Potential Effects of Microalgae-Supplemented Diets on the Growth, Blood Parameters, and the Activity of the Intestinal Microbiota in Sparus aurata and Mugil cephalus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Microalgae
2.3. Experimental Feeds and Feeding Trial
2.4. Fish Sampling
2.5. Growth Performance and Somatic Indices
2.6. Biochemical Parameters of the Plasma
2.7. Isolation of Strains
2.8. In Vitro Screening Assays
2.8.1. Hydrolytic Activity
2.8.2. Antimicrobial Activity
2.9. Hemolytic Activity
2.10. Identification of Isolate Strains
2.11. Statistical Analysis
3. Results
3.1. Growth Performance and Somatic Indices
3.2. Biochemical Parameters of the Plasma
3.3. Bacterial Characterization
3.3.1. Hydrolytic, Antimicrobial, and Hemolytic Activity of the Isolated Bacteria
3.3.2. Identification of Selected Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO (Food and Agriculture Organization of the United Nations). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Cottrell, R.S.; Blanchard, J.L.; Halpern, B.S.; Metian, M.; Froehlich, H.E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 2020, 1, 301–308. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Colombo, S.M.; Roy, K.; Mraz, J.; Wan, A.H.L.; Davies, S.J.; Tibbetts, S.M.; Øverland, M.; Francis, D.S.; Rocker, M.M.; Gasco, L.; et al. Towards achieving circularity and sustainability in feeds for farmed blue foods. Rev. Aquac. 2022, 15, 1115–1141. [Google Scholar] [CrossRef]
- Daniel, N. A review on replacing fishmeal in aqua feeds using plant protein sources. Int. J. Fish. Aquat. Stud. 2018, 6, 164–179. [Google Scholar]
- Santigosa, E.; Sánchez, J.; Médale, F.; Kaushik, S.; Pérez-Sánchez, J.; Gallardo, M. Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture 2008, 282, 68–74. [Google Scholar] [CrossRef]
- Muller-Feuga, A. The role of microalgae in aquaculture: Situation and trends. J. Appl. Phycol. 2000, 12, 527–534. [Google Scholar] [CrossRef]
- Beal, C.M.; Gerber, L.N.; Thongrod, S.; Phromkunthong, W.; Kiron, V.; Granados, J.; Archibald, I.; Greene, C.H.; Huntley, M.E. Marine microalgae commercial production improves sustainability of global fisheries and aquaculture. Sci. Rep. 2018, 8, 15064. [Google Scholar] [CrossRef]
- Shah, M.R.; Lutzu, G.A.; Alam, A.; Sarker, P.; Chowdhury, M.A.K.; Parsaeimehr, A.; Liang, Y.; Daroch, M. Microalgae in aquafeeds for a sustainable aquaculture industry. J. Appl. Phycol. 2018, 30, 197–213. [Google Scholar] [CrossRef]
- Jorge, S.S.; Enes, P.; Serra, C.R.; Castro, C.; Iglesias, P.; Teles, A.O.; Couto, A. Short-term supplementation of gilthead seabream (Sparus aurata) diets with Nannochloropsis gaditana modulates intestinal microbiota without affecting intestinal morphology and function. Aquac. Nutr. 2019, 25, 1388–1398. [Google Scholar] [CrossRef]
- Molina-Roque, L.; Bárany, A.; Sáez, M.I.; Alarcón, F.J.; Tapia, S.T.; Fuentes, J.; Mancera, J.M.; Perera, E.; Martos-Sitcha, J.A. Biotechnological treatment of microalgae enhances growth performance, hepatic carbohydrate metabolism and intestinal physiology in gilthead seabream (Sparus aurata) juveniles close to commercial size. Aquac. Rep. 2022, 25, 101248. [Google Scholar] [CrossRef]
- Perera, E.; Sánchez-Ruiz, D.; Sáez, M.I.; Galafat, A.; Barany, A.; Fernández-Castro, M.; Vizcaíno, A.J.; Fuentes, J.; Martínez, T.F.; Mancera, J.M.; et al. Low dietary inclusion of nutraceuticals from microalgae improves feed efficiency and modifies intermediary metabolisms in gilthead sea bream (Sparus aurata). Sci. Rep. 2020, 10, 18676. [Google Scholar] [CrossRef] [PubMed]
- Galafat, A.; Vizcaíno, A.J.; Sáez, M.I.; Martínez, T.F.; Jérez-Cepa, I.; Mancera, J.M.; Alarcón, F.J. Evaluation of Arthrospira sp. enzyme hydrolysate as dietary additive in gilthead seabream (Sparus aurata) juveniles. J. Appl. Phycol. 2020, 32, 3089–3100. [Google Scholar] [CrossRef]
- Alcaraz, R.; Hernández-Contreras, A.; Iglesias, P.; Hernández, M.D. Effect of the inclusion of microalgae on the physical properties of extruded feed for gilthead seabream (Sparus aurata L.). Algal Res. 2021, 53, 102167. [Google Scholar] [CrossRef]
- Tibbetts, S.M. The Potential for ‘Next-Generation’, Microalgae-Based Feed Ingredients for Salmonid Aquaculture in Context of the Blue Revolution. In Microalgal Biotechnology; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Q. Chlorella: Industrial Production of Cell Mass and Chemicals. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd ed.; John Wiley & Sons: Oxford, UK, 2013; pp. 327–338. [Google Scholar] [CrossRef]
- Skrede, A.; Mydland, L.; Ahlstrøm, Ø.; Reitan, K.; Gislerød, H.; Øverland, M. Evaluation of microalgae as sources of digestible nutrients for monogastric animals. J. Anim. Feed. Sci. 2011, 20, 131–142. [Google Scholar] [CrossRef]
- Pérez-Jiménez, A.; Abellán, E.; Arizcun, M.; Cardenete, G.; Morales, A.E.; Hidalgo, M.C. Nutritional and metabolic responses in common dentex (Dentex dentex) fed on different types and levels of carbohydrates. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 184, 56–64. [Google Scholar] [CrossRef]
- Prabu, E.; Felix, S.; Felix, N.; Ahilan, B.; Ruby, P. An overview on significance of fish nutrition in aquaculture industry. Int. J. Fish. Aquat. Stud. 2017, 5, 349–355. [Google Scholar]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.-B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef]
- Romero-Espinoza, A.M.; Serna-Saldivar, S.O.; Vintimilla-Alvarez, M.C.; Briones-García, M.; Lazo-Vélez, M.A. Effects of fermentation with probiotics on anti-nutritional factors and proximate composition of lupin (Lupinus mutabilis sweet). LWT 2020, 130, 109658. [Google Scholar] [CrossRef]
- Wang, N.; Xiong, Y.; Wang, X.; Guo, L.; Lin, Y.; Ni, K.; Yang, F. Effects of Lactobacillus plantarum on Fermentation Quality and Anti-Nutritional Factors of Paper Mulberry Silage. Fermentation 2022, 8, 144. [Google Scholar] [CrossRef]
- Cheba, B.A.; Zaghloul, T.I.; El-Mahdy, A.R.; El-Massry, M.H. Effect of nitrogen sources and fermentation conditions on Bacillus sp. R2 chitinase production. Procedia Manuf. 2018, 22, 280–287. [Google Scholar] [CrossRef]
- Adetunji, A.I.; Olaniran, A.O. Statistical modelling and optimization of protease production by an autochthonous Bacillus aryabhattai Ab15-ES: A response surface methodology approach. Biocatal. Agric. Biotechnol. 2020, 24, 101528. [Google Scholar] [CrossRef]
- Crosetti, D.; Blaber, S.J.M. Biology, Ecology and Culture of Grey Mullets (Mugilidae); CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Jimenez-Rivera, J.A.; Boglino, A.; Linares-Cordova, J.F.; Duncan, N.J.; Ruiz-Gómez, M.L.; Rey-Planellas, S.; Ibarra-Zatarain, Z. Characterization of the different behaviours exhibited by juvenile flathead grey mullet (Mugil cephalus Linnaeus, 1758) under rearing conditions. Span. J. Agric. Res. 2022, 20, e0505. [Google Scholar] [CrossRef]
- Mondal, A.; Chakravortty, D.; Mandal, S.; Sb, B.; Mitra, A. Feeding Ecology and Prey Preference of Grey Mullet, Mugil cephalus (Linnaeus, 1758) in Extensive Brackish Water Farming System. J. Mar. Sci. Res. Dev. 2015, 6, 1–15. [Google Scholar] [CrossRef]
- García-Márquez, J.; Vizcaíno, A.J.; Barany, A.; Galafat, A.; Acién, G.; Figueroa, F.L.; Alarcón, F.J.; Mancera, J.M.; Martos-Sitcha, J.A.; Arijo, S.; et al. Evaluation of the Combined Administration of Chlorella fusca and Vibrio proteolyticus in Diets for Chelon labrosus: Effects on Growth, Metabolism, and Digestive Functionality. Animals 2023, 13, 589. [Google Scholar] [CrossRef] [PubMed]
- Wanka, K.M.; Damerau, T.; Costas, B.; Krueger, A.; Schulz, C.; Wuertz, S. Isolation and characterization of native probiotics for fish farming. BMC Microbiol. 2018, 18, 119. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, W.L.; Setlow, P. Sporulation. germination and outgrowth. In Molecular Biological Methods for Bacillus; Harwood, C.R., Cutting, S.M., Eds.; John Wiley & Sons: Chichester, UK, 1990; pp. 391–450. [Google Scholar]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.; Becker, K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010, 120, 945–959. [Google Scholar] [CrossRef]
- García-Márquez, J.; Barany, A.; Ruiz, Á.B.; Costas, B.; Arijo, S.; Mancera, J.M. Antimicrobial and Toxic Activity of Citronella Essential Oil (Cymbopogon nardus), and Its Effect on the Growth and Metabolism of Gilthead Seabream (Sparus aurata L.). Fishes 2021, 6, 61. [Google Scholar] [CrossRef]
- Diaz-Rosales, P.; Chabrillon, M.; Morinigo, M.A.; Balebona, M.C. Survival against exogenous hydrogen peroxide of Photobacterium damselae subsp. piscicida under different culture conditions. J. Fish Dis. 2003, 26, 305–308. [Google Scholar] [CrossRef]
- Pazos, F.; Santos, Y.; Macias, A.R.; Nunez, S.; Toranzo, A.E. Evaluation of media for the successful culture of Flexibacter maritimus. J. Fish Dis. 1996, 19, 193–197. [Google Scholar] [CrossRef]
- Medina, A.; Moriñigo, M.Á.; Arijo, S. Selection of putative probiotics based on antigen-antibody cross-reaction with Photobacterium damselae subsp. piscicida and Vibrio harveyi for use in Senegalese sole (Solea senegalensis). Aquac. Rep. 2020, 17, 100366. [Google Scholar] [CrossRef]
- Pieniz, S.; Andreazza, R.; Anghinoni, T.; Camargo, F.; Brandelli, A. Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control 2014, 37, 251–256. [Google Scholar] [CrossRef]
- Hicks, R.E.; Amann, R.I.; Stahl, D.A. Dual staining of natural bacterioplankton with 4′,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl. Environ. Microbiol. 1992, 58, 2158–2163. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Austin, B. Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish Shellfish. Immunol. 2006, 21, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Patil, V.; Källqvist, T.; Olsen, E.; Vogt, G.; Gislerød, H.R. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquac. Int. 2007, 15, 1–9. [Google Scholar] [CrossRef]
- García-Márquez, J.; Rico, R.M.; Acién, F.G.; Mancera, J.M.; Figueroa, F.L.; Vizcaíno, A.J.; Alarcón, F.J.; Moriñigo, M.Á.; Abdala-Díaz, R.T. Dietary Effects of a Short-Term Administration of Microalgae Blend on Growth Performance, Tissue Fatty Acids, and Predominant Intestinal Microbiota in Sparus aurata. Microorganisms 2023, 11, 463. [Google Scholar] [CrossRef]
- Roohani, A.M.; Kenari, A.A.; Kapoorchali, M.F.; Borani, M.S.; Zoriezahra, S.J.; Smiley, A.H.; Esmaeili, M.; Rombenso, A.N. Effect of spirulina Spirulina platensis as a complementary ingredient to reduce dietary fish meal on the growth performance, whole-body composition, fatty acid and amino acid profiles, and pigmentation of Caspian brown trout (Salmo trutta caspius) juveniles. Aquac. Nutr. 2019, 25, 633–645. [Google Scholar] [CrossRef]
- Teuling, E.; Wierenga, P.A.; Agboola, J.O.; Gruppen, H.; Schrama, J.W. Cell wall disruption increases bioavailability of Nannochloropsis gaditana nutrients for juvenile Nile tilapia (Oreochromis niloticus). Aquaculture 2019, 499, 269–282. [Google Scholar] [CrossRef]
- Bustamam, M.S.A.; Pantami, H.A.; Azam, A.A.; Shaari, K.; Min, C.C.; Ismail, I.S. The Immunostimulant Effects of Isochrysis galbana Supplemented Diet on the Spleen of Red Hybrid Tilapia (Oreochromis spp.) Evaluated by Nuclear Magnetic Resonance Metabolomics. Aquac. Nutr. 2022, 2022, 1154558. [Google Scholar] [CrossRef]
- García-Márquez, J.; Galafat, A.; Vizcaíno, A.J.; Barany, A.; Martos-Sitcha, J.A.; Mancera, J.M.; Acién, G.; Figueroa, F.L.; Alarcón, F.J.; Arijo, S.; et al. Dietary Use of the Microalga Chlorella fusca Improves Growth, Metabolism, and Digestive Functionality in Thick-Lipped Grey Mullet (Chelon labrosus, Risso 1827) Juveniles. Front. Mar. Sci. 2022, 9, 902203. [Google Scholar] [CrossRef]
- Jerez-Cepa, I.; Gorissen, M.; Mancera, J.; Ruiz-Jarabo, I. What can we learn from glucocorticoid administration in fish? Effects of cortisol and dexamethasone on intermediary metabolism of gilthead seabream (Sparus aurata L.). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019, 231, 1–10. [Google Scholar] [CrossRef]
- Wagner, C.E.; McIntyre, P.B.; Buels, K.S.; Gilbert, D.M.; Michel, E. Diet predicts intestine length in Lake Tanganyika’s cichlid fishes. Funct. Ecol. 2009, 23, 1122–1131. [Google Scholar] [CrossRef]
- Polakof, S.; Panserat, S.; Soengas, J.L.; Moon, T.W. Glucose metabolism in fish: A review. J. Comp. Physiol. B 2012, 182, 1015–1045. [Google Scholar] [CrossRef] [PubMed]
- Tocher, D.R. Metabolism and Functions of Lipids and Fatty Acids in Teleost Fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- Cowey, C.B. Aspects of protein utilization by fish. Proc. Nutr. Soc. 1975, 34, 57–63. [Google Scholar] [CrossRef]
- Kaushik, S.J.; Seiliez, I. Protein and amino acid nutrition and metabolism in fish: Current knowledge and future needs. Aquac. Res. 2010, 41, 322–332. [Google Scholar] [CrossRef]
- Schreck, C.B.; Tort, L. The concept of stress in fish. Fish Physiol. 2016, 35, 1–34. [Google Scholar]
- Van Der Boon, J.; Thillart, G.E.V.D.; Addink, A.D. The effects of cortisol administration on intermediary metabolism in teleost fish. Comp. Biochem. Physiol. A Physiol. 1991, 100, 47–53. [Google Scholar] [CrossRef]
- Yukgehnaish, K.; Kumar, P.; Sivachandran, P.; Marimuthu, K.; Arshad, A.; Paray, B.A.; Arockiaraj, J. Gut microbiota metagenomics in aquaculture: Factors influencing gut microbiome and its physiological role in fish. Rev. Aquac. 2020, 12, 1903–1927. [Google Scholar] [CrossRef]
- López Nadal, A.; Ikeda-Ohtsubo, W.; Sipkema, D.; Peggs, D.; McGurk, C.; Forlenza, M.; Wiegertjes, G.F.; Brugman, S. Feed, Microbiota, and Gut Immunity: Using the Zebrafish Model to Understand Fish Health. Front. Immunol. 2020, 11, 114. [Google Scholar] [CrossRef]
- Ray, A.; Ghosh, K.; Ringø, E. Enzyme-producing bacteria isolated from fish gut: A review. Aquac. Nutr. 2012, 18, 465–492. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Alagawany, M.; Patra, A.K.; Kar, I.; Tiwari, R.; Dawood, M.A.; Dhama, K.; Abdel-Latif, H.M. The functionality of probiotics in aquaculture: An overview. Fish Shellfish. Immunol. 2021, 117, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Van Doan, H.; Hoseinifar, S.H.; Khanongnuch, C.; Kanpiengjai, A.; Unban, K.; Van Kim, V.; Srichaiyo, S. Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquaculture 2018, 491, 94–100. [Google Scholar] [CrossRef]
- Chovatiya, S.; Ingle, S.; Patel, D.; Thakkar, B. Isolation of bacteria producing cellulase from tilapia fish gut and media optimization for celluase production using Plackett Burman design. Int. J. Biotech Trends Technol. 2017, 7, 13–19. [Google Scholar] [CrossRef]
- Yang, E.; Fan, L.; Yan, J.; Jiang, Y.; Doucette, C.; Fillmore, S.; Walker, B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express 2018, 8, 10. [Google Scholar] [CrossRef]
- Nandi, A.; Dan, S.K.; Banerjee, G.; Ghosh, P.; Ghosh, K.; Ringø, E.; Ray, A.K. Probiotic Potential of Autochthonous Bacteria Isolated from the Gastrointestinal Tract of Four Freshwater Teleosts. Probiotics Antimicrob. Proteins 2017, 9, 12–21. [Google Scholar] [CrossRef]
- Assan, D.; Kuebutornye, F.K.A.; Hlordzi, V.; Chen, H.; Mraz, J.; Mustapha, U.F.; Abarike, E.D. Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: A mini review. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2022, 257, 110653. [Google Scholar] [CrossRef]
- Afrilasari, W.; Widanarni; Meryandini, A. Effect of Probiotic Bacillus megaterium PTB 1.4 on the Population of Intestinal Microflora, Digestive Enzyme Activity and the Growth of Catfish (Clarias sp.). HAYATI J. Biosci. 2016, 23, 168–172. [Google Scholar] [CrossRef]
- Mirghaed, A.T.; Yarahmadi, P.; Hosseinifar, S.H.; Tahmasebi, D.; Gheisvandi, N.; Ghaedi, A. The effects singular or combined administration of fermentable fiber and probiotic on mucosal immune parameters, digestive enzyme activity, gut microbiota and growth performance of Caspian white fish (Rutilus frisii kutum) fingerlings. Fish Shellfish. Immunol. 2018, 77, 194–199. [Google Scholar] [CrossRef]
- Mardani, T.; Khiabani, M.S.; Mokarram, R.R.; Hamishehkar, H. Immobilization of α-amylase on chitosan-montmorillonite nanocomposite beads. Int. J. Biol. Macromol. 2018, 120, 354–360. [Google Scholar] [CrossRef]
- Nielsen, C.K.; Kjems, J.; Mygind, T.; Snabe, T.; Meyer, R.L. Effects of Tween 80 on Growth and Biofilm Formation in Laboratory Media. Front. Microbiol. 2016, 7, 1878. [Google Scholar] [CrossRef]
- Yanbo, W.; Zirong, X. Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Anim. Feed. Sci. Technol. 2006, 127, 283–292. [Google Scholar] [CrossRef]
- Sankar, H.; Philip, B.; Philip, R.; Singh, I. Effect of probiotics on digestive enzyme activities and growth of cichlids, Etroplus suratensis (Pearl spot) and Oreochromis mossambicus (Tilapia). Aquac. Nutr. 2017, 23, 852–864. [Google Scholar] [CrossRef]
- Newaj-Fyzul, A.; Al-Harbi, A.; Austin, B. Developments in the use of probiotics for disease control in aquaculture. Aquaculture 2014, 431, 1–11. [Google Scholar] [CrossRef]
- Dawood, M.A.; Koshio, S.; Abdel-Daim, M.M.; Van Doan, H. Probiotic application for sustainable aquaculture. Rev. Aquac. 2019, 11, 907–924. [Google Scholar] [CrossRef]
- Pérez-Pascual, D.; Lunazzi, A.; Magdelenat, G.; Rouy, Z.; Roulet, A.; Lopez-Roques, C.; Larocque, R.; Barbeyron, T.; Gobet, A.; Michel, G.; et al. The Complete Genome Sequence of the Fish Pathogen Tenacibaculum maritimum Provides Insights into Virulence Mechanisms. Front. Microbiol. 2017, 8, 1542. [Google Scholar] [CrossRef]
- Yang, N.; Song, F.; Polyak, S.W.; Liu, J. Actinonin resistance of pathogenic Vibrio anguillarum in aquaculture. Aquaculture 2021, 541, 736850. [Google Scholar] [CrossRef]
- Zammuto, V.; Rizzo, M.G.; Spanò, A.; Genovese, G.; Morabito, M.; Spagnuolo, D.; Capparucci, F.; Gervasi, C.; Smeriglio, A.; Trombetta, D.; et al. In vitro evaluation of antibiofilm activity of crude extracts from macroalgae against pathogens relevant in aquaculture. Aquaculture 2022, 549, 737729. [Google Scholar] [CrossRef]
- De Man, J.C.; Rogosa, M.; Sharpe, M.E. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Van Doan, H.; Soltani, M.; Ringø, E. In vitro antagonistic effect and in vivo protective efficacy of Gram-positive probiotics versus Gram-negative bacterial pathogens in finfish and shellfish. Aquaculture 2021, 540, 736581. [Google Scholar] [CrossRef]
- Askarian, F.; Zhou, Z.; Olsen, R.E.; Sperstad, S.; Ringø, E. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture 2012, 326–329, 1–8. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, D.-Y. Microbial diversity in the intestine of olive flounder (Paralichthys olivaceus). Aquaculture 2013, 414–415, 103–108. [Google Scholar] [CrossRef]
- Al-Hisnawi, A.; Ringø, E.; Davies, S.J.; Waines, P.; Bradley, G.; Merrifield, D.L. First report on the autochthonous gut microbiota of brown trout (Salmo trutta Linnaeus). Aquac. Res. 2014, 46, 2962–2971. [Google Scholar] [CrossRef]
- Ramirez-Torrez, J.A.; Monroy-Dosta, M.D.C.; Hernández-Hernández, L.H.; Castro-Mejia, J.; Bustos-Martinez, J.A.; Hamdan-Partida, A. Presumptive probiotic isolated from Oncorhynchus mykiss (Walbaum, 1792), cultivated in Mexico. Int. J. Aquat. Sci. 2018, 9, 3–12. [Google Scholar]
- Han, B.; Long, W.-Q.; He, J.-Y.; Liu, Y.-J.; Si, Y.-Q.; Tian, L.-X. Effects of dietary Bacillus licheniformis on growth performance, immunological parameters, intestinal morphology and resistance of juvenile Nile tilapia (Oreochromis niloticus) to challenge infections. Fish Shellfish. Immunol. 2015, 46, 225–231. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Cai, Y.; Guo, X.; Cao, Z.; Zhang, Y.; Liu, S.; Yuan, W.; Zhu, W.; Zheng, Y.; et al. Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus. Fish Shellfish. Immunol. 2017, 60, 326–333. [Google Scholar] [CrossRef]
- Hamza, A.; Fdhila, K.; Zouiten, D.; Masmoudi, A.S. Virgibacillus proomii and Bacillus mojavensis as probiotics in sea bass (Dicentrarchus labrax) larvae: Effects on growth performance and digestive enzyme activities. Fish Physiol. Biochem. 2016, 42, 495–507. [Google Scholar] [CrossRef]
- Soltani, M.; Ghosh, K.; Hoseinifar, S.H.; Kumar, V.; Lymbery, A.J.; Roy, S.; Ringø, E. Genus bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Rev. Fish. Sci. Aquac. 2019, 27, 331–379. [Google Scholar] [CrossRef]
- Ghosh, K.; Sen, S.K.; Ray, A.K. Characterization of Bacilli Isolated from the Gut of Rohu, Labeo rohita, Fingerlings and Its Significance in Digestion. J. Appl. Aquac. 2008, 12, 33–42. [Google Scholar] [CrossRef]
- Dey, A.; Ghosh, K.; Hazra, N. Evaluation of extracellular enzyme-producing autochthonous gut bacteria in walking catfish, Clarias batrachus (L.). J. Fish. 2016, 4, 345–352. [Google Scholar] [CrossRef]
- Kuebutornye, F.K.A.; Abarike, E.D.; Lu, Y. A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol. 2019, 87, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Mukherjee, A.; Dutta, D.; Ghosh, K. Non-Starch Polysaccharide Degrading Gut Bacteria in Indian Major Carps and Exotic Carps. Jordan J. Biol. Sci. 2016, 9, 69–78. [Google Scholar] [CrossRef]
- Kuebutornye, F.K.A.; Abarike, E.D.; Lu, Y.; Hlordzi, V.; Sakyi, M.E.; Afriyie, G.; Wang, Z.; Li, Y.; Xie, C.X. Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish Physiol. Biochem. 2020, 46, 819–841. [Google Scholar] [CrossRef] [PubMed]
- Serra, C.R.; Almeida, E.M.; Guerreiro, I.; Santos, R.; Merrifield, D.L.; Tavares, F.; Oliva-Teles, A.; Enes, P. Selection of carbohydrate-active probiotics from the gut of carnivorous fish fed plant-based diets. Sci. Rep. 2019, 9, 6384. [Google Scholar] [CrossRef]
- Kuebutornye, F.K.; Lu, Y.; Abarike, E.D.; Wang, Z.; Li, Y.; Sakyi, M.E. In vitro Assessment of the Probiotic Characteristics of Three Bacillus Species from the Gut of Nile Tilapia, Oreochromis niloticus. Probiotics Antimicrob. Proteins 2020, 12, 412–424. [Google Scholar] [CrossRef]
- Santos, R.A.; Oliva-Teles, A.; Pousão-Ferreira, P.; Jerusik, R.; Saavedra, M.J.; Enes, P.; Serra, C.R. Isolation and Characterization of Fish-Gut Bacillus spp. as Source of Natural Antimicrobial Compounds to Fight Aquaculture Bacterial Diseases. Mar. Biotechnol. 2021, 23, 276–293. [Google Scholar] [CrossRef]
- FAO/WHO. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. London, Ontario, Canada, 30 April 2002 and 1 May 2002. Available online: http://www.who.int/foodsafety/publications/fs_management/probiotics2/en/ (accessed on 3 November 2022).
- Cui, Y.; Märtlbauer, E.; Dietrich, R.; Luo, H.; Ding, S.; Zhu, K. Multifaceted toxin profile, an approach toward a better understanding of probiotic Bacillus cereus. Crit. Rev. Toxicol. 2019, 49, 342–356. [Google Scholar] [CrossRef]
- Bottone, E.J.; Peluso, R.W. Production by Bacillus pumilus (MSH) of an antifungal compound that is active against Mucoraceae and Aspergillus species: Preliminary report. J. Med. Microbiol. 2003, 52, 69–74. [Google Scholar] [CrossRef]
- Banerjee, G.; Nandi, A.; Ray, A.K. Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish. Arch. Microbiol. 2017, 199, 115–124. [Google Scholar] [CrossRef]
- Yasmin, I.; Saeed, M.; Khan, W.A.; Khaliq, A.; Chughtai, M.F.J.; Iqbal, R.; Tehseen, S.; Naz, S.; Liaqat, A.; Mehmood, T.; et al. In Vitro Probiotic Potential and Safety Evaluation (Hemolytic, Cytotoxic Activity) of Bifidobacterium Strains Isolated from Raw Camel Milk. Microorganisms 2020, 8, 354. [Google Scholar] [CrossRef]
- Deng, F.; Chen, Y.; Sun, T.; Wu, Y.; Su, Y.; Liu, C.; Zhou, J.; Deng, Y.; Wen, J. Antimicrobial resistance, virulence characteristics and genotypes of Bacillus spp. from probiotic products of diverse origins. Food Res. Int. 2021, 139, 109949. [Google Scholar] [CrossRef] [PubMed]
Sparus aurata | Mugil cephalus | |||
---|---|---|---|---|
CT-SA | M25-SA | CT-MC | M25-MC | |
Ingredients (% dry matter) | ||||
Fishmeal LT94 1 | 25.0 | 20.0 | 7.5 | 7.5 |
Lysine 2 | 1.2 | 1.2 | - | - |
Methionine 3 | 0.5 | 0.5 | - | - |
Squid meal 4 | 2.0 | 2.0 | - | - |
CPSP90 5 | 1.0 | 1.0 | - | - |
Krill meal 6 | 2.0 | 2.0 | - | - |
Wheat gluten 7 | 10.0 | 9.0 | - | - |
Soybean protein concentrate 8 | 26.0 | 16.0 | 17.5 | - |
Blend of microalgae 9 | - | 25.0 | - | 25.0 |
Fish oil 10 | 8.7 | 8.0 | 2.5 | 2.5 |
Soybean oil 11 | 4.0 | 4.0 | - | - |
Soybean lecithin 12 | 1.0 | 1.0 | - | - |
Wheat meal 13 | 14.0 | 5.7 | 23.0 | 15.5 |
Pea protein 14 | - | - | 7.5 | 7.5 |
Soybean meal 15 | - | - | 18.7 | 18.7 |
Corngluten meal 16 | - | - | 6.0 | 6.0 |
Sunseed meal 17 | - | - | 12.7 | 12.7 |
Potato starch 18 | - | - | 2.3 | 2.3 |
Betain 19 | 0.5 | 0.5 | - | - |
Vitamin and mineral premix 20 | 2.0 | 2.0 | 0.8 | 0.8 |
Vitamin C 21 | 0.1 | 0.1 | - | - |
Guar gum 22 | 2.0 | 2.0 | 1.5 | 1.5 |
Proximate composition (% dry matter) | ||||
Crude protein | 45.3 | 44.9 | 39.1 | 38.8 |
Crude lipid | 16.7 | 16.5 | 7.8 | 7.5 |
Ash | 9.2 | 8.8 | 6.8 | 7.3 |
Gross energy (kJ/g) 23 | 23.5 | 23.5 | 21.1 | 21.0 |
Parameters | Sparus aurata | Mugil cephalus | ||||
---|---|---|---|---|---|---|
CT-SA | M25-SA | p a | CT-MC | M25-MC | p a | |
Initial body weight (g) | 70.11 ± 3.18 | 70.15 ± 3.22 | >0.999 | 47.28 ± 2.78 | 47.30 ± 2.76 | >0.999 |
Final body weight (g) | 142.70 ± 4.75 | 146.80 ± 4.24 | 0.523 | 62.24 ± 2.95 | 62.23 ± 3.02 | 0.997 |
K b | 1.86 ± 0.04 | 1.83 ± 0.02 | 0.475 | 1.25 ± 0.01 | 1.20 ± 0.03 | 0.147 |
WG (%) c | 103.80 ± 2.20 | 109.70 ± 2.50 * | 0.049 | 32.43 ± 1.55 | 32.40 ± 1.80 | 0.962 |
SGR (%) d | 0.65 ± 0.01 | 0.68 ± 0.01 * | 0.032 | 0.26 ± 0.01 | 0.26 ± 0.01 | 0.981 |
FE e | 0.62 ± 0.01 | 0.66 ± 0.01 * | 0.012 | 0.32 ± 0.01 | 0.32 ± 0.01 | 0.974 |
HSI (%) f | 1.36 ± 0.05 | 1.14 ± 0.04 * | 0.002 | 1.23 ± 0.06 | 1.31 ± 0.13 | 0.559 |
MSI (%) g | 0.68 ± 0.14 | 0.52 ± 0.07 | 0.330 | - | - | - |
ILI (%) h | 84.61 ± 4.32 | 102.40 ± 4.71 * | 0.013 | 277.50 ± 17.43 | 278.70 ± 13.05 | 0.958 |
Parameters | Sparus aurata | Mugil cephalus | ||||
---|---|---|---|---|---|---|
CT-SA | M25-SA | p a | CT-MC | M25-MC | p a | |
Glucose (mg dL−1) | 46.39 ± 1.51 | 54.39 ± 2.53 * | 0.019 | 52.21 ± 2.57 | 48.69 ± 3.48 | 0.428 |
Lactate (mg dL−1) | 12.90 ± 1.10 | 15.94 ± 1.39 | 0.125 | 28.38 ± 3.53 | 30.12 ± 1.87 | 0.668 |
Triglycerides (mg dL−1) | 98.61 ± 17.38 | 163.80 ± 13.25 * | 0.008 | 168.60 ± 9.29 | 168.70 ± 11.22 | 0.992 |
Proteins (mg dL−1) | 49.16 ± 5.43 | 62.82 ± 3.52 | 0.053 | 34.65 ± 3.35 | 39.37 ± 4.04 | 0.382 |
Cortisol (ng mL−1) | 27.02 ± 1.18 | 17.46 ± 1.35 * | <0.001 | 13.53 ± 2.12 | 13.84 ± 1.45 | 0.902 |
Hydrolytic Activity (% of Isolates) | ||||||||
Medium | Isolates (N) | Protease | Collagenase | Lipase | Amylase | Phytase | Tannase | Cellulase |
TSAs | 50 | 56 | 80 | 44 | 32 | 42 | 10 | 66 |
MMA | 26 | 46 | 81 | 46 | 23 | 73 | 8 | 39 |
MRS | 11 | 36 | 64 | 36 | 9 | 55 | 0 | 55 |
Sporeformers | 30 | 40 | 73 | 33 | 40 | 27 | 7 | 57 |
Total | 117 | 48 | 77 | 41 | 30 | 46 | 8 | 57 |
Antimicrobial Activity (% of Isolates) | ||||||||
Medium | Isolates (N) | V. anguillarum | P. damselae subsp. piscicida | T. maritimum | ||||
TSAs | 17 | 29 | 41 | 53 | ||||
MMA | 8 | 50 | 63 | 63 | ||||
MRS | 3 | 67 | 67 | 100 | ||||
Sporeformers | 4 | 25 | 15 | 25 | ||||
Total | 32 | 38 | 47 | 56 |
UMA-140 | UMA-143 | UMA-169 | UMA-216 | |
---|---|---|---|---|
Hydrolytic activity | ||||
Amylase | - | + | - | - |
Collagenase | + | + | + | + |
Lipase | - | + | + | - |
Caseinase | + | + | + | + |
Phytase | + | + | + | + |
Tannase | - | - | - | - |
Cellulase | + | - | - | + |
Antimicrobial activity | ||||
V. anguillarum | + | + | + | + |
P. damselae subsp. piscicida | + | + | + | + |
T. maritimum | + | + | + | + |
Virulence factor | ||||
Hemolysis | β | β | γ | γ |
Strain | Species | Similarity (%) | Accession Number |
---|---|---|---|
UMA-140 | Bacillus pumilus | 99.14 | MK491037.1 |
UMA-143 | Bacillus cereus | 98.86 | KC969074.1 |
UMA-169 | Bacillus pumilus | 99.11 | MK491030.1 |
UMA-216 | Bacillus pumilus | 99.35 | MK491042.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Márquez, J.; Domínguez-Maqueda, M.; Torres, M.; Cerezo, I.M.; Ramos, E.; Alarcón, F.J.; Mancera, J.M.; Martos-Sitcha, J.A.; Moriñigo, M.Á.; Balebona, M.C. Potential Effects of Microalgae-Supplemented Diets on the Growth, Blood Parameters, and the Activity of the Intestinal Microbiota in Sparus aurata and Mugil cephalus. Fishes 2023, 8, 409. https://doi.org/10.3390/fishes8080409
García-Márquez J, Domínguez-Maqueda M, Torres M, Cerezo IM, Ramos E, Alarcón FJ, Mancera JM, Martos-Sitcha JA, Moriñigo MÁ, Balebona MC. Potential Effects of Microalgae-Supplemented Diets on the Growth, Blood Parameters, and the Activity of the Intestinal Microbiota in Sparus aurata and Mugil cephalus. Fishes. 2023; 8(8):409. https://doi.org/10.3390/fishes8080409
Chicago/Turabian StyleGarcía-Márquez, Jorge, Marta Domínguez-Maqueda, Miguel Torres, Isabel M. Cerezo, Eva Ramos, Francisco Javier Alarcón, Juan Miguel Mancera, Juan Antonio Martos-Sitcha, Miguel Ángel Moriñigo, and María Carmen Balebona. 2023. "Potential Effects of Microalgae-Supplemented Diets on the Growth, Blood Parameters, and the Activity of the Intestinal Microbiota in Sparus aurata and Mugil cephalus" Fishes 8, no. 8: 409. https://doi.org/10.3390/fishes8080409
APA StyleGarcía-Márquez, J., Domínguez-Maqueda, M., Torres, M., Cerezo, I. M., Ramos, E., Alarcón, F. J., Mancera, J. M., Martos-Sitcha, J. A., Moriñigo, M. Á., & Balebona, M. C. (2023). Potential Effects of Microalgae-Supplemented Diets on the Growth, Blood Parameters, and the Activity of the Intestinal Microbiota in Sparus aurata and Mugil cephalus. Fishes, 8(8), 409. https://doi.org/10.3390/fishes8080409