Design and Simulation of a Muon Detector Using Wavelength-Shifting Fiber Readouts for Border Security
Abstract
1. Introduction
2. Simulation of the Muon Detector
3. Simulation Results
4. Cargo Discrimination Capability Study
4.1. Muon Scattering Tomography
4.2. Muon Absorption Method
4.3. Simulation in a Real Scenario
5. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bonechi, L.; D’Alessandro, R.; Giammanco, A. Atmospheric muons as an imaging tool. Rev. Phys. 2020, 5, 100038. [Google Scholar] [CrossRef]
- Barnes, S.; Georgadze, A.; Giammanco, A.; Kiisk, M.; Kudryavtsev, V.A.; Lagrange, M.; Pinto, O.L. Cosmic-Ray Tomography for Border Security. Instruments 2023, 7, 13. [Google Scholar] [CrossRef]
- Borozdin, K.N.; Hogan, G.E.; Morris, C.; Priedhorsky, W.C.; Saunders, A.; Schultz, L.J.; Teasdale, M.E. Radiographic imaging with cosmic-ray muons. Nature 2003, 422, 277. [Google Scholar] [CrossRef] [PubMed]
- Cuéllar, L.; Borozdin, K.N.; Green, J.A.; Hengartner, N.W.; Morris, C.; Schultz, L.J. Soft cosmic ray tomography for detection of explosives. In Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 24 October–1 November 2009; pp. 968–970. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhi, Z.; Ming, Z.; Wang, X.; Zhao, Z. Discrimination of drugs and explosives in cargo inspections by applying machine learning in muon tomography. High Power Laser Part. Beams 2018, 30, 086002. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Li, Y.; Liu, P. Towards a muon scattering tomography system for both low-Z and high-Z materials. J. Instrum. 2023, 18, P08008. [Google Scholar] [CrossRef]
- Schultz, L.J. Cosmic Ray Muon Radiography; Portland State University: Portland, OR, USA, 2003. [Google Scholar]
- Åström, E.; Bonomi, G.; Calliari, I.; Calvini, P.; Checchia, P.; Donzella, A.; Faraci, E.; Forsberg, F.; Gonella, F.; Hu, X.; et al. Precision measurements of linear scattering density using muon tomography. J. Instrum. 2016, 11, P07010. [Google Scholar] [CrossRef]
- Checchia, P. Review of possible applications of cosmic muon tomography. J. Instrum. 2016, 11, C12072. [Google Scholar] [CrossRef]
- Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Bonanno, D.; Bonanno, G.; Bongiovanni, D.; Fallica, P.; Garozzo, S.; Grillo, A.; La Rocca, P.; et al. The Muon Portal Project: Design and construction of a scanning portal based on muon tomography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2017, 845, 322–325. [Google Scholar] [CrossRef]
- Pugliatti, C.; Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Belluomo, F.; Belluso, M.; Billotta, S.; Blancato, A.A.; Bonanno, D.L.; Bonanno, G.; et al. Design of a muonic tomographic detector to scan travelling containers. J. Instrum. 2014, 9, C05029. [Google Scholar] [CrossRef]
- Morris, C.; Bacon, J.; Borozdin, K.; Miyadera, H.; Perry, J.; Rose, E.; Watson, S.; White, T.; Aberle, D.; Green, J.A.; et al. A new method for imaging nuclear threats using cosmic ray muons. AIP Adv. 2013, 3, 082128. [Google Scholar] [CrossRef]
- Preziosi, E.; Arcieri, F.; Caltabiano, A.; Camarri, P.; Casagrande, S.; Cavicchioni, D.; Danza, F.A.; Fabrizi, E.; Fabrizi, M.; Festa, G.; et al. TECNOMUSE: A novel, RPC-based, muon tomography scanner for the control of container terminals. J. Phys. Conf. Ser. 2020, 1548, 012021. [Google Scholar] [CrossRef]
- Georgadze, A.S.; Kudryavtsev, V.A. Geant4 simulation study of low-Z material detection using muon tomography. J. Instrum. 2023, 18, C12014. [Google Scholar] [CrossRef]
- Georgadze, A.; Giammanco, A.; Kudryavtsev, V.; Lagrange, M.; Turkoglu, C. A Simulation of a Cosmic Ray Tomography Scanner for Trucks and Shipping Containers. J. Adv. Instrum. Sci. 2024, 2024, JAIS-482. [Google Scholar] [CrossRef]
- Georgadze, A.S. Simulation study into the detection of low- and high-Z materials in cargo containers using cosmic ray muons. Acta Phys. Pol. B Proc. Suppl. 2024, 17, 1-A2.1–1-A2.8. [Google Scholar] [CrossRef]
- Georgadze, A.S. Automated object detection for muon tomography data analysis. J. Instrum. 2024, 19, C07004. [Google Scholar] [CrossRef]
- Europian Commission. Cosmic Ray Tomograph for Identification of Hazardous and Illegal Goods Hidden in Trucks and Sea Containers; European Commission: Brussels, Belgium, 2021. [Google Scholar] [CrossRef]
- Morris, C.; Borozdin, K.; Bacon, J.; Chen, E.; Lukić, Z.; Milner, E.; Miyadera, H.; Perry, J.; Schwellenbach, D.; Aberle, D.; et al. Obtaining material identification with cosmic ray radiography. AIP Adv. 2012, 2, 042128. [Google Scholar] [CrossRef]
- Blanpied, G.; Kumar, S.; Dorroh, D.; Morgan, C.; Blanpied, I.; Sossong, M.; McKenney, S.; Nelson, B. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, 784, 352–358. [Google Scholar] [CrossRef]
- Vanini, S.; Calvini, P.; Checchia, P.; Rigoni Garola, A.; Klinger, J.; Zumerle, G.; Bonomi, G.; Donzella, A.; Zenoni, A. Muography of different structures using muon scattering and absorption algorithms. Philos. Trans. R. Soc. A 2019, 377, 20180051. [Google Scholar] [CrossRef]
- Georgadze, A.S. Rapid cargo verification with cosmic ray muon scattering and absorption tomography. J. Instrum. 2024, 19, P10033. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2003, 506, 506–514. [Google Scholar] [CrossRef]
- Geant4 Collaboration. 2025. Available online: https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/index.html (accessed on 1 January 2025).
- Gumplinger, P. Optical photon processes in Geant4. In Proceedings of the Users’ Workshop at CERN, Stanford, CA, USA, 18–22 February 2002. [Google Scholar]
- Vilardi, I.; Braem, A.; Chesi, E.; Ciocia, F.; Colonna, N.; Corsi, F.; Cusanno, F.; De Leo, R.; Dragone, A.; Garibaldi, F.; et al. Optimization of the effective light attenuation length of YAP: Ce and LYSO: Ce crystals for a novel geometrical PET concept. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2006, 564, 506–514. [Google Scholar] [CrossRef]
- Solutions, L. Luxium Solutions. 2024. Available online: https://luxiumsolutions.com/radiation-detection-scintillators/fibers (accessed on 26 December 2024).
- Georgadze, A.; Shivani, S.; Tayefi, K.A.; Moskal, P. Optimization of the WLS design for positron emission mammography and Total-Body J-PET systems. Bio-Algorithms Med-Syst. 2023, 19, 114–123. [Google Scholar] [CrossRef]
- Solutions, L. Premium Plastic Scintillators, BC-408 Datasheet. 2014. Available online: https://luxiumsolutions.com/radiation-detection-scintillators/plastic-scintillators (accessed on 26 December 2024).
- Brun, R.; Rademakers, F. ROOT—An object oriented data analysis framework. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1997, 389, 81–86. [Google Scholar] [CrossRef]
- Lynch, G.R.; Dahl, O.I. Approximations to multiple Coulomb scattering. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1991, 58, 6–10. [Google Scholar] [CrossRef]
- Highland, V.L. Some practical remarks on multiple scattering. Nucl. Instrum. Methods 1975, 129, 497–499. [Google Scholar] [CrossRef]
- Hagmann, C.; Lange, D.; Wright, D. Cosmic-ray shower generator (CRY) for Monte Carlo transport codes. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October–3 November 2007; Volume 2, pp. 1143–1146. [Google Scholar] [CrossRef]
- Carlisle, T.; Cobb, J.; Neuffer, D. Multiple scattering measurements in the MICE experiment. In Proceedings of the IPAC2012, New Orleans, LA, USA, 20–25 May 2012; Volume 1205201, pp. 1419–1421. [Google Scholar]
- Riggi, S.; Antonuccio-Delogu, V.; Bandieramonte, M.; Becciani, U.; Costa, A.; La Rocca, P.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, F.; et al. Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2013, 728, 59–68. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgadze, A.S. Design and Simulation of a Muon Detector Using Wavelength-Shifting Fiber Readouts for Border Security. Instruments 2025, 9, 1. https://doi.org/10.3390/instruments9010001
Georgadze AS. Design and Simulation of a Muon Detector Using Wavelength-Shifting Fiber Readouts for Border Security. Instruments. 2025; 9(1):1. https://doi.org/10.3390/instruments9010001
Chicago/Turabian StyleGeorgadze, Anzori Sh. 2025. "Design and Simulation of a Muon Detector Using Wavelength-Shifting Fiber Readouts for Border Security" Instruments 9, no. 1: 1. https://doi.org/10.3390/instruments9010001
APA StyleGeorgadze, A. S. (2025). Design and Simulation of a Muon Detector Using Wavelength-Shifting Fiber Readouts for Border Security. Instruments, 9(1), 1. https://doi.org/10.3390/instruments9010001