Differences in Strength, Muscle Work, and Hamstring/Quadriceps Ratio in Professional and Junior Elite Basketball Players According to Sex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Subjects
2.3. Procedure
2.4. Statistical Analysis
3. Results
3.1. Sex Differences in Professional Basketball Players
3.2. Sex Differences in Elite Junior Basketball Players
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collings, T.J.; Diamond, L.E.; Barrett, R.S.; Timmins, R.G.; Hickey, J.T.; Du Moulin, W.S.; Williamsm, M.D.; Beerworth, K.A.; Bourne, M.N. Strength and biomechanical risk factors for noncontact ACL injury in elite female footballers: A prospective study. Med. Sci. Sports Exerc. 2022, 54, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Larwa, J.; Stoy, C.; Chafetz, R.S.; Boniello, M.; Franklin, C. Stiff landings, core stability, and dynamic knee valgus: A systematic review on documented anterior cruciate ligament ruptures in male and female athletes. Int. J. Environ. Res. Public Health 2021, 18, 3826. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.; Kaushal, S.G.; Kocher, M.S.; Kiapour, A.M. Development of anatomic risk factors for ACL injuries: A comparison between ACL-injured knees and matched controls. Am. J. Sports Med. 2023, 51, 2267–2274. [Google Scholar] [CrossRef] [PubMed]
- Vaudreuil, N.J.; van Eck, C.F.; Lombardo, S.J.; Kharrazi, F.D. Economic and performance impact of anterior cruciate ligament injury in National Basketball Association players. Orthop. J. Sports Med. 2021, 9, 23259671211026617. [Google Scholar] [CrossRef]
- Landis, S.E.; Baker, R.T.; Seegmiller, J.G. Non-contact anterior cruciate ligament and lower extremity injury risk prediction using functional movement screen and knee abduction moment: An epidemiological observation of female intercollegiate athletes. Int. J. Sports Phys. Ther. 2018, 13, 973–984. [Google Scholar] [CrossRef]
- Pierce, T.P.; Kurowicki, J.; Kelly, J.J.; Issa, K.; Festa, A.; McInerney, V.K.; Scillia, A.J. Risk factors for requiring a revision anterior cruciate ligament reconstruction: A case-control study. J. Knee Surg. 2021, 34, 859–863. [Google Scholar] [CrossRef]
- Montalvo, A.M.; Schneider, D.K.; Yut, L.; Webster, K.E.; Beynnon, B.; Kocj«her, M.S.; Myer, G.D. “What’s my risk of sustaining an ACL injury while playing sports?” A systematic review with meta-analysis. Br. J. Sports Med. 2019, 53, 1003–1012. [Google Scholar] [CrossRef]
- Takahashi, S.; Nagano, Y.; Ito, W.; Kido, Y.; Okuwaki, T. A retrospective study of mechanisms of anterior cruciate ligament injuries in high school basketball, handball, judo, soccer, and volleyball. Medicine 2019, 98, e16030. [Google Scholar] [CrossRef]
- Benis, R.; La Torre, A.; Bonato, M. Anterior cruciate ligament injury profile in female elite Italian basketball league. J. Sports Med. Phys. Fitness 2018, 58, 280–286. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2021, 17, 317–331. [Google Scholar] [CrossRef]
- Wild, C.Y.; Steele, J.R.; Munro, B.J. Why do girls sustain more anterior cruciate ligament injuries than boys? A review of the changes in estrogen and musculoskeletal structure and function during puberty. Sports Med. 2012, 42, 733–749. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, C.E.; Beattie, P.F.; Sacko, R.S.; Hand, A. Risk factors associated with non-contact anterior cruciate ligament injury: A systematic review. Int. J. Sports Phys. Ther. 2018, 13, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Nakase, J.; Kitaoka, K.; Shima, Y.; Oshima, T.; Sakurai, G.; Tsuchiya, H. Risk factors for noncontact anterior cruciate ligament injury in female high school basketball and handball players: A prospective 3-year cohort study. Asia Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2020, 22, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Backman, L.J.; Danielson, P. Low range of ankle dorsiflexion predisposes for patellar tendinopathy in junior elite basketball players: A 1-year prospective study. Am. J. Sports Med. 2011, 39, 2626–2633. [Google Scholar] [CrossRef]
- Smith, H.C.; Vacek, P.; Johnson, R.J.; Slauterbeck, J.R.; Hashemi, J.; Shultz, S.; Beynnon, B.D. Risk factors for anterior cruciate ligament injury: A review of the literature—Part 1: Neuromuscular and anatomic risk. Sports Health 2012, 4, 69–78. [Google Scholar] [CrossRef]
- Baroni, B.M.; Ruas, C.V.; Ribeiro-Alvares, J.B.; Pinto, R.S. Hamstring-to-quadriceps torque ratios of professional male soccer players: A systematic review. J. Strength. Cond. Res. 2020, 34, 281–293. [Google Scholar] [CrossRef]
- Heinert, B.L.; Collins, T.; Tehan, C.; Ragan, R.; Kernozek, T.W. Effect of hamstring-to-quadriceps ratio on knee forces in females during landing. Int. J. Sports Med. 2021, 42, 264–269. [Google Scholar] [CrossRef]
- Boden, B.P.; Sheehan, F.T.; Torg, J.S.; Hewett, T.E. Noncontact anterior cruciate ligament injuries: Mechanisms and risk factors. J. Am. Acad. Orthop. Surg. 2010, 18, 520–527. [Google Scholar] [CrossRef]
- Shimozaki, K.; Nakase, J.; Takata, Y.; Shima, Y.; Kitaoka, K.; Tsuchiya, H. Greater body mass index and hip abduction muscle strength predict noncontact anterior cruciate ligament injury in female Japanese high school basketball players. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3004–3011. [Google Scholar] [CrossRef]
- Andrade, M.S.; Junqueira, M.S.; De Lira, C.A.B.; Vancini, R.L.; Seffrin, A.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Age-related differences in torque in angle-specific and peak torque hamstring to quadriceps ratios in female soccer players from 11 to 18 years old: A cross-sectional study. Res. Sports Med. 2021, 29, 77–89. [Google Scholar] [CrossRef]
- Brígido-Fernández, I.; García-Muro San José, F.; Charneco-Salguero, G.; Cárdenas-Rebollo, J.M.; Ortega-Latorre, Y.; Carrión-Otero, O.; Fernández-Rosa, L. Knee isokinetic profiles and reference values of professional female soccer players. Sports 2022, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Simonson, R.; Piussi, R.; Högberg, J.; Senorski, C.; Thomeé, R.; Samuelsson, K.; Senorski, E.H. Effect of quadriceps and hamstring strength relative to body weight on risk of a second ACL injury: A cohort study of 835 patients who returned to sport after ACL reconstruction. Orthop. J. Sports Med. 2023, 11, 23259671231157386. [Google Scholar] [CrossRef] [PubMed]
- Simonson, R.; Högberg, J.; Lindskog, J.; Piussi, R.; Sundberg, A.; Sansone, M.; Samuelsson, K.; Thomeé, R.; Thomeé, R.; Senorski, E.H. A comparison between physical therapy clinics with high and low rehabilitation volumes of patients with ACL reconstruction. J. Orthop. Surg. Res. 2023, 18, 842. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Park, G.; Kuo, L.; Park, W.-H. Association of vitamin D status with lower limb muscle strength in professional basketball players: A cross-sectional study. Nutrients 2020, 12, 2715. [Google Scholar] [CrossRef]
- Eustace, S.J.; Morris, R.; Tallis, J.; Page, R.M.; Greig, M. The influence of angle-specific torque of the knee flexors and extensors on the angle-specific dynamic control ratio in professional female soccer players. J. Sports Sci. 2022, 40, 1235–1242. [Google Scholar] [CrossRef]
- van Melick, N.; van der Weegen, W.; van der Horst, N. Quadriceps and hamstrings strength reference values for athletes with and without anterior cruciate ligament reconstruction who play popular pivoting sports, including soccer, basketball, and handball: A scoping review. J. Orthop. Sports Phys. Ther. 2022, 52, 142–155. [Google Scholar] [CrossRef]
- Ishøi, L.; Krommes, K.; Nielsen, M.F.; Thornton, K.B.; Hölmich, P.; Aagaard, P.; Penalber, J.J.J.; Thorborg, K. Hamstring and quadriceps muscle strength in youth to senior elite soccer: A cross-sectional study including 125 players. Int. J. Sports Physiol. Perform. 2021, 16, 1538–1544. [Google Scholar] [CrossRef]
- Nagai, T.; Bates, N.; McPherson, A.; Hale, R.; Hewett, T.; Schilaty, N.D. Effects of sex and age on quadriceps and hamstring strength and flexibility in high school basketball athletes. Int. J. Sports Phys. Ther. 2021, 16, 1302–1312. [Google Scholar] [CrossRef]
- Rouis, M.; Coudrat, L.; Jaafar, H.; Filliard, J.-R.; Vandewalle, H.; Barthelemy, Y.; Driss, T. Assessment of isokinetic knee strength in elite young female basketball players: Correlation with vertical jump. J. Sports Med. Phys. Fitness 2015, 55, 1502–1508. [Google Scholar]
- Risberg, M.A.; Steffen, K.; Nilstad, A.; Myklebust, G.; Kristianslund, E.; Moltubakk, M.M.; Krosshaug, T. Normative quadriceps and hamstring muscle strength values for female, healthy, elite handball and football players. J. Strength. Cond. Res. 2018, 32, 2314–2323. [Google Scholar] [CrossRef]
- Kabacinski, J.; Murawa, M.; Mackala, K.; Dworak, L.B. Knee strength ratios in competitive female athletes. PLoS ONE 2018, 13, e0191077. [Google Scholar] [CrossRef] [PubMed]
- Dauty, M.; Menu, P.; Fouasson-Chailloux, A. Cutoffs of isokinetic strength ratio and hamstring strain prediction in professional soccer players. Scand. J. Med. Sci. Sports 2018, 28, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Grygorowicz, M.; Michałowska, M.; Walczak, T.; Owen, A.; Grabski, J.K.; Pyda, A.; Piontek, T.; Kotwicki, T. Discussion about different cut-off values of conventional hamstring-to-quadriceps ratio used in hamstring injury prediction among professional male football players. PLoS ONE 2017, 12, e0188974. [Google Scholar] [CrossRef] [PubMed]
- Rosa-Guillamón, A.; Carrillo-López, P.J.; García-Cantó, E. Analysis of physical fitness according to sex, age, body mass index and level of physical activity in Spanish elementary school students. Rev. Fac. Med. Univ. Nac. Colomb. 2020, 68, 92–99. [Google Scholar] [CrossRef]
- Odabas, Ï.; Güler, L.; Günay, A. Evaluation of body mass index and body compositions of elite and non-elite korfball athletes by gender: Descriptive-comparative study. Turk. Klin. J. Sports Sci. 2022, 14, 61–68. [Google Scholar] [CrossRef]
- Sameshima, S.; Inui, H.; Taketomi, S.; Yamagami, R.; Kono, K.; Kawaguchi, K.; Kage, T.; Tanaka, S. The intraoperative gap differences due to joint distraction force differences in total knee arthroplasty are affected by preoperative lower limb alignment and body mass index. Clin. Biomech. 2022, 99, 105765. [Google Scholar] [CrossRef]
Professional Athletes | |||
---|---|---|---|
Male Atheletes | Female Atheletes | p | |
n | 27 | 16 | |
Mass (kg) | 93.67 ± 9.90 | 72.25 ± 10.20 | p ≤ 0.001 * |
Height (m) | 2.00 ± 0.09 | 1.79 ± 0.09 | p ≤ 0.001 * |
BMI | 23.37 ± 1.19 | 22.4 ± 1.83 | p = 0.059 |
Junior Athletes | |||
Male Atheletes | Female Atheletes | p | |
n | 28 | 14 | |
Mass (kg) | 66.00 ± 9.28 | 63.46 ± 9.93 | p = 0.268 |
Height (m) | 1.78 ± 0.06 | 1.70 ± 0.07 | p ≤ 0.001 * |
BMI | 20.76 ± 2.46 | 22.34 ± 2.73 | p = 0.081 |
Professional Athletes | Junior Atheletes | p | |
---|---|---|---|
n | 43 | 42 | |
Mass (kg) | 85.70 ± 14.4 | 65.17 ± 9.40 | p ≤ 0.001 * |
Height (m) | 1.92 ± 0.14 | 1.75 ± 0.07 | p ≤ 0.001 * |
BMI | 23.01 ± 1.51 | 21.28 ± 2.63 | p ≤ 0.001 * |
Variable 1 | Angular Velocity | Knee | Professional Athletes Mean (±SD) | Junior Athletes Mean (±SD) | p-Value | Effect Size |
---|---|---|---|---|---|---|
Flexion peak strength (N) | 30°/s | Right | 255.14 ± 65.05 n | 184.26 ± 32.70 n | <0.001 * | 1.635 |
Left | 265.79 ± 70.42 n | 181.45 ± 32.35 n | <0.001 * | 1.763 | ||
120°/s | Right | 284.67 ± 76.33 n | 168.93 ± 44.09 n | <0.001 * | 1.961 | |
Left | 283.58 ± 90.54 n | 170.88 ± 40.36 n | <0.001 * | 1.672 | ||
180°/s | Right | 307.58 ± 84.81 n | 185.35 ± 51.41 n | <0.001 * | 1.914 | |
Left | 293.00 ± 88.92 nn | 187.55 ± 45.37 nn | <0.001 * | 1.610 | ||
Extension peak strength (N) | 30°/s | Right | 485.70 ± 67.86 n | 336.86 ± 82.67 nn | <0.001 * | 2.069 |
Left | 466.51 ± 72.47 n | 341.79 ± 73.24 n | <0.001 * | 1.846 | ||
120°/s | Right | 415.84 ± 83.74 n | 236.98 ± 75.90 n | <0.001 * | 2.470 | |
Left | 411.95 ± 82.46 n | 253.07 ± 70.94 n | <0.001 * | 2.391 | ||
180°/s | Right | 399.90 ± 83.65 n | 249.35 ± 68.65 n | <0.001 * | 2.203 | |
Left | 396.03 ± 87.30 n | 248.48 ± 59.38 nn | <0.001 * | 2.142 | ||
Knee work (J) | 30°/s | Right | 691.53 ± 172.21 n | 450.14 ± 87.32 n | <0.001 * | 2.053 |
Left | 685.84 ± 181.74 n | 455.95 ± 87.44 nn | <0.001 * | 1.891 | ||
120°/s | Right | 1001.91 ± 267.82 n | 517.02 ± 153.61 n | <0.001 * | 2.526 | |
Left | 1026.53 ± 322.70 nn | 568.98 ± 144.02 n | <0.001 * | 2.118 | ||
180°/s | Right | 1843.87 ± 523.50 n | 1012.19 ± 310.31 n | <0.001 * | 2.128 | |
Left | 1828.42 ± 487.81 n | 1023.35 ± 262.29 n | <0.001 * | 2.244 | ||
H/Q ratio | 30°/s | Right | 0.53 ± 0.11 n | 0.57 ± 0.11 n | 0.145 | −0.329 |
Left | 0.57 ± 0.11 n | 0.54 ± 0.09 n | 0.273 | 0.238 | ||
120°/s | Right | 0.69 ± 0.15 n | 0.76 ± 0.24 n | 0.338 | −0.451 | |
Left | 0.69 ± 0.18 n | 0.70 ± 0.17 nn | 0.972 | −0.250 | ||
180°/s | Right | 0.77 ± 0.15 nn | 0.76 ± 0.16 n | 0.849 | −0.083 | |
Left | 0.74 ± 0.16 n | 0.77 ± 0.15 nn | 0.459 | −0.354 |
Variable 1 | Angular Velocity | Knee | Male Athletes Mean (±SD) | Female Athletes Mean (±SD) | p-Value | Effect Size |
---|---|---|---|---|---|---|
Flexion peak strength (N) | 30°/s | Right | 292.06 ± 59.59 | 225.00 ± 49.88 | 0.002 * | 1.22 |
Left | 290.44 ± 59.40 | 234.75 ± 41.43 | 0.005 * | 1.09 | ||
120°/s | Right | 321.00 ± 77.46 | 243.44 ± 52.50 | 0.005 * | 1.17 | |
Left | 327.69 ± 91.36 | 234.19 ± 53.01 | <0.001 * | 1.25 | ||
180°/s | Right | 362.36 ± 78.61 | 246.77 ± 48.49 | <0.001 * | 1.75 | |
Left | 347.36 ± 90.20 | 238.62 ± 44.77 | 0.002 * | 1.51 | ||
Extension peak strength (N) | 30°/s | Right | 510.94 ± 60.27 | 448.87 ± 63.60 | 0.011 * | 1 |
Left | 488.69 ± 81.27 | 445.88 ± 48.60 | 0.051 | 0.64 | ||
120°/s | Right | 439.50 ± 91.38 | 375.94 ± 70.70 | 0.051 | 0.78 | |
Left | 448.25 ± 86.18 | 375.56 ± 59.10 | 0.007 * | 0.98 | ||
180°/s | Right | 429.93 ± 91.42 | 355.85 ± 60.22 | 0.017 * | 0.95 | |
Left | 424.50 ± 93.66 | 352.85 ± 65.94 | 0.019 * | 0.88 | ||
Knee work (J) | 30°/s | Right | 790.50 ± 146.70 | 570.63 ± 101.70 | <0.001 * | 1.74 |
Left | 784.88 ± 164.93 | 567.69 ± 101.14 | <0.001 * | 1.59 | ||
120°/s | Right | 1129.19 ± 234.91 | 805.69 ± 156.78 | <0.001 * | 1.62 | |
Left | 1134.88 ± 221.34 | 812.50 ± 141.51 | <0.001 * | 1.73 | ||
180°/s | Right | 2108.64 ± 489.27 | 1429.08 ± 292.14 | <0.001 * | 1.67 | |
Left | 2070.36 ± 447.03 | 1463.38 ± 275.26 | 0.001 * | 1.62 | ||
H/Q ratio | 30°/s | Right | 0.57 ± 0.11 | 0.51 ± 0.12 | 0.086 | 0.61 |
Left | 0.60 ± 0.10 | 0.53 ± 0.09 | 0.023 * | 0.72 | ||
120°/s | Right | 0.74 ± 0.15 | 0.66 ± 0.15 | 0.08 | 0.51 | |
Left | 0.74 ± 0.18 | 0.63 ± 0.17 | 0.051 | 0.61 | ||
180°/s | Right | 0.85 ± 0.10 | 0.71 ± 0.17 | 0.048 * | 1 | |
Left | 0.82 ± 0.15 | 0.69 ± 0.16 | 0.038 * | 0.83 |
Variable 1 | Angular Velocity | Knee | Male Athletes Mean (±SD) | Female Athletes Mean (±SD) | p-Value | EFFECT SIZE |
---|---|---|---|---|---|---|
Flexion peak strength (N) | 30°/s | Right | 191.93 ± 41.08 | 170.29 ± 24.81 | 0.21 | 0.64 |
Left | 191.00 ± 37.98 | 166.57 ± 24.14 | 0.056 | 0.77 | ||
120°/s | Right | 176.79 ± 50.84 | 150.86 ± 28.28 | 0.104 | 0.63 | |
Left | 178.43 ± 46.56 | 149.71 ± 26.85 | 0.039 * | 0.77 | ||
180°/s | Right | 185.00 ± 61.33 | 170.5 ± 40.44 | 0.571 | 0.28 | |
Left | 196.57 ± 48.73 | 165.54 ± 27.54 | 0.061 | 0.77 | ||
Extension peak strength (N) | 30°/s | Right | 367.14 ± 78.58 | 287.5 ± 76.86 | 0.021 * | 1.02 |
Left | 358.50 ± 61.91 | 310.5 ± 81.13 | 0.077 | 0.66 | ||
120°/s | Right | 272.50 ± 78.78 | 190.93 ± 63.21 | 0.006 * | 1.14 | |
Left | 276.93 ± 67.02 | 207.64 ± 60.57 | 0.009 * | 1.08 | ||
180°/s | Right | 255.86 ± 78.18 | 206.64 ± 62.69 | 0.069 | 0.69 | |
Left | 255.50 ± 69 | 200.46 ± 52.69 | 0.054 | 0.89 | ||
Knee work (J) | 30°/s | Right | 469.43 ± 86.69 | 404.07 ± 71.85 | 0.031 * | 0.82 |
Left | 482.64 ± 77.98 | 407.29 ± 78.90 | 0.021 * | 0.96 | ||
120°/s | Right | 570.29 ± 147.53 | 435.36 ± 144.86 | 0.024 * | 0.92 | |
Left | 610.36 ± 117.57 | 474.64 ± 113.74 | 0.006 * | 1.17 | ||
180°/s | Right | 1067.64 ± 327.50 | 773.43 ± 268.75 | 0.019 * | 0.98 | |
Left | 1045.07 ± 303.77 | 815.23 ± 209.88 | 0.033 * | 0.87 | ||
H/Q ratio | 30°/s | Right | 0.53 ± 0.09 | 0.62 ± 0.14 | 0.094 | −0.77 |
Left | 0.54 ± 0.08 | 0.56 ± 0.12 | 0.701 | −0.24 | ||
120°/s | Right | 0.67 ± 0.17 | 0.86 ± 0.29 | 0.069 | −0.79 | |
Left | 0.65 ± 0.10 | 0.76 ± 0.22 | 0.482 | −0.65 | ||
180°/s | Right | 0.74 ± 0.15 | 0.85 ± 0.15 | 0.062 | −0.74 | |
Left | 0.80 ± 0.22 | 0.86 ± 0.16 | 0.402 | −0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coto Martín, R.; Pérez Mallada, N.; Martínez Beltrán, M.J.; Cuéllar Marín, L.; Borrás Luján, P.J.; Arroyo, O.O.; Sáenz-Nuño, M.A.; Arribas-Marín, J.M. Differences in Strength, Muscle Work, and Hamstring/Quadriceps Ratio in Professional and Junior Elite Basketball Players According to Sex. J. Funct. Morphol. Kinesiol. 2025, 10, 204. https://doi.org/10.3390/jfmk10020204
Coto Martín R, Pérez Mallada N, Martínez Beltrán MJ, Cuéllar Marín L, Borrás Luján PJ, Arroyo OO, Sáenz-Nuño MA, Arribas-Marín JM. Differences in Strength, Muscle Work, and Hamstring/Quadriceps Ratio in Professional and Junior Elite Basketball Players According to Sex. Journal of Functional Morphology and Kinesiology. 2025; 10(2):204. https://doi.org/10.3390/jfmk10020204
Chicago/Turabian StyleCoto Martín, Raúl, Néstor Pérez Mallada, María Jesús Martínez Beltrán, Lucía Cuéllar Marín, Pablo José Borrás Luján, Oscar Otín Arroyo, María Ana Sáenz-Nuño, and Juan Manuel Arribas-Marín. 2025. "Differences in Strength, Muscle Work, and Hamstring/Quadriceps Ratio in Professional and Junior Elite Basketball Players According to Sex" Journal of Functional Morphology and Kinesiology 10, no. 2: 204. https://doi.org/10.3390/jfmk10020204
APA StyleCoto Martín, R., Pérez Mallada, N., Martínez Beltrán, M. J., Cuéllar Marín, L., Borrás Luján, P. J., Arroyo, O. O., Sáenz-Nuño, M. A., & Arribas-Marín, J. M. (2025). Differences in Strength, Muscle Work, and Hamstring/Quadriceps Ratio in Professional and Junior Elite Basketball Players According to Sex. Journal of Functional Morphology and Kinesiology, 10(2), 204. https://doi.org/10.3390/jfmk10020204