Broadband Anisotropic Optical Properties of the Terahertz Generator HMQ-TMS Organic Crystal
Abstract
:1. Introduction
2. Experimental Methods
2.1. Linear Response Study
2.2. Ir Pumping Scheme
3. Results
3.1. Linear Optical Parameters
3.2. Spectral Analysis
3.3. Thz Generation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | linear dichroism |
References
- Zhang, X.; Xu, J. Introduction to THz Wave Phoronics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Giorgianni, F.; Sakai, J.; Lupi, S. Overcoming the thermal regime for the electric-field driven Mott transition in vanadium sesquioxide. Nat. Commun. 2019, 1, 1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giorgianni, F.; Chiadroni, E.; Rovere, A.; Cestelli-Guidi, M.; Perucchi, A.; Bellaveglia, M.; Castellano, M.; Di Giovanale, D.; Di Pirro, G.; Ferrario, M.; et al. Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator. Nat. Commun. 2016, 7, 11421. [Google Scholar] [CrossRef] [PubMed]
- Hochrein, T. Markets, Availability, Notice, and Technical Performance of Terahertz Systems: Historic Development, Present, and Trends. J. Infrared Millim. Terahertz Waves 2015, 36, 235–254. [Google Scholar] [CrossRef]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Pickwell, E.; Wallace, V.P. Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 2006, 39, R301–R310. [Google Scholar] [CrossRef]
- D’Arco, A.; Di Fabrizio, M.; Dolci, V.; Petrarca, M.; Lupi, S. THz Pulsed Imaging in Biomedical Applications. Condens. Matter 2020, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Federici, J.F.; Schulkin, B.; Huang, F.; Gary, D.; Barat, R.; Oliveira, F.; Zimdars, D. THz imaging and sensing for security applications—Explosives. weapons and drugs. Semicond. Sci. Technol. 2005, 20, S266–S280. [Google Scholar] [CrossRef]
- Ergün, S.; Sönmez, S. Terahertz Technology for Military Applications. J. Manag. Inf. Sci. 2015, 3, 13–16. [Google Scholar] [CrossRef]
- Leahy-Hoppa, M.R.; Fitch, M.J.; Osiander, R. Terahertz spectroscopy techniques for explosives detection. Anal. Bioanal. Chem. 2009, 395, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Curcio, A.; Marocchino, A.; Dolci, V.; Lupi, S.; Petrarca, M. Resonant plasma excitation by single-cycle THz pulses. Sci. Rep. 2018, 8, 1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanni, E.A.; Huang, K.-H.; Ravi, K.; Fallahi, A.; Moriena, G.; Miller, R.J.D.; Kartner, F.X. Terahertz-driven linear electron acceleration. Nat. Commun. 2015, 6, 8486. [Google Scholar] [CrossRef] [PubMed]
- Chiadroni, E.; Bacci, A.; Bellaveglia, M.; Boscolo, M.; Castellano, M.; Cultrera, L.; Di Pirro, G.; Ferrario, M.; Ficcadenti, L.; Filippetto, D.; et al. The SPARC linear accelerator based terahertz source. Appl. Phys. Lett. 2013, 102, 094101. [Google Scholar] [CrossRef] [Green Version]
- Perucchi, A.; Mitri, S.D.; Penco, G.; Allaria, E.; Lupi, S. The TeraFERMI terahertz source at the seeded FERMI free-electron-laser facility. Rev. Sci. Instrum. 2013, 84, 022702. [Google Scholar] [CrossRef] [PubMed]
- Jazbinsek, M.; Puc, U.; Abina, A.; Zidansek, A. Organic Crystals for THz Photonics. Appl. Sci. 2019, 9, 882. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, R.L. Handbook of Nonlinear Optics; Dekker: New York, NY, USA, 2003. [Google Scholar]
- Zhang, X.C.; Ma, X.F.; Jin, Y.; Lu, T.M.; Boden, E.P.; Phelp, P.D.; Stewart, K.R.; Yakymyshyn, C.P. Terahertz optical rectification from a nonlinear organic crystal. Appl. Phys. Lett. 1992, 61, 3080–3082. [Google Scholar] [CrossRef]
- Winnewisser, C.; Jepsen, P.; Schall, M.; Schyja, V.; Helm, H. Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe. Appl. Phys. Lett. 1997, 70, 3069–3071. [Google Scholar] [CrossRef]
- Vicario, C.; Jazbinsek, M.; Ovchinnikov, A.V.; Chefonov, O.V.; Ashitkov, S.I.; Agranat, M.B.; Hauri, C.P. High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr:forsterite laser. Opt. Express 2015, 23, 4573–4580. [Google Scholar] [CrossRef] [Green Version]
- Dolci, V.; Cascioli, V.; Curcio, A.; Ficcadenti, L.; Lupi, S.; Petrarca, M. Intensity and phase retrieval of IR laser pulse by THz-based measurement and THz waveform modulation. Nucl. Instrum. Methods Phys. Res. A 2018, 909, 204–207. [Google Scholar] [CrossRef]
- Curcio, A.; Dolci, V.; Lupi, S.; Petrarca, M. Terahertz-based retrieval of the spectral phase and amplitude of ultrashort laser pulses. Opt. Lett. 2018, 43, 2783–2786. [Google Scholar] [CrossRef] [Green Version]
- Curcio, A.; Petrarca, M. Diagnosing plasmas with wideband terahertz pulses. Opt. Lett. 2019, 44, 1011–1014. [Google Scholar] [CrossRef]
- Kono, S.; Tani, M.; Sakai, K. Ultrabroadband photoconductive detection: Comparison with free-space electro-optic sampling. Appl. Phys. Lett. 2001, 79, 898–900. [Google Scholar] [CrossRef]
- Hebling, J.; Yeh, K.-L.; Hoffmann, M.C.; Bartal, B.; Nelson, K.A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J. Opt. Soc. Am. B 2008, 25, B6–B19. [Google Scholar] [CrossRef]
- Yang, Z.; Mutter, L.; Stillhart, M.; Aravazhi, S.; Jazbinšek, M.; Schneider, A.; Gramlich, V.; Günter, P. Large-Size Bulk and Thin-Film Stilbazolium-Salt Single Crystals for Nonlinear Optics and THz Generation. Adv. Funct. Water 2007, 17, 2018–2023. [Google Scholar] [CrossRef]
- Ogawa, J.; Okada, S.; Glavcheva, Z.; Nakanishi, H. Preparation, properties and structures of 1-methyl-4-2-[4-(dimethylamino)phenyl]ethenylpyridinium crystals with various counter anions. J. Cryst. Growth 2008, 310, 836–842. [Google Scholar] [CrossRef]
- Tomasino, A.; Parisi, A.; Stivala, S.; Livreri, P.; Cino, A.C.; Busacca, A.C.; Peccianti, M.; Morandotti, R. Wideband THz Time Domain Spectroscopy based on Optical Rectification and Electro-Optic Sampling. Sci. Rep. 2013, 3, 3116. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, P.D.; Hayden, L.M. Optical properties of DAST in the THz range. Opt. Express 2010, 18, 23620–23625. [Google Scholar] [CrossRef]
- Vicario, C.; Ovchinnikov, A.V.; Ashitokov, S.I.; Agranat, M.B.; Fortov, V.E.; Hauri, C.P. Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser. Opt. Lett. 2014, 39, 6632–6635. [Google Scholar] [CrossRef]
- Brunner, F.D.J.; Kwon, O.P.; Kwon, S.-J.; Jazbinšek, M.; Schneider, A.; Günter, P. A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection. Opt. Express 2008, 16, 16496–16508. [Google Scholar] [CrossRef]
- Jeong, J.H.; Kang, B.J.; Kim, J.S.; Jazbinšek, M.; Lee, S.H.; Lee, S.C.; Baek, I.H.; Yun, H.; Kim, J.; Lee, Y.S.; et al. High-power Broadband Organic THz Generator. Sci. Rep. 2013, 3, 3200–3207. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, H.; Okada, Y.; Fujimura, H.; Moioka, M.; Sugihara, O.; Okamoto, N.; Matsushima, R. Second-Harmonic Generation from Single Crystals of N-Substituted 4-Nitroanilines. Jpn. J. Appl. Phys. 1997, 36, 6754–6760. [Google Scholar] [CrossRef]
- Brunner, F.D.J.; Lee, S.-H.; Kwon, O.-P.; Feurer, T. THz generation by optical rectification of near-infrared laser pulses in the organic nonlinear optical crystal HMQ-TMS. Opt. Mater. Express 2014, 4, 1586–1592. [Google Scholar] [CrossRef]
- Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S.-H.; Kwon, O.-P.; Hauri, C.P. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap. Sci. Rep. 2005, 5, 14394. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Brunner, F.D.J.; Gunter, P. Determination of the refractive index over a wide wavelength range through time-delay measurements of femtosecond pulses. Opt. Commun. 2007, 275, 354–458. [Google Scholar] [CrossRef]
- Lupi, S.; Nucara, A.; Perucchi, A.; Calvani, P.; Ortolani, M.; Quaroni, L.; Kiskinova, M. Performance of SISSI, the infrared beamline of the ELETTRA storage ring. J. Opt. Soc. Am. B 2007, 24, 959–964. [Google Scholar] [CrossRef]
- Karantzoulis, E.; Penco, G.; Perucchi, A.; Lupi, S. Characterization of coherent THz radiation bursting regime at Elettra. Infrared Phys. Techn. 2010, 53, 300–303. [Google Scholar] [CrossRef]
- Roy, P.; Brubach, J.B.; Calvani, P.; de Marzi, G.; Filabozzi, A.; Gerschel, A.; Giura, P.; Lupi, S.; Marcouillé, O.; Mermet, A.; et al. Infrared synchrotron radiation: From the production to the spectroscopic and microscopic applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2001, 467 Pt 1, 426–436. [Google Scholar] [CrossRef]
- Nichelatti, E. Complex refractive index of a slab from reflectance and transmittance: Analytical solution. J. Opt. A Pure Appl. Opt. 2002, 4, 300–403. [Google Scholar] [CrossRef]
- Kuzmenko, A.B. Kramers–Kronig constrained variational analysis of optical spectra. Rev. Sci Instrum. 2005, 76, 083108. [Google Scholar] [CrossRef] [Green Version]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000; pp. 10815–10837. [Google Scholar]
- Buzykin, O.G.; Ivanov, S.V.; Ionin, A.A.; Kotkov, A.A.; Kozlov, A.Y. Spectroscopic detection of sulfur oxides in the aircraft wake. J. Russ. Laser Res. 2005, 26, 402–426. [Google Scholar] [CrossRef]
- Shishlov, N.M.; Khursan, S.L. Effect of ion interactions on the IR spectrum of benzenesulfonate ion. Restoration of sulfonate ion symmetry in sodium benzenesulfonate dimer. J. Mol. Struct. 2016, 1123, 360–366. [Google Scholar] [CrossRef]
- Özel, A.E.; Büyükmurat, Y.; Akyüz, S. Infrared-spectra and normal-coordinate analysis of quinoline and quinoline complexes. J. Mol. Struct. 2001, 565–566, 455–462. [Google Scholar] [CrossRef]
- Lupi, S.; Ortolani, M.; Calvani, P. Optical conductivity of single crystals of Na0.57CoO2. Phys. Rev. B 2004, 69, 180506. [Google Scholar] [CrossRef] [Green Version]
- Phuoc, V.T.; Vaju, C.; Corraze, B.; Sopracase, R.; Perucchi, A.; Marini, C.; Postorino, P.; Chiligui, M.; Lupi, S.; Janod, E.; et al. Optical Conductivity Measurements of GaTa4Se8 Under High Pressure: Evidence of a Bandwidth-Controlled Insulator-to-Metal Mott Transition. Phys. Rev. Lett. 2013, 110, 037401. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Arco, A.; Tomarchio, L.; Dolci, V.; Di Pietro, P.; Perucchi, A.; Mou, S.; Petrarca, M.; Lupi, S. Broadband Anisotropic Optical Properties of the Terahertz Generator HMQ-TMS Organic Crystal. Condens. Matter 2020, 5, 47. https://doi.org/10.3390/condmat5030047
D’Arco A, Tomarchio L, Dolci V, Di Pietro P, Perucchi A, Mou S, Petrarca M, Lupi S. Broadband Anisotropic Optical Properties of the Terahertz Generator HMQ-TMS Organic Crystal. Condensed Matter. 2020; 5(3):47. https://doi.org/10.3390/condmat5030047
Chicago/Turabian StyleD’Arco, Annalisa, Luca Tomarchio, Valerio Dolci, Paola Di Pietro, Andrea Perucchi, Sen Mou, Massimo Petrarca, and Stefano Lupi. 2020. "Broadband Anisotropic Optical Properties of the Terahertz Generator HMQ-TMS Organic Crystal" Condensed Matter 5, no. 3: 47. https://doi.org/10.3390/condmat5030047
APA StyleD’Arco, A., Tomarchio, L., Dolci, V., Di Pietro, P., Perucchi, A., Mou, S., Petrarca, M., & Lupi, S. (2020). Broadband Anisotropic Optical Properties of the Terahertz Generator HMQ-TMS Organic Crystal. Condensed Matter, 5(3), 47. https://doi.org/10.3390/condmat5030047