | REP 1 | 172.71 ± 7.43 | 170.71 ± 12.94 | ** | NS | NS | NS | NS | NS | NS |
REP 2 | 174.86 ± 7.19 | 172.29 ± 11.62 | |||||||||
REP 3 | 174.14 ± 6.81 | 172.71 ± 10.16 | |||||||||
Female | REP 1 | 157.00 ± 14.95 | 159.00 ± 15.68 | ||||||||
REP 2 | 159.40 ± 14.82 | 158.60 ± 16.33 | |||||||||
REP 3 | 162.20 ± 14.65 | 161.00 ± 16.20 | |||||||||
HRmean (bpm) | Male | REP 1 | 150.71 ± 14.09 | 146.00 ± 14.00 | ** | ** | NS | NS | * | NS | NS |
Rec 1 ^ | 111.00 ± 11.83 | 101.14 ± 18.27 | |||||||||
REP 2 | 156.71 ± 12.77 | 147.57 ± 13.37 | |||||||||
Rec 2 ^ | 119.14 ± 10.73 | 109.86 ± 20.60 | |||||||||
REP 3 | 156.57 ± 10.24 | 147.57 ± 22.97 | |||||||||
Rec 3 ^ | 122.71 ± 11.23 | 110.00 ± 24.01 | |||||||||
Female | REP 1 | 132.20 ± 15.27 | 137.40 ± 13.31 | ||||||||
Rec 1 ^ | 84.40 ± 14.62 | 92.00 ± 23.06 | |||||||||
REP 2 | 136.00 ± 18.98 | 132.20 ± 17.12 | |||||||||
Rec 2 ^ | 89.20 ± 17.69 | 99.80 ± 25.94 | |||||||||
REP 3 | 140.40 ± 10.31 | 141.00 ± 20.64 | |||||||||
Rec 3 ^ | 86.80 ± 21.60 | 102.80 ± 27.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toro-Román, V.; Simón-Sánchez, P.; Illera-Domínguez, V.; Pérez-Chirinos, C.; González-Millán, S.; Albesa-Albiol, L.; Ledesma, S.; Solé, V.; Teruel, O.; Fernández-Valdés, B. Acute Effect of Normobaric Hypoxia on Performance in Repeated Wingate Tests with Longer Recovery Periods and Neuromuscular Fatigue in Triathletes: Sex Differences. J. Funct. Morphol. Kinesiol. 2025, 10, 282. https://doi.org/10.3390/jfmk10030282
Toro-Román V, Simón-Sánchez P, Illera-Domínguez V, Pérez-Chirinos C, González-Millán S, Albesa-Albiol L, Ledesma S, Solé V, Teruel O, Fernández-Valdés B. Acute Effect of Normobaric Hypoxia on Performance in Repeated Wingate Tests with Longer Recovery Periods and Neuromuscular Fatigue in Triathletes: Sex Differences. Journal of Functional Morphology and Kinesiology. 2025; 10(3):282. https://doi.org/10.3390/jfmk10030282
Chicago/Turabian StyleToro-Román, Víctor, Pol Simón-Sánchez, Víctor Illera-Domínguez, Carla Pérez-Chirinos, Sara González-Millán, Lluís Albesa-Albiol, Sara Ledesma, Vinyet Solé, Oriol Teruel, and Bruno Fernández-Valdés. 2025. "Acute Effect of Normobaric Hypoxia on Performance in Repeated Wingate Tests with Longer Recovery Periods and Neuromuscular Fatigue in Triathletes: Sex Differences" Journal of Functional Morphology and Kinesiology 10, no. 3: 282. https://doi.org/10.3390/jfmk10030282
APA StyleToro-Román, V., Simón-Sánchez, P., Illera-Domínguez, V., Pérez-Chirinos, C., González-Millán, S., Albesa-Albiol, L., Ledesma, S., Solé, V., Teruel, O., & Fernández-Valdés, B. (2025). Acute Effect of Normobaric Hypoxia on Performance in Repeated Wingate Tests with Longer Recovery Periods and Neuromuscular Fatigue in Triathletes: Sex Differences. Journal of Functional Morphology and Kinesiology, 10(3), 282. https://doi.org/10.3390/jfmk10030282