Next Issue
Volume 9, June
Previous Issue
Volume 8, December
 
 

Instruments, Volume 9, Issue 1 (March 2025) – 6 articles

Cover Story (view full-size image): Optical Beam Loss Monitors (oBLMs) allow for the cost-efficient and spatially continuous measurement of beam losses at accelerator facilities. They consist of an optical fibre parallel to the beamline, coupled to photosensors—either silicon photomultipliers or photomultiplier tubes—at one or both ends. This paper investigates and compares multiple techniques for extracting timing and position information from measured loss waveforms. For the oBLM studied, the optimal approach was found to be applying constant fraction discrimination to the upstream readout, with both tested photosensor types exhibiting similar position resolutions. These findings can be used to improve the loss position resolution of similar oBLMs by 10% or more without requiring any physical modifications. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
18 pages, 7771 KiB  
Article
Novel Smart Glove for Ride Monitoring in Light Mobility
by Michela Borghetti, Nicola Francesco Lopomo and Mauro Serpelloni
Instruments 2025, 9(1), 6; https://doi.org/10.3390/instruments9010006 - 18 Mar 2025
Viewed by 478
Abstract
Ensuring comfort in light mobility is a crucial aspect for supporting individuals’ well-being and safety while driving scooters, riding bicycles, etc. In fact, factors such as the hand grip on the handlebar, positions of the wrist and arm, overall body posture, and affecting [...] Read more.
Ensuring comfort in light mobility is a crucial aspect for supporting individuals’ well-being and safety while driving scooters, riding bicycles, etc. In fact, factors such as the hand grip on the handlebar, positions of the wrist and arm, overall body posture, and affecting vibrations play key roles. Wearable systems offer the ability to noninvasively monitor physiological parameters, such as body temperature and heart rate, aiding in personalized comfort assessment. In this context, user positions while driving or riding are, on the other hand, more challenging to monitor ecologically. Developing effective smart gloves as a support for comfort and movement monitoring introduces technical complexities, particularly in sensor selection and integration. Light and flexible sensors can help in this regard by ensuring reliable sensing and thus addressing the optimization of the comfort for the driver. In this work, a novel wireless smart glove is proposed, integrating four bend sensors, four force-sensitive sensors, and one inertial measurement unit for measuring the finger movements, hand orientation, and the contact force exerted by the hand while grasping the handlebar during driving or riding. The smart glove has been proven to be repeatable (1.7%) and effective, distinguishing between different grasped objects, such as a flask, a handlebar, a tennis ball, and a small box. Additionally, it proved to be a valuable tool for monitoring specific actions while riding bicycles, such as braking, and for optimizing the posture during the ride. Full article
Show Figures

Figure 1

8 pages, 1570 KiB  
Communication
Special Considerations for Helium-Filled Ion Chambers
by Steve M. Heald
Instruments 2025, 9(1), 5; https://doi.org/10.3390/instruments9010005 - 1 Mar 2025
Viewed by 490
Abstract
As the flux at synchrotron radiation beamlines increases, helium-filled ion chambers are more common to avoid saturation and non-linearities. For helium, this paper will show that the conversion of the current to flux is best performed using the mass-energy cross-section but is complicated [...] Read more.
As the flux at synchrotron radiation beamlines increases, helium-filled ion chambers are more common to avoid saturation and non-linearities. For helium, this paper will show that the conversion of the current to flux is best performed using the mass-energy cross-section but is complicated by a strong interaction of scattered photons with the ion chamber plates. This makes the conversion highly dependent on the ion chamber geometry, and an accurate flux determination will typically require a calibration. To minimize the sensitivity of the calibration to external influences, it is proposed to add internal scatter baffles to the standard chamber configuration. Full article
Show Figures

Figure 1

18 pages, 3699 KiB  
Article
A Systematic Investigation of Beam Losses and Position-Reconstruction Techniques Measured with a Novel oBLM at CLEAR
by Montague King, Sara Benitez, Alexander Christie, Ewald Effinger, Jose Esteban, Wilfrid Farabolini, Antonio Gilardi, Pierre Korysko, Jean Michel Meyer, Belen Salvachua, Carsten P. Welsch and Joseph Wolfenden
Instruments 2025, 9(1), 4; https://doi.org/10.3390/instruments9010004 - 28 Feb 2025
Viewed by 460
Abstract
Optical Beam-Loss Monitors (oBLMs) allow for cost-efficient and spatially continuous measurements of beam losses at accelerator facilities. A standard oBLM consists of several tens of metres of optical fibre aligned parallel to a beamline, coupled to photosensors at either or both ends. Using [...] Read more.
Optical Beam-Loss Monitors (oBLMs) allow for cost-efficient and spatially continuous measurements of beam losses at accelerator facilities. A standard oBLM consists of several tens of metres of optical fibre aligned parallel to a beamline, coupled to photosensors at either or both ends. Using the timing information from loss signals, the loss positions can be reconstructed. This paper presents a novel oBLM system recently deployed at the CERN Linear Electron Accelerator for Research (CLEAR). Multiple methods of extracting timing and position information from measured waveforms with silicon photomultipliers (SiPM) and photomultiplier tubes (PMT) are investigated. For this installation, the optimal approach is determined to be applying a constant fraction discrimination (CFD) on the upstream readout. The position resolution is found to be similar for the tested SiPM and PMT. This work has resulted in the development of a user interface to aid operations by visualising the beam losses and their positions in real time. Full article
Show Figures

Figure 1

12 pages, 4843 KiB  
Article
Development of TR-19 Cyclotron Parameter Settings for Fully Automated Production of Radiometals with Applications in Nuclear Medicine
by Liviu Ștefan Crăciun, Tiberiu Relu Eșanu, Radu Leonte, Hermann Anton Schubert, Raul Victor Erhan and Dana Niculae
Instruments 2025, 9(1), 3; https://doi.org/10.3390/instruments9010003 - 26 Feb 2025
Viewed by 498
Abstract
At the Radiopharmaceutical Research Center (CCR) of the Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), we operate a TR-19 cyclotron for radio isotope production. To broaden our spectrum of radioisotopes with applications in nuclear medicine, we add a [...] Read more.
At the Radiopharmaceutical Research Center (CCR) of the Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), we operate a TR-19 cyclotron for radio isotope production. To broaden our spectrum of radioisotopes with applications in nuclear medicine, we add a new external beam line towards a state-of-the-art solid target station. Besides practical experience with the implementation of the Comecer ALCEO metal solid targetry system, a new, more efficient way of tuning the beam onto the target and the design of a dedicated neutron local layered shielding are presented. Full article
(This article belongs to the Special Issue Medical Applications of Particle Physics, 2nd Edition)
Show Figures

Figure 1

16 pages, 1408 KiB  
Article
Feasibility Study of a PET Detector with a Wavelength-Shifting Fiber Readout
by Anzori Sh. Georgadze
Instruments 2025, 9(1), 2; https://doi.org/10.3390/instruments9010002 - 5 Feb 2025
Viewed by 1000
Abstract
We designed and evaluated the performance of a high-resolution large-area detector for positron emission tomography (PET) based on a crystal assembly readout using wavelength-shifting (WLS) fibers, offering a cost-effective alternative to the direct readout of monolithic crystals with photodetectors. The considered detector geometries [...] Read more.
We designed and evaluated the performance of a high-resolution large-area detector for positron emission tomography (PET) based on a crystal assembly readout using wavelength-shifting (WLS) fibers, offering a cost-effective alternative to the direct readout of monolithic crystals with photodetectors. The considered detector geometries were made up of 4 × 4 assemblies of LuY2SiO5:Ce (LYSO) crystal scintillators, each with surface area of 50 × 50 mm2 and thickness of 7 or 15 mm, which were optically coupled together using optical adhesive. The crystal assembly was coupled with square cross-sections of orthogonal wavelength-shifting (WLS) fibers placed on the top and bottom of the assembly. To evaluate the characteristics of the novel detector, we used GEANT4 to perform optical photon transport in the crystal assembly and WLS fibers. The simulation results show that best position resolution achieved was 1.6 ± 0.4 mm full width at half maximum (FWHM) and 4.2 ± 0.6 mm full width at tenth maximum (FWTM) for the crystal thickness of 7 mm and 1.7 ± 0.4 mm FWHM and 6.0 ± 0.6 mm FWTM for the crystal thickness of 15 mm. Compared with a direct photosensor readout, WLS fibers can drastically reduce the number of photosensors required while covering a larger sensitive detection area. In the proposed detector design, 2N photodetectors are used to cover the same image area instead of N2 with a direct readout. This design allows for the development of a compact detector with an expanded effective field of view and reduced cost. Full article
(This article belongs to the Special Issue Medical Applications of Particle Physics, 2nd Edition)
Show Figures

Figure 1

11 pages, 1292 KiB  
Article
Design and Simulation of a Muon Detector Using Wavelength-Shifting Fiber Readouts for Border Security
by Anzori Sh. Georgadze
Instruments 2025, 9(1), 1; https://doi.org/10.3390/instruments9010001 - 27 Jan 2025
Viewed by 1240
Abstract
Cosmic ray muon tomography is a promising method for the non-invasive inspection of shipping containers and trucks. It leverages the highly penetrating cosmic muons and their interactions with various materials to generate three-dimensional images of large and dense objects, such as inter-modal shipping [...] Read more.
Cosmic ray muon tomography is a promising method for the non-invasive inspection of shipping containers and trucks. It leverages the highly penetrating cosmic muons and their interactions with various materials to generate three-dimensional images of large and dense objects, such as inter-modal shipping containers, which are typically opaque to conventional X-ray radiography techniques. One of the key tasks of customs and border security is verifying shipping container declarations to prevent illegal trafficking, and muon tomography offers a viable solution for this purpose. Common imaging methods using muons rely on data analysis of either muon scattering or absorption–transmission. We design a compact muon tomography system with dimensions of 3 × 3 × 3 m3, consisting of 2D position-sensitive detectors. These detectors include plastic scintillators, wavelength-shifting (WLS) fibers, and SiPMs. Through light transport modeling with GEANT4, we demonstrate that the proposed detector design—featuring 1 m × 1 m scintillator plates with 2 mm2 square-shaped WLS fibers—can achieve a spatial resolution of approximately 0.7–1.0 mm. Through Monte Carlo simulations, we demonstrate that combining muon scattering and absorption data enables the rapid and accurate identification of cargo materials. In a smuggling scenario where tobacco is falsely declared as paper towel rolls, this combined analysis distinguishes the two with 3 σ confidence at a spatial resolution of 1 mm (FWHM) for the muon detector, achieving results within a scanning time of 40 s for a 20-foot shipping container. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop