Possible Metal Burden of Potentially Toxic Elements in Rainbow Trout (Oncorhynchus mykiss) on Aquaculture Farm
Abstract
:1. Introduction
1.1. Legislation
1.2. Heavy Metals as Environmental Pollutants
1.2.1. Arsenic
1.2.2. Cadmium
1.2.3. Mercury
1.2.4. Lead
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Analytical Process
2.2.2. Method for Validation
2.2.3. Exposure Calculation
Provisional Tolerable Intake (PTI)
Estimated Daily Intake (EDI)
Target Hazard Quotient (THQ)
Hazard Index (HI)
2.2.4. Statistical Evaluation
3. Results
3.1. Arsenic
3.2. Cadmium
3.3. Mercury
3.4. Lead
3.5. Total Metal Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO (Food and Agriculture Organization of the United Nations). Integrated Agriculture-Aquaculture: A Primer; FAO Fisheries Technical Paper, No. 407; FAO/ICLARM/IIRR: Rome, Italy, 2001; 149p, Available online: http://www.fao.org/DOCREP/005/Y1187E/Y1187E00.HTM (accessed on 25 March 2024).
- FAO (Food and Agriculture Organization of the United Nations). World Food and Agriculture—Statistical Yearbook; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). The State of World Fisheries and Aquaculture 2020. In Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). Aspects of FAOs Policies, Programmes, Budget and Activities Aimed at Contributing to Sustainable Development; Document to the Ninety-Fourth Session of the FAO Council, Rome, 15–25 November 1988; FAO: Rome, Italy, 1988; CL94/6. [Google Scholar]
- Beveridge, M.C.M.; Phillips, M.J.; Macintosh, D.J. Aquaculture and the environment: The supply of and demand for environmental goods and services by Asian aquaculture and the implications for sustainability. Aquacult. Res. 1997, 28, 797–807. [Google Scholar] [CrossRef]
- Focardi, S.; Corsi, I.; Franchi, E. Safety issues and sustainable development of European aquaculture: New tools for environmentally sound aquaculture. Aquacult. Int. 2005, 13, 3–17. [Google Scholar] [CrossRef]
- Frankic, A.; Hershner, C. Sustainable aquaculture: Developing the promise of aquaculture. Aquacult. Int. 2003, 11, 517–530. [Google Scholar] [CrossRef]
- Halberg, N.; van der Werf, H.M.G.; Basset-Mens, C.; Dalgaard, R.; de Boer, I.J.M. Environmental assessment tools for the evaluation and improvement of European livestock production systems. Livest. Prod. Sci. 2005, 96, 33–50. [Google Scholar] [CrossRef]
- Wurts, W.A. Sustainable Aquaculture in the Twenty-First Century. Rev. Fish. Sci. 2000, 8, 141–150. [Google Scholar] [CrossRef]
- Giménez-Candela, M.; Saraiva, J.L.; Bauer, H. The legal protection of farmed fish in Europe—Analysing the range of EU legislation and the impact of international animal welfare standards for the fishes in European aquaculture. Derecho Anim. (Forum Anim. Law Stud.) 2020, 11, 65–118. [Google Scholar] [CrossRef]
- SustainAqua. Integrated Approach for a Sustainable and Healthy Freshwater Aquaculture. SustainAqua Handbook—A Handbook for Sustainable Aquaculture. 2009. Available online: https://haki.naik.hu/sites/default/files/uploads/2018-09/sustainaqua_handbook_en.pdf (accessed on 25 March 2024).
- Radhakrishnan, G.; Yashwanth, B.S.; Shivkumar, S.; Sidramappa, M.V.; Nevil, P.; Prathik, M.R.; Pradeep, K. Dietary protein requirement for maintenance, growth, and reproduction in fish: A review. J. Entomol. Zool. Stud. 2020, 8, 208–215. [Google Scholar]
- Sarkar, M.M.; Rohani, M.F.; Hossain, M.A.R.; Shahjahan, M. Evaluation of Heavy Metal Contamination in Some Selected Commercial Fish Feeds Used in Bangladesh. Biol. Trace Element. Res. 2022, 200, 844–854. [Google Scholar] [CrossRef]
- Glencross, B.D.; Baily, J.; Berntssen, M.H.G.; Hardy, R.; MacKenzie, S.; Tocher, D.R. Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Rev. Aquacult. 2020, 12, 703–758. [Google Scholar] [CrossRef]
- Bernard, E.; Adetola, O. Nutritional Composition and Heavy Metal Contamination of Prominent Fishmeal Samples. J. Fish. Aquat. Sci. 2022, 17, 1–8. [Google Scholar] [CrossRef]
- Majlesi, M.; Malekzadeh, J.; Berizi, E.; Toori, M.A. Heavy metal content in farmed rainbow trout in relation to aquaculture area and feed pellets. Foods Raw Mater. 2019, 7, 329–338. [Google Scholar] [CrossRef]
- Abarshi, M.M.; Dantala, E.O.; Mada, S.B. Bioaccumulation of heavy metals in some tissues of croaker fish from oil spilled rivers of Niger Delta region, Nigeria. Asian Pac. J. Trop. Biomed. 2017, 7, 563–568. [Google Scholar] [CrossRef]
- Jorgensen, L.A.; Pedersen, S. Trace metals in fish used for time trend analysis and as environmental indicators. Mar. Pollut. Bull. 1994, 28, 24–32. [Google Scholar] [CrossRef]
- Malik, N.; Biswas, A.K.; Qureshi, T.A.; Borana, K.; Virha, R. Bioaccumulation of heavy metals in fish tissues of a freshwater lake of Bhopal. Environ. Monit. Assess. 2010, 160, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Weber, P.; Behr, E.R.; Knorr, C.D.L.; Vendruscolo, D.S.; Flores, E.M.M.; Dressler, V.L.; Baldisserotto, B. Metals in the water, sediment, and tissues of two fish species from different trophic levels in a subtropical Brazilian river. Microchem. J. 2013, 106, 61–66. [Google Scholar] [CrossRef]
- Agbozu, I.E.; Ekweozor, K.E.; Opuene, K. Survey of heavy metals in the catfish Syndontis claris. Int. J. Environ. Sci. Technol. 2007, 4, 93–97. Available online: https://www.bioline.org.br/pdf?st07012 (accessed on 25 March 2024). [CrossRef]
- Linnick, P.M.; Zubenko, I.B. Role of bottom sediments in the secondary pollution of aquatic environments by heavy-metal compounds. Lakes Reserv. Res. Manag. 2000, 5, 11–21. [Google Scholar] [CrossRef]
- Mager, E.M.; Grosell, M. Effects of acute and chronic waterborne lead exposure on the swimming performance and aerobic scope of fathead minnows (Pimephales promelas). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2011, 154, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Mannzhi, M.P.; Edokpayi, J.N.; Durowoju, O.S.; Gumbo, J.; Odiyo, J.O. Assessment of selected trace metals in fish feeds, pond water and edible muscles of Oreochromis mossambicus and the evaluation of human health risk associated with its consumption in Vhembe district of Limpopo Province, South Africa. Toxicol. Rep. 2021, 8, 705–717. [Google Scholar] [CrossRef]
- Djikanović, V.; Skorić, S.; Jarić, I.; Lenhardt, M. Age-specific metal and accumulation patterns in different tissues of nase (Chodrostoma nasus) from the Medjuvršje Reservoir. Sci. Total Environ. 2016, 566–567, 185–190. [Google Scholar] [CrossRef]
- Nikolić, D.; Skorić, S.; Janković, S.; Hegediš, A.; Djikanović, V. Age-specific accumulation of toxic metal(loid)s in northern pike (Esox lucius) juveniles. Environ. Monit. Assess. 2021, 193, 229. [Google Scholar] [CrossRef] [PubMed]
- COM 2021. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; Strategic Guidelines for a More Sustainable and Competitive EU Aquaculture for the Period 2021 to 2030. COM/2021/236 Final. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:52021DC0236 (accessed on 25 March 2024).
- Commission Regulation (EC) No 2023/915 on setting maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union L 2023, 119, 103–157. Available online: http://data.europa.eu/eli/reg/2023/915/oj (accessed on 25 March 2024).
- Lehel, J.; Lányi, K.; Laczay, P. Food safety significance of heavy metal contamination in foods of animal origin. Magy. Állatorv. Lapja 2016, 138, 99–112. Available online: https://real-j.mtak.hu/20206/2/mal_2016_138_2_.pdf (accessed on 1 May 2020). (In Hungarian).
- Das, S.; Sultana, K.W.; Ndhlala, A.R.; Mondal, M.; Chandra, I. Heavy Metal Pollution in the Environment and Its Impact on Health: Exploring Green Technology for Remediation. Environ. Health Insights 2023, 17, 11786302231201259. [Google Scholar] [CrossRef] [PubMed]
- Shahidul Islam, M.; Tanakan, M. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Mar. Pollut. Bull. 2004, 48, 624–649. [Google Scholar] [CrossRef] [PubMed]
- Sojka, M.; Jaskuła, J. Heavy Metals in River Sediments: Contamination, Toxicity, and Source Identification-A Case Study from Poland. Int. J. Environ. Res. Public Health 2022, 19, 10502. [Google Scholar] [CrossRef] [PubMed]
- Kumari, B.; Kumar, V.; Sinha, A.K.; Ahsan, J.; Ghosh, A.K.; Wang, H.; DeBoeck, G. Toxicology of arsenic in fish and aquatic systems. Environ. Chem. Lett. 2017, 15, 43–64. [Google Scholar] [CrossRef]
- Mancera-Rodríguez, N.J.; Galiano, D.R.; López-Montoya, A.J.; Llorent-Martínez, E.J.; Molina-García, L.; Azorit, C. Common carp as an ecological indicator of environmental pollution in reservoirs of southern Spain: Inferring the environmental risks of anthropogenic activities. Environ. Sci. Pollut. Res. 2024, 31, 36192–36206. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, D.; Poleksić, V.; Skorić, S.; Tasić, A.; Stanojević, S.; Rašković, B. The European Chub (Squalius cephalus) as an indicator of reservoirs pollution and human health risk assessment associated with its consumption. Environ. Pollut. 2022, 310, 119871. [Google Scholar] [CrossRef]
- Nikolić, D.; Skorić, S.; Mićković, B.; Nikčević, M.; Smederevac-Lalić, M.; Djikanović, V. Accumulation of 25 elements in gills, liver, gonads, and muscle of European chub (Squalius cephalus), Cactus roach (Rutilus virgo), and pikeperch (Sander lucioperca) from Zlatar reservoir (Serbia). Environ. Sci. Pollut. Res. 2022, 29, 50271–50280. [Google Scholar] [CrossRef]
- Milošković, A.; Stojković Piperac, M.; Kojadinović, N.; Radenković, M.; Đuretanović, S.; Čerba, D.; Milošević, D.; Simić, V. Potentially toxic elements in invasive fish species Prussian carp (Carassius gibelio) from different freshwater ecosystems and human exposure assessment. Environ. Sci. Pollut. Res. 2022, 29, 29152–29164. [Google Scholar] [CrossRef]
- Mukherjee, J.; Saha, N.C.; Karan, S. Bioaccumulation pattern of heavy metals in fish tissues and associated health hazards in human population. Environ. Sci. Pollut. Res. 2022, 29, 21365–21379. [Google Scholar] [CrossRef] [PubMed]
- Demirak, A.; Keskin, F.; Silm, M.; Özdemir, N.; Yıldız, D.; Bernotas, P.; Öğlü, B. Bioaccumulation and health risk assessment of heavy metals in European eels taken from Lakes Köyceğiz (Turkey) and Võrtsjärv (Estonia). Environ. Sci. Pollut. Res. 2022, 29, 1620–1633. [Google Scholar] [CrossRef] [PubMed]
- Rahmanikhah, Z.; Esmaili-sari, A.; Bahramifar, N. Total mercury and methylmercury concentrations in native and invasive fish species in Shadegan International Wetland, Iran, and health risk assessment. Environ. Sci. Pollut. Res. 2020, 27, 6765–6773. [Google Scholar] [CrossRef] [PubMed]
- Naeem, S.; Ashraf, M.; Babar, M.E.; Zahoor, S.; Ali, S. The effects of some heavy metals on some fish species. Environ. Sci. Pollut. Res. 2021, 28, 25566–25578. [Google Scholar] [CrossRef] [PubMed]
- Farkas, A.; Salánki, J.; Varanka, I. Heavy metal concentrations in fish of Lake Balaton. Lakes Reserv. Res. Manag. 2000, 5, 271–279. [Google Scholar] [CrossRef]
- Saidon, N.B.; Szabó, R.; Lehel, J.; Budai, P. Trophic Transfer and Biomagnification Potential of Environmental Contaminants (Heavy Metals) in Aquatic Ecosystems. Environ. Pollut. 2023, 340, 122815. [Google Scholar] [CrossRef] [PubMed]
- Sabbir, W.; Rahman, M.Z.; Halder, T.; Khan, M.N.; Ray, S. Assessment of heavy metal contamination in fish feed available in three districts of South Western region of Bangladesh. Int. J. Fishe. Aquatic Stud. 2018, 6, 100–104. Available online: https://www.researchgate.net/publication/323701174_Assessment_of_heavy_metal_contamination_in_fish_feed_available_in_three_districts_of_South_Western_region_of_Bangladesh (accessed on 25 March 2024).
- Islam, M.M.; Avha, N.J.; Ahmed, S.; Akbor, M.A.; Islam, M.S.; Mostafiz, F.; Habibullah-Al-Mamun, M. Trace metals and organochlorine pesticide residues in imported fishes in Bangladesh and human health risk implications. Environ. Sci. Pollut. Res. 2022, 29, 17499–17512. [Google Scholar] [CrossRef]
- Maury-Brachet, R.; Gentes, S.; Dassié, E.P.; Feurtet-Mazel, A.; Vigouroux, R.; Laperche, V.; Gonzalez, P.; Hanquiez, V.; Mesmer-Dudons, N.; Durrieu, G.; et al. Mercury contamination levels in the bioindicator piscivorous fish Hoplias aïmara in French Guiana rivers: Mapping for risk assessment. Environ. Sci. Pollut. Res. 2020, 27, 3624–3636. [Google Scholar] [CrossRef]
- Polak-Juszczak, L. Distribution of organic and inorganic mercury in the tissues and organs of fish from the southern Baltic Sea. Environ. Sci. Pollut. Res. 2018, 25, 34181–34189. [Google Scholar] [CrossRef] [PubMed]
- Jezierska, B.; Witeska, M. The metal uptake and accumulation in fish living in polluted waters. In Soil and Water Pollution Monitoring, Protection and Remediation; Twardowska, I., Allen, H.E., Häggblom, M.M., Stefaniak, S., Eds.; NATO Science Series; Springer: Dordrecht, The Netherlands, 2006; Volume 69. [Google Scholar] [CrossRef]
- Jovičić, K.; Nikolić, D.M.; Višnjić-Jeftić, Ž.; Đikanović, V.; Skorić, S.; Stefanović, S.M.; Lenhardt, M.; Hegediš, A.; Krpo-Ćetković, J.; Jarić, I. Mapping differential elemental accumulation in fish tissues: Assessment of metal and trace element concentrations in wels catfish (Silurus glanis) from the Danube River by ICP-MS. Environ. Sci. Pollut. Res. 2015, 22, 3820–3827. [Google Scholar] [CrossRef] [PubMed]
- Dušek, L.; Svobodová, Z.; Janoušková, D.; Vykusová, B.; Jarkovský, J.; Šmíd, R.; Pavliš, R. Bioaccumulation of mercury in muscle tissue of fish in the Elbe River (Czech Republic): Multispecies monitoring study 1991–1996. Ecotoxicol. Environ. Saf. 2005, 61, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, D.; Skorić, S.; Poleksić, V.; Rašković, B. Sex-specific elemental accumulation and histopathology of pikeperch (Sander lucioperca) from Garaši reservoir (Serbia) with human health risk assessment. Environ. Sci. Pollut. Res. 2021, 28, 53700–53711. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, D.; Skorić, S.; Rašković, B.; Lenhardt, M.; Krpo-Ćetković, J. Impact of reservoir properties on elemental accumulation and histopathology of European perch (Perca fluviatilis). Chemosphere 2020, 244, 125503. [Google Scholar] [CrossRef]
- Łuczyńska, J.; Paszczyk, B.; Łuczyński, M.J. Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer’s health. Ecotoxicol. Environ. Saf. 2018, 153, 60–67. [Google Scholar] [CrossRef]
- Rašković, B.; Poleksić, V.; Skorić, S.; Jovičić, K.; Spasić, S.; Hegediš, A.; Vasić, N.; Lenhardt, M. Effects of mine tailing and mixed contamination on metals, trace elements accumulation and histopathology of the chub (Squalius cephalus) tissues: Evidence from three differently contaminated sites in Serbia. Ecotoxicol. Environ. Saf. 2018, 153, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Novotna Kruzikova, K.; Siroka, Z.; Jurajda, P.; Harustiakova, D.; Smolikova, Z.; Kubicek, M.; Svobodova, Z. Mercury content in fish from drinking-water reservoirs in the Morava River Basin (Czech Republic). Environ. Sci. Pollut. Res. 2022, 29, 17394–17405. [Google Scholar] [CrossRef]
- Commission Regulation. No. 333/2007/EC of 28 March 2007 laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstuffs. Off. J. Eur. Union L 2007, 88, 29–38. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:088:0029:0038:EN:PDF (accessed on 3 January 2020).
- European Commission: Food, Farming, Fisheries. Oceans and fisheries: Consumption. Available online: https://oceans-and-fisheries.ec.europa.eu/facts-and-figures/facts-and-figures-common-fisheries-policy/consumption_en (accessed on 15 February 2024).
- EFSA (European Food Safety Authority). Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar] [CrossRef]
- JECFA-776. Evaluation of Certain Food Additives and Contaminants, 33rd Report of Joint FAO/WHO Expert Committee on Food Additives, Technical Report Series 776. Geneva. 1989. Available online: https://www.who.int/publications/i/item/9241207760 (accessed on 3 January 2020).
- JECFA-959. Evaluation of Certain Food Additives and Contaminants, 72nd Report of Joint FAO/WHO Expert Committee on Food Additives, Technical Report Series 959. Geneva. 2011. Available online: https://www.who.int/publications/i/item/9789241209595 (accessed on 3 January 2020).
- JECFA-960. Geneva. Evaluation of Certain Food Additives and Contaminants, 73rd Report of Joint FAO/WHO Expert Committee on Food Additives, Technical Report Series 960. 2011. Available online: https://www.who.int/publications/i/item/9789241209601 (accessed on 3 January 2020).
- EFSA (European Food Safety Authority). Scientific opinion on lead in food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- Chamannejadian, A.; Sayyad, G.; Moezzi, A.; Jahangiri, A. Evaluation of estimated daily intake (EDI) of cadmium and lead for rice (Oryza sativa L.) in calcareous soils. Iran. J. Environ. Health Sci. Engin. 2013, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Scientific opinion on arsenic in food. EFSA J. 2009, 7, 1351. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on cadmium in food. EFSA J. 2009, 980, 1–139. [Google Scholar] [CrossRef]
- Wong, C.; Roberts, S.M.; Saab, I.N. Review of regulatory reference values and background levels for heavy metals in the human diet. Regul. Toxicol. Pharmacol. 2022, 130, 105122. [Google Scholar] [CrossRef] [PubMed]
- Parang, H.; Esmaeilbeigi, M. Total mercury concentration in the muscle of four mostly consumed fish and associated human health risks for fishermen and non-fishermen families in the Anzali Wetland, Southern Caspian Sea. Reg. Stud. Mar. Sci. 2022, 52, 102270. [Google Scholar] [CrossRef]
- Barreca, S.; Orecchio, S.; Orecchio, S.; Abbate, I.; Pellerito, C. Macro and micro elements in traditional meals of Mediterranean diet: Determination, estimated intake by population, risk assessment and chemometric analysis. J. Food Compos. Anal. 2023, 123, 105541. [Google Scholar] [CrossRef]
- Djedjibegovic, J.; Marjanovic, A.; Tahirovic, D.; Caklovica, K.; Turalic, A.; Lugusic, A.; Omeragic, E.; Sober, M.; Caklovica, F. Heavy metals in commercial fish and seafood products and risk assessment in adult population in Bosnia and Herzegovina. Sci. Rep. 2020, 10, 13238. [Google Scholar] [CrossRef] [PubMed]
- Tekindal, M.A.; Erdoğan, B.D.; Yavuz, Y. Evaluating Left-Censored Data Through Substitution, Parametric, Semi-parametric, and Nonparametric Methods: A Simulation Study. Interdiscipl. Sci. Comput. Life Sci. 2015, 9, 153–172. [Google Scholar] [CrossRef]
- Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 2016, 96, 32–48. [Google Scholar] [CrossRef]
- JECFA-505. Evaluation of Certain Food Additives and the Contaminants Mercury, Lead, and Cadmium: 16th Report of the Joint FAO/WHO Expert Committee on Food Additives, Technical Report Series 505. Geneva. 1972. Available online: https://www.who.int/publications/i/item/9241205059 (accessed on 3 January 2020).
- Fallah, A.A.; Saei-Dehkordi, S.S.; Nematollahi, A.; Jafari, T. Comparative study of heavy metal and trace element accumulation in edible tissues of farmed and wild rainbow trout (Oncorhynchus mykiss) using ICP-OES technique. Microchem. J. 2011, 98, 275–279. [Google Scholar] [CrossRef]
- D’Agaro, E.; Gibertoni, P.; Esposito, S. Recent Trends and Economic Aspects in the Rainbow Trout (Oncorhynchus mykiss) Sector. Appl. Sci. 2022, 12, 8773. [Google Scholar] [CrossRef]
- Cammilleri, G.; Calabrese, V.; Accordino, L.; Pantano, L.; Migliazzo, A.; Galluzzo, F.G.; Ferrantelli, V. Toxic metals and total lipids comparison between wild and farmed fish of South mediterranean. Nat. Prod. Res. 2023, 37, 2232–2242. [Google Scholar] [CrossRef] [PubMed]
- Okbah, M.A.; Dango, E.A.S.; El Zokm, G.M. Heavy metals in Fish Species from Mediterranean Coast, Tripoli Port (Libya): A comprehensive assessment of the potential adverse effects on human health. Egypt. J. Aquat. Biol. Fish. 2018, 22, 149–164. Available online: https://journals.ekb.eg/article_19514_77d1588b729d9e1c3e17fe309a729723.pdf (accessed on 25 March 2024). [CrossRef]
- Habib, S.S.; Naz, S.; Fazio, F.; Cravana, C.; Ullah, M.; Rind, K.H.; Attaullah, S.; Filiciotto, F.; Khayyam, K. Assessment and Bioaccumulation of Heavy Metals in Water, Fish (wild and Farmed) and Associated Human Health Risk. Biol. Trace Element. Res. 2024, 202, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Resma, N.S.; Meaze, A.M.H.; Hossain, S.; Khandaker, M.U.; Kamal, M.; Deb, N. The presence of toxic metals in popular farmed fish species and estimation of health risks through their consumption. Phys. Open 2020, 5, 100052. [Google Scholar] [CrossRef]
- Chatta, A.; Muhammad, K.; Zahid, M.; Asif, A. Heavy metal (cadmium, lead, and chromium) contamination infarmed fish: A potential risk for consumers’ health. Turk. J. Zool. 2016, 40, 248–256. [Google Scholar] [CrossRef]
- Lehel, J.; Papp, Z.; Bartha, A.; Palotás, P.; Szabó, R.; Budai, P.; Süth, M. Metal Load of Potentially Toxic Elements in Tuna (Thunnus albacares)—Food Safety Aspects. Foods 2023, 12, 3038. [Google Scholar] [CrossRef]
Element | Wavelength of Detection (nm) | Calibration Curve Parameters | Limit of Quantitation (mg/kg) | Limit of Detection (mg/kg) | Precision (%) | Trueness (%) | ||
---|---|---|---|---|---|---|---|---|
Equation (y = a·x + b) (1) | (2) | |||||||
a | b | r | ||||||
Arsenic | 188.979 | 1287 | 0 | 0.999828 | 1.67 | 0.50 | 12.7 | 13.6 |
Cadmium | 228.802 | 63,870 | 0 | 0.999529 | 0.17 | 0.05 | 8.4 | −10.9 |
Mercury | 194.168 | 10,030 | 0 | 1.000000 | 1.67 | 0.50 | 12.3 | 8.1 |
Lead | 220.353 | 6520 | 0 | 0.999813 | 0.67 | 0.20 | 3.5 | −8.4 |
Element | Certified Value (mg/kg) | Measured Value (mg/kg) | LOD (mg/kg) | Recovery (%) |
---|---|---|---|---|
ERM-CE287k (Mussel tissue) | ||||
Arsenic | 6.70 | 6.87 ± 0.08 | 0.50 | 102.5 |
Cadmium | 0.34 | 0.36 ± 0.02 | 0.05 | 106.5 |
Lead | 2.18 | 2.00 ± 0.11 | 0.20 | 91.7 |
ERM-CE464 (Tuna fish) | ||||
Mercury | 5.24 | 5.14 ± 0.08 | 0.50 | 98.1 |
Total As | As (Inorganic, 5% of Total As) | Cd | Hg | Pb | |
---|---|---|---|---|---|
LOD | 0.5 | ND1 | 0.05 | 0.50 | 0.20 |
Maximum Limit (ML) (mg/kg) | ND1 | ND1 | 0.05 | 0.50 | 0.30 |
Measured concentration (mg/kg) | |||||
Average ± SD | 1.65 ± 0.49 | 0.08 ± 0.02 | 0.03 ± 0.02 | <0.50 | 0.16 ± 0.16 |
Minimum (measured) | 0.54 | 0.03 | 0.05 | <0.50 | 0.24 |
Maximum (measured) | 2.79 | 0.14 | 0.07 | <0.50 | 0.85 |
Ratio of sample above the LOD (%) | 100 | NA | 30 | 0 | 15 |
Ratio of sample above the ML (%) | NA | NA | 30 | 0 | 10 |
Estimated daily intake (µg/kg) | |||||
Reference dose (µg/kg) | ND1 | 0.3 | 1 | 0.3 | 0.16 (adult) 0.26 (children) |
Average ± SD | 1.55 ± 0.46 | 0.08 ± 0.02 | 0.03 ± 0.01 | <0.47 | 0.15 ± 0.15 |
Minimum (measured) | 0.51 | 0.03 | 0.05 | ND2 | 0.23 |
Maximum (measured) | 2.62 | 0.13 | 0.06 | ND2 | 0.80 |
Ratio of sample above the reference value (%) | NA | 0 | 0 | 0 | 15 (children) 10 (adult) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehel, J.; Plachy, M.; Palotás, P.; Bartha, A.; Budai, P. Possible Metal Burden of Potentially Toxic Elements in Rainbow Trout (Oncorhynchus mykiss) on Aquaculture Farm. Fishes 2024, 9, 252. https://doi.org/10.3390/fishes9070252
Lehel J, Plachy M, Palotás P, Bartha A, Budai P. Possible Metal Burden of Potentially Toxic Elements in Rainbow Trout (Oncorhynchus mykiss) on Aquaculture Farm. Fishes. 2024; 9(7):252. https://doi.org/10.3390/fishes9070252
Chicago/Turabian StyleLehel, József, Melinda Plachy, Péter Palotás, András Bartha, and Péter Budai. 2024. "Possible Metal Burden of Potentially Toxic Elements in Rainbow Trout (Oncorhynchus mykiss) on Aquaculture Farm" Fishes 9, no. 7: 252. https://doi.org/10.3390/fishes9070252
APA StyleLehel, J., Plachy, M., Palotás, P., Bartha, A., & Budai, P. (2024). Possible Metal Burden of Potentially Toxic Elements in Rainbow Trout (Oncorhynchus mykiss) on Aquaculture Farm. Fishes, 9(7), 252. https://doi.org/10.3390/fishes9070252