Many Body Quantum Chaos
Abstract
:Funding
Acknowledgments
Conflicts of Interest
References
- Katz, J.; Rahav, S.; Lev, Y.B.; Dorfman, J.R. Obituary: Shmuel Fishman. Phys. Today 2019. [Google Scholar] [CrossRef]
- Haake, F. Quantum Signatures of Chaos; Springer: Berlin, Germany, 2010. [Google Scholar]
- Wimberger, S. Nonlinear Dynamics and Quantum Chaos; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Casati, G.; Chirikov, B.; Ford, J.; Izrailev, F. Stochastic Behavior of A Quantum Pendulum Under Periodic Perturbation. In Lecture Notes in Physics; Casati, G., Ford, J., Eds.; Springer: Berlin, Germany, 1979. [Google Scholar]
- Fishman, S. Quantum Localization. In Quantum Chaos; Casati, G., Guarneri, I., Smilansky, U., Eds.; School “E. Fermi” CXIX; IOS—North Holland: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Fishman, S.; Grempel, D.R.; Prange, R.E. Chaos, Quantum Recurrences, and Anderson Localization. Phys. Rev. Lett. 1982, 49, 509–512. [Google Scholar] [CrossRef]
- Fishman, S.; Guarneri, I.; Rebuzzini, L. A Theory for Quantum Accelerator Modes in Atom Optics. J. Stat. Phys. 2003, 110, 911–943. [Google Scholar] [CrossRef]
- Guarneri, I.; Rebuzzini, L.; Fishman, S. Arnol’d tongues and quantum accelerator modes. Nonlinearity 2006, 19, 1141–1164. [Google Scholar] [CrossRef] [Green Version]
- Oberthaler, M.K.; Godun, R.M.; d’Arcy, M.B.; Summy, G.S.; Burnett, K. Observation of Quantum Accelerator Modes. Phys. Rev. Lett. 1999, 83, 4447–4451. [Google Scholar] [CrossRef] [Green Version]
- Behinaein, G.; Ramareddy, V.; Ahmadi, P.; Summy, G.S. Exploring the Phase Space of the Quantum δ-Kicked Accelerator. Phys. Rev. Lett. 2006, 97, 244101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wimberger, S.; Guarneri, I.; Fishman, S. Quantum resonances and decoherence for delta-kicked atoms. Nonlinearity 2003, 16, 1381. [Google Scholar] [CrossRef] [Green Version]
- Sadgrove, M.; Wimberger, S. A pseudo-classical method for the atom-optics kicked rotor: From theory to experiment and back. Adv. At. Mol. Opt. Phys. 2011, 60, 315. [Google Scholar]
- Dubertrand, R.; Guarneri, I.; Wimberger, S. Fidelity for kicked atoms with gravity near a quantum resonance. Phys. Rev. E 2012, 85, 036205. [Google Scholar] [CrossRef] [Green Version]
- Sadgrove, M.; Schell, T.; Nakagawa, K.; Wimberger, S. Engineering quantum correlations to enhance transport in cold atoms. Phys. Rev. A 2013, 87, 013631. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Ni, J.; Lam, W.K.; Summy, G.S.; Wimberger, S. Dynamical tunneling of a Bose-Einstein condensate in periodically driven systems. Phys. Rev. E 2013, 88, 034901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landa, H.; Cormick, C.; Morigi, G. Static Kinks in Chains of Interacting Atoms. Condens. Matter 2020, 5, 35. [Google Scholar] [CrossRef]
- Fishman, S.; Krivolapov, Y.; Soffer, A. The nonlinear Schrödinger equation with a random potential: Results and puzzles. Nonlinearity 2012, 25, R53–R72. [Google Scholar] [CrossRef] [Green Version]
- Pitaevskii, L.; Stringari, S. Bose-Einstein Condensation; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Pethick, C.J.; Smith, H. Bose-Einstein Condensation in Dilute Gases; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Nitsch, M.; Geiger, B.; Richter, K.; Urbina, J.D. Classical and Quantum Signatures of Quantum Phase Transitions in a (Pseudo) Relativistic Many-Body System. Condens. Matter 2020, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Kolovsky, A.R.; Maksimov, D.N. Quantum State of the Fermionic Carriers in a Transport Channel Connecting Particle Reservoirs. Condens. Matter 2019, 4, 85. [Google Scholar] [CrossRef] [Green Version]
- Torres-Herrera, E.J.; Santos, L.F. Dynamical Detection of Level Repulsion in the One-Particle Aubry-Andre Model. Condens. Matter 2020, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Frahm, K.M.; Ermann, L.; Shepelyansky, D.L. Dynamical Thermalization of Interacting Fermionic Atoms in a Sinai Oscillator Trap. Condens. Matter 2019, 4, 76. [Google Scholar] [CrossRef] [Green Version]
- Mantica, G. Many-Body Systems and Quantum Chaos: The Multiparticle Quantum Arnold Cat. Condens. Matter 2019, 4, 72. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, H.; Kogawa, R.; Shudo, A. Uniform Hyperbolicity of a Scattering Map with Lorentzian Potential. Condens. Matter 2020, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Giachetti, G.; Gherardini, S.; Trombettoni, A.; Ruffo, S. Quantum-Heat Fluctuation Relations in Three-Level Systems Under Projective Measurements. Condens. Matter 2020, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- de Bettin, F.; Cappellaro, A.; Salasnich, L. Action Functional for a Particle with Damping. Condens. Matter 2019, 4, 81. [Google Scholar] [CrossRef] [Green Version]
- Loho Choudhury, S.; Großmann, F. On the Husimi Version of the Classical Limit of Quantum Correlation Functions. Condens. Matter 2020, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, T.; Pietroni, M.; Madroñero, J.; Amendola, L.; Wimberger, S. A Quantum Model for the Dynamics of Cold Dark Matter. Condens. Matter 2019, 4, 89. [Google Scholar] [CrossRef] [Green Version]
- Sadgrove, M.; Wimberger, S.; Nakagawa, K. Phase-selected momentum transport in ultra-cold atoms. Eur. Phys. J. D 2012, 66, 155. [Google Scholar] [CrossRef]
- Summy, G.; Wimberger, S. Quantum random walk of a Bose-Einstein condensate in momentum space. Phys. Rev. A 2016, 93, 023638. [Google Scholar] [CrossRef] [Green Version]
- Dadras, S.; Gresch, A.; Groiseau, C.; Wimberger, S.; Summy, G.S. Quantum Walk in Momentum Space with a Bose-Einstein Condensate. Phys. Rev. Lett. 2018, 121, 070402. [Google Scholar] [CrossRef] [Green Version]
- Delvecchio, M.; Petiziol, F.; Wimberger, S. Resonant Quantum Kicked Rotor as A Continuous-Time Quantum Walk. Condens. Matter 2020, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Portugal, R. Quantum Walks and Search Algorithms; Springer International Publishing: New York, NY, USA, 2013. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wimberger, S. Many Body Quantum Chaos. Condens. Matter 2020, 5, 41. https://doi.org/10.3390/condmat5020041
Wimberger S. Many Body Quantum Chaos. Condensed Matter. 2020; 5(2):41. https://doi.org/10.3390/condmat5020041
Chicago/Turabian StyleWimberger, Sandro. 2020. "Many Body Quantum Chaos" Condensed Matter 5, no. 2: 41. https://doi.org/10.3390/condmat5020041
APA StyleWimberger, S. (2020). Many Body Quantum Chaos. Condensed Matter, 5(2), 41. https://doi.org/10.3390/condmat5020041