Comparative Analysis of Enzymatic Activities and Transcriptional Profiles of Various Hepatic Enzymes between Male and Female Yellowfin Tuna (Thunnus albacares)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish and Sample Preparation
2.2. Histological Procedures for Liver and Gonad Tissues
2.3. Measurement of Enzyme Activities
2.4. RNA-Seq and Bioinformatics Analysis
2.5. Real-Time Quantitative PCR (RT-qPCR) Validation
2.6. Statistical Analysis
3. Results
3.1. Histological Observation
3.2. Differences in Liver Metabolic Enzymes between Male and Female Yellowfin Tuna
3.3. RNA-Seq of the Liver Transcriptome
3.4. Differential Expression Analysis
3.5. Enriched GO Terms and KEGG Pathways
4. Discussion
4.1. Digestive Differences
4.2. Energy Metabolism Differences
4.3. Lipid Metabolism Differences
4.4. Antioxidant Differences
4.5. Expression Differences of Growth-Hormone-Axis-Related Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Báez, J.C.; Czerwinski, I.A.; Ramos, M.L. Climatic Oscillations Effect on the Yellowfin Tuna (Thunnus albacares) Spanish Captures in the Indian Ocean. Fish. Oceanogr. 2020, 29, 572–583. [Google Scholar] [CrossRef]
- Tridjoko; Hutapea, J.H.; Setiadi, A.; Gunawan; Selamet, B. Maintenance and Spawning on Yellowfin Tuna Broodstock Reared in Floating Net Cage. IOP Conf. Ser. Earth Environ. Sci. 2021, 890, 012039. [Google Scholar] [CrossRef]
- Dortel, E.; Massiot-Granier, F.; Rivot, E.; Million, J.; Hallier, J.-P.; Morize, E.; Munaron, J.-M.; Bousquet, N.; Chassot, E. Accounting for Age Uncertainty in Growth Modeling, the Case Study of Yellowfin Tuna (Thunnus albacares) of the Indian Ocean. PLoS ONE 2013, 8, e60886. [Google Scholar] [CrossRef] [PubMed]
- Gascuel, D.; Fonteneau, A.; Capisano, C. Modélisation d’une Croissance En Deux Stances Chez l’albacore (Thunnus albacares) de l’Atlantique Est. Aquat. Living Resour. 1992, 5, 155–172. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, X.; Dai, Z. Comparison of Nonvolatile and Volatile Compounds in Raw, Cooked, and Canned Yellowfin Tuna (Thunnus albacores). J. Food Process. Preserv. 2019, 43, e14111. [Google Scholar] [CrossRef]
- Pacicco, A.E.; Brown-Peterson, N.J.; Murie, D.J.; Allman, R.J.; Snodgrass, D.; Franks, J.S. Reproductive Biology of Yellowfin Tuna (Thunnus albacares) in the Northcentral U.S. Gulf of Mexico. Fish. Res. 2023, 261, 106620. [Google Scholar] [CrossRef]
- Liu, H.; Fu, Z.; Yu, G.; Ma, Z.; Zong, H. Effects of Acute High-Temperature Stress on Physical Responses of Yellowfin Tuna (Thunnus albacares). J. Mar. Sci. Eng. 2022, 10, 1857. [Google Scholar] [CrossRef]
- Nicol, S.; Lehodey, P.; Senina, I.; Bromhead, D.; Frommel, A.Y.; Hampton, J.; Havenhand, J.; Margulies, D.; Munday, P.L.; Scholey, V.; et al. Ocean Futures for the World’s Largest Yellowfin Tuna Population Under the Combined Effects of Ocean Warming and Acidification. Front. Mar. Sci. 2022, 9, 816772. [Google Scholar] [CrossRef]
- Pecoraro, C.; Zudaire, I.; Bodin, N.; Murua, H.; Taconet, P.; Díaz-Jaimes, P.; Cariani, A.; Tinti, F.; Chassot, E. Putting All the Pieces Together: Integrating Current Knowledge of the Biology, Ecology, Fisheries Status, Stock Structure and Management of Yellowfin Tuna (Thunnus albacares). Rev. Fish Biol. Fish. 2017, 27, 811–841. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Lan, K.-W.; Evans, K.; Chang, Y.-J.; Chan, J.-W. Effects of Decadal Climate Variability on Spatiotemporal Distribution of Indo-Pacific Yellowfin Tuna Population. Sci. Rep. 2022, 12, 13715. [Google Scholar] [CrossRef]
- Bramantya, B.; Gunawan; Sari, L.A. Spawning Technique of Yellowfin Tuna (Thunnus albacares) Infloating Nets Cage. IOP Conf. Ser. Earth Environ. Sci. 2021, 679, 012029. [Google Scholar] [CrossRef]
- Margulies, D.; Scholey, V.P.; Wexler, J.B.; Stein, M.S. Chapter 5—Research on the Reproductive Biology and Early Life History of Yellowfin Tuna Thunnus albacares in Panama. In Advances in Tuna Aquaculture; Benetti, D.D., Partridge, G.J., Buentello, A., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 77–114. ISBN 978-0-12-411459-3. [Google Scholar]
- Benetti, D.D.; Partridge, G.J.; Stieglitz, J. Chapter 1—Overview on Status and Technological Advances in Tuna Aquaculture Around the World. In Advances in Tuna Aquaculture; Benetti, D.D., Partridge, G.J., Buentello, A., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 1–19. ISBN 978-0-12-411459-3. [Google Scholar]
- Estess, E.E.; Klinger, D.H.; Coffey, D.M.; Gleiss, A.C.; Rowbotham, I.; Seitz, A.C.; Rodriguez, L.; Norton, A.; Block, B.; Farwell, C. Bioenergetics of Captive Yellowfin Tuna (Thunnus albacares). Aquaculture 2017, 468, 71–79. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, N.; Fu, Z.; Yu, G.; Ma, Z.; Zhao, L. Impact of Salinity Changes on the Antioxidation of Juvenile Yellowfin Tuna (Thunnus albacares). J. Mar. Sci. Eng. 2023, 11, 132. [Google Scholar] [CrossRef]
- Mourente, G.; Tocher, D.R. Tuna Nutrition and Feeds: Current Status and Future Perspectives. Rev. Fish. Sci. 2009, 17, 373–390. [Google Scholar] [CrossRef]
- Roques, S.; Deborde, C.; Richard, N.; Skiba-Cassy, S.; Moing, A.; Fauconneau, B. Metabolomics and Fish Nutrition: A Review in the Context of Sustainable Feed Development. Rev. Aquac. 2020, 12, 261–282. [Google Scholar] [CrossRef]
- Wolf, J.C.; Wolfe, M.J. A Brief Overview of Nonneoplastic Hepatic Toxicity in Fish. Toxicol. Pathol. 2005, 33, 75–85. [Google Scholar] [CrossRef]
- Reinecke, M. Influences of the Environment on the Endocrine and Paracrine Fish Growth Hormone–Insulin-like Growth Factor-I System. J. Fish Biol. 2010, 76, 1233–1254. [Google Scholar] [CrossRef]
- Lozano, A.R.; Borges, P.; Robaina, L.; Betancor, M.; Hernández-Cruz, C.M.; García, J.R.; Caballero, M.J.; Vergara, J.M.; Izquierdo, M. Effect of Different Dietary Vitamin E Levels on Growth, Fish Composition, Fillet Quality and Liver Histology of Meagre (Argyrosomus regius). Aquaculture 2017, 468, 175–183. [Google Scholar] [CrossRef]
- Mourente, G.; Bell, J.G. Partial Replacement of Dietary Fish Oil with Blends of Vegetable Oils (Rapeseed, Linseed and Palm Oils) in Diets for European Sea Bass (Dicentrarchus labrax L.) over a Long Term Growth Study: Effects on Muscle and Liver Fatty Acid Composition and Effectiveness of a Fish Oil Finishing Diet. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006, 145, 389–399. [Google Scholar] [CrossRef]
- Wu, N.; Song, Y.-L.; Wang, B.; Zhang, X.-Y.; Zhang, X.-J.; Wang, Y.-L.; Cheng, Y.-Y.; Chen, D.-D.; Xia, X.-Q.; Lu, Y.-S.; et al. Fish Gut-Liver Immunity during Homeostasis or Inflammation Revealed by Integrative Transcriptome and Proteome Studies. Sci. Rep. 2016, 6, 36048. [Google Scholar] [CrossRef]
- Caballero-Solares, A.; Xue, X.; Parrish, C.C.; Foroutani, M.B.; Taylor, R.G.; Rise, M.L. Changes in the Liver Transcriptome of Farmed Atlantic Salmon (Salmo salar) Fed Experimental Diets Based on Terrestrial Alternatives to Fish Meal and Fish Oil. BMC Genom. 2018, 19, 796. [Google Scholar] [CrossRef] [PubMed]
- Olson, B.J.S.C. Assays for Determination of Protein Concentration. Curr. Protoc. Pharmacol. 2016, 73, A.3A.1–A.3A.32. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Liu, J.; Ndandala, C.B.; Li, X.; Guo, Y.; Li, G.; Chen, H. Physiological Effects and Transcriptomic Analysis of sbGnRH on the Liver in Pompano (Trachinotus ovatus). Front. Endocrinol. 2022, 13, 869021. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-Length Transcriptome Assembly from RNA-Seq Data without a Reference Genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- RSEM: Accurate Transcript Quantification from RNA-Seq Data with or without a Reference Genome|BMC Bioinformatics. Available online: https://link.springer.com/article/10.1186/1471-2105-12-323 (accessed on 15 September 2023).
- Friedman, I.S.; Fernández-Gimenez, A.V. State of Knowledge about Biotechnological Uses of Digestive Enzymes of Marine Fishery Resources: A Worldwide Systematic Review. Aquac. Fish. 2023; in press. [Google Scholar] [CrossRef]
- Zambonino Infante, J.L.; Cahu, C.L. Dietary Modulation of Some Digestive Enzymes and Metabolic Processes in Developing Marine Fish: Applications to Diet Formulation. Aquaculture 2007, 268, 98–105. [Google Scholar] [CrossRef]
- Holmes, R.S.; VandeBerg, J.L.; Cox, L.A. Vertebrate Hepatic Lipase Genes and Proteins: A Review Supported by Bioinformatic Studies. Open Access Bioinform. 2011, 3, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.W.; Weiss, S.B.; Kennedy, E.P. The enzymatic dephosphorylation of phosphatidic acids. J. Biol. Chem. 1957, 228, 915–922. [Google Scholar] [CrossRef]
- Leonard, J.B.K.; Iwata, M.; Ueda, H. Seasonal Changes of Hormones and Muscle Enzymes in Adult Lacustrine Masu (Oncorhynchus masou) and Sockeye Salmon (O. nerka). Fish Physiol. Biochem. 2001, 25, 153–163. [Google Scholar] [CrossRef]
- Ciftci, M.; Turkoglu, V.; Coban, T.A. Effects of Some Drugs on Hepatic Glucose 6-Phosphate Dehydrogenase Activity in Lake Van Fish (Chalcalburnus Tarischii pallas, 1811). J. Hazard. Mater. 2007, 143, 415–418. [Google Scholar] [CrossRef]
- Martins, D.A.; Valente, L.M.P.; Lall, S.P. Apparent Digestibility of Lipid and Fatty Acids in Fish Oil, Poultry Fat and Vegetable Oil Diets by Atlantic Halibut, Hippoglossus hippoglossus L. Aquaculture 2009, 294, 132–137. [Google Scholar] [CrossRef]
- Yuan, X.; Liang, X.-F.; Liu, L.; Fang, J.; Li, J.; Li, A.; Cai, W.; Xue, M.; Wang, J.; Wang, Q. Fat Deposition Pattern and Mechanism in Response to Dietary Lipid Levels in Grass Carp, Ctenopharyngodon Idellus. Fish Physiol. Biochem. 2016, 42, 1557–1569. [Google Scholar] [CrossRef]
- Kondo, T.; Kishi, M.; Fushimi, T.; Kaga, T. Acetic Acid Upregulates the Expression of Genes for Fatty Acid Oxidation Enzymes in Liver To Suppress Body Fat Accumulation. J. Agric. Food Chem. 2009, 57, 5982–5986. [Google Scholar] [CrossRef]
- Weil, C.; Lefèvre, F.; Bugeon, J. Characteristics and Metabolism of Different Adipose Tissues in Fish. Rev. Fish Biol. Fish. 2013, 23, 157–173. [Google Scholar] [CrossRef]
- Tong, L. Acetyl-Coenzyme A Carboxylase: Crucial Metabolic Enzyme and Attractive Target for Drug Discovery. Cell. Mol. Life Sci. CMLS 2005, 62, 1784–1803. [Google Scholar] [CrossRef]
- Tomacha, J.; Dokduang, H.; Padthaisong, S.; Namwat, N.; Klanrit, P.; Phetcharaburanin, J.; Wangwiwatsin, A.; Khampitak, T.; Koonmee, S.; Titapun, A.; et al. Targeting Fatty Acid Synthase Modulates Metabolic Pathways and Inhibits Cholangiocarcinoma Cell Progression. Front. Pharmacol. 2021, 12, 696961. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Wei, Y.; Liu, Y.; Wang, J.; Dai, J. The Identification of Apolipoprotein Genes in Rare Minnow (Gobiocypris rarus) and Their Expression Following Perfluorooctanoic Acid Exposure. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2010, 151, 152–159. [Google Scholar] [CrossRef]
- St Clair, R.W.; Beisiegel, U. What Do All the Apolipoprotein E Receptors Do? Curr. Opin. Lipidol. 1997, 8, 243. [Google Scholar] [CrossRef] [PubMed]
- Schippers, E.F.; Berbée, J.F.P.; van Disseldorp, I.M.; Versteegh, M.I.M.; Havekes, L.M.; Rensen, P.C.N.; van Dissel, J.T. Preoperative Apolipoprotein CI Levels Correlate Positively with the Proinflammatory Response in Patients Experiencing Endotoxemia Following Elective Cardiac Surgery. Intensive Care Med. 2008, 34, 1492–1497. [Google Scholar] [CrossRef]
- Poupard, G.; André, M.; Durliat, M.; Ballagny, C.; Boeuf, G.; Babin, P.J. Apolipoprotein E Gene Expression Correlates with Endogenous Lipid Nutrition and Yolk Syncytial Layer Lipoprotein Synthesis during Fish Development. Cell Tissue Res. 2000, 300, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Roberts, L.J. Measurement of Lipid Peroxidation. Free Radic. Res. 1998, 28, 659–671. [Google Scholar] [CrossRef]
- Olsvik, P.A.; Kristensen, T.; Waagbø, R.; Rosseland, B.O.; Tollefsen, K.-E.; Baeverfjord, G.; Berntssen, M.H.G. mRNA Expression of Antioxidant Enzymes (SOD, CAT and GSH-Px) and Lipid Peroxidative Stress in Liver of Atlantic Salmon (Salmo salar) Exposed to Hyperoxic Water during Smoltification. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2005, 141, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Farombi, E.O.; Adelowo, O.A.; Ajimoko, Y.R. Biomarkers of Oxidative Stress and Heavy Metal Levels as Indicators of Environmental Pollution in African Cat Fish (Clarias gariepinus) from Nigeria Ogun River. Int. J. Environ. Res. Public Health 2007, 4, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo-Fernandes, A.; Fontaínhas-Fernandes, A.; Peixoto, F.; Rocha, E.; Reis-Henriques, M.A. Effects of Gender and Temperature on Oxidative Stress Enzymes in Nile Tilapia Oreochromis niloticus Exposed to Paraquat. Pestic. Biochem. Physiol. 2006, 85, 97–103. [Google Scholar] [CrossRef]
- Parolini, M.; Iacobuzio, R.; De Felice, B.; Bassano, B.; Pennati, R.; Saino, N. Age- and Sex-Dependent Variation in the Activity of Antioxidant Enzymes in the Brown Trout (Salmo trutta). Fish Physiol. Biochem. 2019, 45, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Costantini, D. Meta-Analysis Reveals That Reproductive Strategies Are Associated with Sexual Differences in Oxidative Balance across Vertebrates. Curr. Zool. 2018, 64, 1–11. [Google Scholar] [CrossRef]
- Sreejai, R.; Jaya, D.S. Studies on the Changes in Lipid Peroxidation and Antioxidants in Fishes Exposed to Hydrogen Sulfide. Toxicol. Int. 2010, 17, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Yada, T. Growth Hormone and Fish Immune System. Gen. Comp. Endocrinol. 2007, 152, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Sánchez, J.; Simó-Mirabet, P.; Naya-Català, F.; Martos-Sitcha, J.A.; Perera, E.; Bermejo-Nogales, A.; Benedito-Palos, L.; Calduch-Giner, J.A. Somatotropic Axis Regulation Unravels the Differential Effects of Nutritional and Environmental Factors in Growth Performance of Marine Farmed Fishes. Front. Endocrinol. 2018, 9, 687. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Wu, T. Insulin-Like Growth Factor Binding Proteins in Autoimmune Diseases. Front. Endocrinol. 2018, 9, 499. [Google Scholar] [CrossRef]
- Song, F.; Zhou, X.-X.; Hu, Y.; Li, G.; Wang, Y. The Roles of Insulin-Like Growth Factor Binding Protein Family in Development and Diseases. Adv. Ther. 2021, 38, 885–903. [Google Scholar] [CrossRef]
ID | Clean Reads | GC Content | % ≥ Q30 |
---|---|---|---|
F-1 | 21,116,430 | 48.53% | 93.71% |
F-2 | 21,116,430 | 48.72% | 94.01% |
F-3 | 23,628,924 | 49.18% | 94.17% |
M-1 | 20,375,537 | 46.30% | 93.57% |
M-2 | 19,904,230 | 43.62% | 93.98% |
M-3 | 20,183,521 | 47.51% | 93.67% |
Anno_Database | Number Annotated_ | 300 ≤ Length < 1000 | Length ≥ 1000 | Percentage |
---|---|---|---|---|
COG_Annotation | 3217 | 481 | 2589 | 16.55 |
GO_Annotation | 16,464 | 4328 | 9749 | 84.69 |
KEGG_Annotation | 15,549 | 4046 | 9279 | 79.98 |
KOG_Annotation | 11,537 | 2689 | 7503 | 59.35 |
Pfam_Annotation | 13,003 | 2881 | 8979 | 66.89 |
Swissprot_Annotation | 8977 | 1998 | 6041 | 46.18 |
TrEMBL_Annotation | 19,155 | 5279 | 10,932 | 98.53 |
eggNOG_Annotation | 16,647 | 4429 | 9752 | 85.63 |
nr_Annotation | 18,991 | 5205 | 10,868 | 97.69 |
All_Annotated | 19,440 | 5416 | 10,994 | 100.00 |
DEG Set | Total | COG | GO | KEGG | KOG | NR | Pfam | Swiss-Prot | eggNOG |
---|---|---|---|---|---|---|---|---|---|
MvsF | 1894 | 519 | 1681 | 1600 | 1308 | 1883 | 1582 | 1063 | 1697 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Yang, H.; Li, S.; Huang, H.; Li, G.; Chen, H. Comparative Analysis of Enzymatic Activities and Transcriptional Profiles of Various Hepatic Enzymes between Male and Female Yellowfin Tuna (Thunnus albacares). Fishes 2024, 9, 184. https://doi.org/10.3390/fishes9050184
Liu D, Yang H, Li S, Huang H, Li G, Chen H. Comparative Analysis of Enzymatic Activities and Transcriptional Profiles of Various Hepatic Enzymes between Male and Female Yellowfin Tuna (Thunnus albacares). Fishes. 2024; 9(5):184. https://doi.org/10.3390/fishes9050184
Chicago/Turabian StyleLiu, Dongge, Hao Yang, Shuisheng Li, Hai Huang, Guangli Li, and Huapu Chen. 2024. "Comparative Analysis of Enzymatic Activities and Transcriptional Profiles of Various Hepatic Enzymes between Male and Female Yellowfin Tuna (Thunnus albacares)" Fishes 9, no. 5: 184. https://doi.org/10.3390/fishes9050184
APA StyleLiu, D., Yang, H., Li, S., Huang, H., Li, G., & Chen, H. (2024). Comparative Analysis of Enzymatic Activities and Transcriptional Profiles of Various Hepatic Enzymes between Male and Female Yellowfin Tuna (Thunnus albacares). Fishes, 9(5), 184. https://doi.org/10.3390/fishes9050184