The Extract of Astragalus membranaceus Inhibits Lipid Oxidation in Fish Feed and Enhances Growth Performance and Antioxidant Capacity in Jian Carp (Cyprinus carpio var. Jian)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagent
2.2. Preparation of EAm
2.3. Measurement of Phenolic Content and Total Antioxidant Capacity (T-AOC)
2.4. Measurement of Lipid Oxidation in Linoleic Acid and Linolenic Acid Emulsion
2.5. Measurement of Lipid Oxidation in Fish Feed
2.6. Feeding Trial
2.7. Biochemical Analysis
2.8. Statistical Analysis
3. Results
3.1. Phenolic Content and Total Antioxidant Capacity in EAms
3.2. Effects of EAm on the Lipid Oxidation in Linoleic Acid and Linolenic Acid Emulsion
3.3. The Effects of AE on the Lipid Oxidation in Fish Feed
3.4. Effects of Dietary AE on Fish Growth Performance
3.5. Effects of Dietary AE on the Biochemical Parameters in Hepatopancreas of Jian Carp
3.6. Effects of Dietary AE on the Biochemical Parameters in Intestine of Jian Carp
4. Discussion
4.1. EAm Inhibited Lipid Oxidation in Fish Feed
4.2. Dietary EAm Supplementation Improved the Growth Performance in Fish
4.3. Dietary EAm Improved the Antioxidant Capacity in Digestive and Absorptive Organs of Fish
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Godwin, A.; Prabhu, H.R. Lipid peroxidation of fish oils. Indian J. Clin. Biochem. 2006, 21, 202–204. [Google Scholar] [CrossRef]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef]
- Guo, X.Y.; Chen, S.N.; Cao, J.Y.; Zhou, J.Y.; Chen, Y.Z.; Jamali, M.A.; Zhang, Y.W. Hydrolysis and oxidation of protein and lipids in dry-salted grass carp (Ctenopharyngodon idella) as affected by partial substitution of NaCl with KCl and amino acids. RSC Adv. 2019, 9, 39545–39560. [Google Scholar] [CrossRef]
- Filipe, D.; Gonçalves, M.; Fernandes, H.; Oliva-Teles, A.; Peres, H.; Belo, I.; Salgado, J.M. Shelf-Life performance of fish feed supplemented with bioactive extracts from fermented olive mill and winery by-products. Foods 2023, 12, 305. [Google Scholar] [CrossRef]
- Andrews, J.T.; Giesen, A.F.; Scott, F.R. Antioxidants manage effects of oxidation on feeds, feed ingredients. Glob. Aquac. Advocate 2004, 12, 66–68. [Google Scholar]
- Hamre, K.; Kolås, K.; Sandnes, K. Protection of fish feed, made directly from marine raw materials, with natural antioxidants. Food Chem. 2010, 119, 270–278. [Google Scholar] [CrossRef]
- Li, H.; Zhou, X.; Gao, P.; Li, Q.; Li, H.; Huang, R.; Wu, M. Inhibition of lipid oxidation in foods and feeds and hydroxyl radical-treated fish erythrocytes: A comparative study of Ginkgo biloba leaves extracts and synthetic antioxidants. Anim. Nutr. 2016, 2, 234–241. [Google Scholar] [CrossRef]
- Ito, N.; Fukushima, S.; Tsuda, H. Carcinogenicity and modification of the carcinogenic response by BHA, BHT, and other antioxidants. Crit. Rev. Toxicol. 1985, 15, 109–150. [Google Scholar] [CrossRef]
- EFSA. Safety and efficacy of a feed additive consisting of ethoxyquin (6-ethoxy-1, 2-dihydro-2, 2, 4-trimethylquinoline) for all animal species (FEFANA asbl). EFSA J. 2022, 20, e07166. [Google Scholar]
- Harnedy, P.A.; FitzGerald, R.J. Bioactive peptides from marine processing waste and shellfish: A review. J. Funct. Foods 2012, 4, 6–24. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Santos, M.J.M.C.; Silva, L.K.R.; Pereira, L.C.L.; Santos, I.A.; Silva Lannes, S.C.; Silva, M.V. Natural antioxidants used in meat products: A brief review. Meat Sci. 2019, 148, 181–188. [Google Scholar] [CrossRef]
- Singh, B.K.; Tiwari, S.; Dubey, N.K. Essential oils and their nanoformulations as green preservatives to boost food safety against mycotoxin contamination of food commodities: A review. J. Sci. Food Agric. 2021, 101, 4879–4890. [Google Scholar] [CrossRef]
- Agyemang, K.; Han, L.; Liu, E.; Zhang, Y.; Wang, T.; Gao, X. Recent advances in Astragalus membranaceus anti-diabetic research: Pharmacological effects of its phytochemical constituents. Evid.-Based Compl. Alt. 2013, 2013, 654643. [Google Scholar] [CrossRef]
- Li, H.; Zhou, X.; Wu, M.; Deng, M.; Wang, C.; Hou, J.; Mou, P. The cytotoxicity and protective effects of Astragalus membranaceus extracts and butylated hydroxyanisole on hydroxyl radical-induced apoptosis in fish erythrocytes. Anim. Nutr. 2016, 2, 376–382. [Google Scholar] [CrossRef]
- Aldarmaa, J.; Liu, Z.; Long, J.; Mo, X.; Ma, J.; Liu, J. Anti-convulsant effect and mechanism of Astragalus mongholicus extract in vitro and in vivo: Protection against oxidative damage and mitochondrial dysfunction. Neurochem. Res. 2010, 35, 33–41. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.; Ahmed, H.A.; Shukry, M.; Chaklader, M.R.; Saleh, R.M.; Khallaf, M.A. Astragalus membranaceus extract (AME) enhances growth, digestive enzymes, antioxidant capacity, and immunity of Pangasianodon hypophthalmus juveniles. Fishes 2022, 7, 319. [Google Scholar] [CrossRef]
- Mirghaed, A.T.; Fayaz, S.; Hoseini, S.M. Effects of dietary 1, 8-cineole supplementation on serum stress and antioxidant markers of common carp (Cyprinus carpio) acutely exposed to ambient ammonia. Aquaculture 2019, 509, 8–15. [Google Scholar] [CrossRef]
- Li, S.; Ji, H.; Zhang, B.; Zhou, J.; Yu, H. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): Growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture 2017, 477, 62–70. [Google Scholar] [CrossRef]
- Ning, R.; Li, Y.; Wang, C.; Ji, M.; Shi, Z. Research on antimicrobial activities of crude extracts from Artemesia apiacea Hance. Jiangsu Agric. Sci. 2007, 3, 61–63. [Google Scholar]
- Wojcikowski, K.; Stevenson, L.; Leach, D.; Wohlmuth, H.; Gobe, G. Antioxidant capacity of 55 medicinal herbs traditionally used to treat the urinary system: A comparison using a sequential three-solvent extraction process. J. Altern. Complem. Med. 2007, 13, 103–110. [Google Scholar] [CrossRef]
- Dalar, A.; Türker, M.; Zabaras, D.; Konczak, I. Phenolic composition, antioxidant and enzyme inhibitory activities of Eryngium bornmuelleri leaf. Plant Food. Hum. Nutr. 2014, 69, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.V.; Bone, D.E.; Carrington, M.F. Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem. 2005, 91, 485e94. [Google Scholar] [CrossRef]
- Serpen, A.; Gökmen, V.; Fogliano, V. Total antioxidant capacities of raw and cooked meats. Meat Sci. 2012, 90, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tang, S.; Du, W.; Jiang, J.; Peng, P.; Yuan, P.; Liao, Y.; Long, J.; Zhou, S. The effects of ethoxyquin and Angelica sinensis extracts on lipid oxidation in fish feeds and growth, digestive and absorptive capacities and antioxidant status in juvenile red carp (Cyprinus carpio var. xingguonensis): A comparative study. Fish Physiol. Biochem. 2019, 45, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, S.; Benjakul, S. Comparative studies of four different phenolic compounds on in vitro antioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince. Food Chem. 2010, 119, 123–132. [Google Scholar] [CrossRef]
- Li, H.; Yang, D.; Li, Z.; He, M.; Li, F.; Jiang, J.; Tang, S.; Peng, P.; Du, W.; Ma, Y.; et al. Effects of Angelica sinensis extracts on lipid oxidation in fish feeds and growth performance of juvenile Jian carp (Cyprinus carpio var. Jian). Anim. Nutr. 2019, 5, 109–114. [Google Scholar] [CrossRef]
- Chen, G.F.; Feng, L.; Kuang, S.Y.; Liu, Y.; Jiang, J.; Hu, K.; Jiang, W.D.; Li, S.H.; Tang, L.; Zhou, X.Q. Effect of dietary arginine on growth, intestinal enzyme activities and gene expression in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Brit. J. Nutr. 2012, 108, 195–207. [Google Scholar] [CrossRef]
- Li, H.; Lu, L.; Wu, M.; Xiong, X.; Luo, L.; Ma, Y.; Liu, Y. The effects of dietary extract of mulberry leaf on growth performance, hypoxia-reoxygenation stress and biochemical parameters in various organs of fish. Aquacult. Rep. 2020, 18, 100494. [Google Scholar] [CrossRef]
- Saxena, T.B.; Zachariassen, K.E.; Jørgensen, L. Effects of ethoxyquin on the blood composition of turbot, Scophthalmus maximus L. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 2000, 127, 1–9. [Google Scholar] [CrossRef]
- Jiang, W.D.; Wu, P.; Kuang, S.Y.; Liu, Y.; Jiang, J.; Hu, K.; Li, S.H.; Tang, L.; Feng, L.; Zhou, X.Q. Myo-inositol prevents copper-induced oxidative damage and changes in antioxidant capacity in various organs and the enterocytes of juvenile Jian carp (Cyprinus carpio var. Jian). Aquat. Toxicol. 2011, 105, 543–551. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- El-Husseiny, O.M.; Abdul-Aziz, G.M.; Goda, A.S.; Suloma, A. Effect of altering linoleic acid and linolenic acid dietary levels and ratios on the performance and tissue fatty acid profiles of Nile tilapia Oreochromis niloticus fry. Aquacult. Int. 2010, 18, 1105–1119. [Google Scholar] [CrossRef]
- Wei, X.B.; Liu, H.Q.; Sun, X.; Fu, F.; Zhang, X.; Wang, J.; An, J.; Ding, H. Hydroxysafflor yellow A protects rat brains against ischemia-reperfusion injury by antioxidant action. Neurosci. Lett. 2005, 386, 58–62. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Duan, X.; Feng, X.; Yang, Y. The interaction effects of coke oven emissions exposure and metabolic enzyme Gene variants on total antioxidant capacity of workers. Environ. Toxicol. Pharmacol. 2019, 70, 103197. [Google Scholar] [CrossRef]
- Servili, M.; Montedoro, G. Contribution of phenolic compounds to virgin olive oil quality. Eur. J. Lipid Sci. Technol. 2002, 104, 602–613. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Frankel, E.N. Natural phenolic antioxidants and their impact on health. In Antioxidant Food Supplements in Human Health; Academic Press: Cambridge, MA, USA, 1999; pp. 385–392. [Google Scholar]
- Li, Y.; Guo, S.; Zhu, Y.; Yan, H.; Qian, D.; Wang, H.; Yu, J.; Duan, J. Flowers of Astragalus membranaceus var. mongholicus as a novel high potential by-product: Phytochemical characterization and antioxidant activity. Molecules 2019, 24, 434. [Google Scholar]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Elabd, H.; Wang, H.P.; Shaheen, A.; Yao, H.; Abbass, A. Astragalus membranaceus (AM) enhances growth performance and antioxidant stress profiles in bluegill sunfish (Lepomis macrochirus). Fish Physiol. Biochem. 2016, 42, 955–966. [Google Scholar] [CrossRef]
- Elabd, H.; Wang, H.P.; Shaheen, A.; Yao, H.; Abbass, A. Feeding Glycyrrhiza glabra (liquorice) and Astragalus membranaceus (AM) alters innate immune and physiological responses in yellow perch (Perca flavescens). Fish Shellfish Immun. 2016, 54, 374–384. [Google Scholar] [CrossRef]
- Gilloteaux, J.; Kashouty, R.; Yono, N. The perinuclear space of pancreatic acinar cells and the synthetic pathway of zymogen in Scorpaena scrofa L.: Ultrastructural aspects. Tissue Cell 2008, 40, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Zambonino Infante, J.L.; Cahu, C.L. Ontogeny of the gastrointestinal tract of marine fish larvae. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 130, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Elabd, H.; Wang, H.P.; Shaheen, A.; Matter, A. Astragalus membranaceus nanoparticles markedly improve immune and anti-oxidative responses; and protection against Aeromonas veronii in Nile tilapia Oreochromis niloticus. Fish Shellfish Immun. 2020, 97, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Geering, K. Subunit assembly and functional maturation of Na,K-ATPase. J. Membr. Biol. 1990, 115, 109–121. [Google Scholar] [CrossRef]
- Suzer, C.; Aktülün, S.; Çoban, D.; Okan Kamacı, H.; Saka, Ş.; Fırat, K.; Alpbaz, A. Digestive enzyme activities in larvae of sharpsnout seabream (Diplodus puntazzo). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 148, 470–477. [Google Scholar] [CrossRef]
- Angela, C.; Wang, W.; Lyu, H.; Zhou, Y.; Huang, X. The effect of dietary supplementation of Astragalus membranaceus and Bupleurum chinense on the growth performance, immune-related enzyme activities and genes expression in white shrimp, Litopenaeus vannamei. Fish Shellfish Immun. 2020, 107, 379–384. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, S.; Chen, G.; Jiang, W.; Liu, Y.; Jiang, J.; Hu, K.; Li, S.; Zhou, X. Antioxidant status of serum, muscle, intestine and hepatopancreas for fish fed graded levels of biotin. Fish Physiol. Biochem. 2013, 40, 499–510. [Google Scholar] [CrossRef]
- Gliszczyńska-Świgło, A. Antioxidant activity of water soluble vitamins in the TEAC (trolox equivalent antioxidant capacity) and the FRAP (ferric reducing antioxidant power) assays. Food Chem. 2006, 96, 131–136. [Google Scholar] [CrossRef]
- Woo, S.J.; Chung, J.K. Effects of trichlorfon on oxidative stress, neurotoxicity, and cortisol levels in common carp, Cyprinus carpio L., at different temperatures. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 229, 108698. [Google Scholar] [CrossRef]
- Yang, W.J.; Li, D.P.; Li, J.K.; Li, M.H.; Chen, Y.L.; Zhang, P.Z. Synergistic antioxidant activities of eight traditional Chinese herb pairs. Biol. Pharm. Bull. 2009, 32, 1021–1026. [Google Scholar] [CrossRef]
- Abuelsaad, A.S. Supplementation with Astragalus polysaccharides alters Aeromonas-induced tissue-specific cellular immune response. Microb. Pathog. 2014, 66, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, G.I.; Almajano, M.P. Red fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A review. Antioxidants 2017, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.J.; Walker, P.A.; Hogstrand, C. Dietary phenolic antioxidants, caffeic acid and Trolox, protect rainbow trout gill cells from nitric oxide-induced apoptosis. Aquat. Toxicol. 2006, 80, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Álvarez, R.M.; Morales, A.E.; Sanz, A. Antioxidant defenses in fish: Biotic and abiotic factors. Rev. Fish Biol. Fish. 2005, 15, 75–88. [Google Scholar] [CrossRef]
- Ni, M.; Liu, M.; Lou, J.; Mi, G.; Gu, Z. Stocking density alters growth performance, serum biochemistry, digestive enzymes, immune response, and muscle quality of largemouth bass (Micropterus salmoides) in in-pond raceway system. Fish Physiol. Biochem. 2021, 47, 1243–1255. [Google Scholar] [CrossRef] [PubMed]
- Charan, A.A.; Charan, A.I.; Verma, O.P.; Naushad, S.S. Profiling of Antioxidant enzymes in Cat fish (Clarias batrachus) exposed to phenolic compounds. Asian J. Bio Sci. 2015, 10, 6–14. [Google Scholar] [CrossRef]
- Abarike, E.D.; Jian, J.C.; Tang, J.F.; Cai, J.; Yu, H.; Chen, L.H. Traditional Chinese medicine enhances growth, immune response, and resistance to Streptococcus agalactiae in Nile tilapia. J. Aquat. Anim. Health 2019, 31, 46–55. [Google Scholar] [CrossRef]
- Kirshenbaum, L.A.; Singal, P.K. Increase in endogenous antioxidant enzymes protects hearts against reperfusion injury. Am. J. Physiol. 1993, 265, H484–H492. [Google Scholar] [CrossRef]
- Yim, T.K.; Wu, W.K.; Pak, W.F.; Mak, D.H.F.; Ko, K.M. Myocardial protection against ischaemia-reperfusion injury by a Polygonum multiflorum extract supplemented ‘Dang-Gui decoction for enriching blood’, a compound formulation, ex vivo. Phytother. Res. 2000, 14, 195–199. [Google Scholar] [CrossRef]
- Reed, D.J. Glutathione: Toxicological implications. Annu. Rev. Pharmacol. Toxicol. 1990, 30, 603–631. [Google Scholar] [CrossRef]
Ingredients | % | Proximate Analysis 4 | % |
---|---|---|---|
Fish meal | 27.00 | Dry matter | 92.82 |
Soybean meal | 36.00 | Crude protein | 34.32 |
Wheat flour | 32.50 | Crude lipid | 6.84 |
Ca(H2PO4)2 1 | 0.50 | Crude Ash | 6.13 |
Corn oil | 2.00 | ||
Vitamin mixture 2 | 1.00 | ||
Mineral mixture 3 | 1.00 |
Extracts | Phenolics (mg g−1 Dry Extracts) | T-AOC (mM of Trolox) |
---|---|---|
PEE | 23.67 ± 1.35 b | 0.77 ± 0.03 b |
EAE | 59.87 ± 4.12 c | 0.87 ± 0.03 c |
AE | 77.79 ± 5.35 d | 0.96 ± 0.03 d |
AQE | 9.75 ± 0.47 a | 0.61 ± 0.03 a |
Treatment | PO (% of Control) | CD (% of Control) | MDA (% of Control) |
---|---|---|---|
PEE | 79.56 ± 5.07 b | 78.38 ± 2.85 b | 80.36 ± 3.58 b |
EAE | 72.26 ± 5.17 a | 70.43 ± 2.56 a | 75.42 ± 3.21 ab |
AE | 69.83 ± 4.35 a | 66.95 ± 1.67 a | 71.86 ± 1.88 a |
AQE | 90.39 ± 3.47 c | 84.66 ± 5.16 c | 91.12 ± 4.31 c |
Treatment | PO (% of Control) | CD (% of Control) | MDA (% of Control) |
---|---|---|---|
PEE | 81.26 ± 3.30 c | 79.47 ± 4.72 b | 78.23 ± 4.23 b |
EAE | 74.40 ± 5.62 b | 72.00 ± 3.40 ab | 71.10 ± 3.69 a |
AE | 66.12 ± 4.35 a | 67.47 ± 2.40 a | 69.46 ± 5.07 a |
AQE | 89.38 ± 3.23 d | 88.36 ± 3.74 c | 86.99 ± 3.79 c |
AE (g kg−1 Diet) | IBW (g Fish−1) | FBW (g Fish−1) | WG (g Fish−1) | SGR (% d−1) | FI (g Fish−1) | FE (%) | SR (%) |
---|---|---|---|---|---|---|---|
0.0 | 10.30 ± 0.32 a | 37.62 ± 2.38 a | 27.32 ± 2.39 a | 2.16 ± 0.11 a | 52.95 ± 2.53 a | 51.54 ± 2.43 a | 100.00 ± 0.00 a |
1.0 | 10.19 ± 0.29 a | 43.35 ± 1.60 b | 33.16 ± 1.64 b | 2.41 ± 0.08 b | 62.88 ± 2.74 b | 52.77 ± 2.38 a | 100.00 ± 0.00 a |
2.0 | 10.22 ± 0.29 a | 48.51 ± 3.24 c | 38.28 ± 3.40 c | 2.59 ± 0.14 c | 68.90 ± 3.86 c | 55.52 ± 2.66 a | 100.00 ± 0.00 a |
3.0 | 10.28 ± 0.33 a | 52.59 ± 2.51 d | 42.31 ± 2.18 d | 2.72 ± 0.03 cd | 75.90 ± 3.19 d | 55.76 ± 2.31 a | 100.00 ± 0.00 a |
4.0 | 10.23 ± 0.30 a | 53.31 ± 1.96 d | 43.08 ± 2.07 d | 2.75 ± 0.09 d | 78.32 ± 4.11 d | 55.14 ± 4.26 a | 100.00 ± 0.00 a |
5.0 | 10.25 ± 0.32 a | 55.52 ± 2.43 d | 45.27 ± 2.62 d | 2.82 ± 0.11 d | 82.30 ± 3.67 d | 55.10 ± 4.16 a | 100.00 ± 0.00 a |
6.0 | 10.26 ± 0.31 a | 54.37 ± 2.81 d | 44.11 ± 2.66 d | 2.78 ± 0.07 d | 80.33 ± 4.81 d | 54.96 ± 2.56 a | 100.00 ± 0.00 a |
7.0 | 10.27 ± 0.33 a | 52.84 ± 2.05 d | 42.57 ± 2.08 d | 2.73 ± 0.08 cd | 78.10 ± 3.40 d | 54.63 ± 4.28 a | 100.00 ± 0.00 a |
AE (g kg−1 Diet) | Trypsin (U mg−1 Protein) | Lipase (U g−1 Protein) | Amylase (U mg−1 Protein) | ASA (U g−1 Protein) | MDA (nmol mg−1 Protein) | SOD (U mg−1 Protein) | CAT (U mg−1 Protein) | GPx (U mg−1 Protein) |
---|---|---|---|---|---|---|---|---|
0.0 | 1254 ± 111 a | 43.81 ± 2.66 a | 1.14 ± 0.09 a | 50.19 ± 4.05 a | 13.55 ± 1.13 b | 87.29 ± 5.61 a | 23.00 ± 1.89 a | 345 ± 24.93 a |
1.0 | 1420 ± 108 ab | 54.94 ± 3.74 b | 1.22 ± 0.09 ab | 53.33 ± 4.47 ab | 12.93 ± 0.88 ab | 89.78 ± 5.15 a | 23.18 ± 0.98 a | 367 ± 26.51 a |
2.0 | 1403 ± 108 ab | 57.89 ± 4.52 bc | 1.28 ± 0.08 ab | 61.88 ± 3.35 c | 13.01 ± 0.84 ab | 98.35 ± 5.64 ab | 25.09 ± 1.36 ab | 415 ± 33.59 b |
3.0 | 1512 ± 98 bc | 57.04 ± 4.46 bc | 1.25 ± 0.05 b | 59.79 ± 4.36 bc | 12.38 ± 0.59 ab | 97.56 ± 6.76 ab | 26.92 ± 1.60 b | 425 ± 26.19 b |
4.0 | 1789 ± 87 d | 63.24 ± 4.57 c | 1.32 ± 0.08 b | 60.06 ± 5.13 bc | 12.52 ± 0.84 ab | 109.09 ± 9.18 b | 31.03 ± 2.27 c | 421 ± 23.68 b |
5.0 | 1722 ± 158 d | 60.26 ± 4.82 bc | 1.27 ± 0.07 b | 59.85 ± 3.90 bc | 12.31 ± 0.68 ab | 105.74 ± 7.69 b | 30.52 ± 2.03 c | 431 ± 24.47 b |
6.0 | 1725 ± 114 d | 61.28 ± 3.85 bc | 1.29 ± 0.07 b | 58.92 ± 4.22 bc | 11.83 ± 0.93 a | 110.48 ± 9.66 b | 32.45 ± 1.49 c | 430 ± 33.70 b |
7.0 | 1654 ± 143 cd | 58.18 ± 4.55 bc | 1.26 ± 0.06 b | 56.94 ± 3.58 bc | 11.89 ± 0.74 a | 105.59 ± 6.56 b | 31.86 ± 1.64 c | 431 ± 26.08 b |
AE (g kg−1 Diet) | Trypsin (U mg−1 Protein) | Lipase (U mg−1 Protein) | Amylase (U mg−1 Protein) | Na+/K+-ATPase (U mg−1 Protein) | AKP (U mg−1 Protein) | ASA (U g−1 Protein) | MDA (nmol mg−1 Protein) | GSH (mg g−1 Protein) | GR (U g−1 Protein) |
---|---|---|---|---|---|---|---|---|---|
0.0 | 1068 ± 73 a | 46.41 ± 2.30 a | 1.01 ± 0.07 a | 3.29 ± 0.21 a | 289 ± 22 a | 45.58 ± 2.41 a | 14.21 ± 1.17 c | 14.38 ± 0.90 a | 13.74 ± 1.44 a |
1.0 | 1095 ± 92 ab | 47.93 ± 4.30 ab | 1.10 ± 0.08 a | 3.25 ± 0.25 a | 292 ± 24 ab | 50.14 ± 4.70 ab | 14.03 ± 0.84 c | 14.59 ± 0.78 a | 15.38 ± 1.23 ab |
2.0 | 1156 ± 113 ab | 50.96 ± 4.20 ab | 1.08 ± 0.08 a | 3.42 ± 0.20 a | 316 ± 21 abc | 49.78 ± 3.13 ab | 13.55 ± 0.86 bc | 14.57 ± 0.95 a | 14.96 ± 1.20 ab |
3.0 | 1193 ± 116 ab | 49.78 ± 4.20 ab | 1.23 ± 0.10 b | 4.02 ± 0.31 b | 303 ± 23 abc | 52.77 ± 2.95 b | 13.60 ± 1.02 bc | 15.04 ± 1.20 ab | 15.87 ± 1.41 b |
4.0 | 1188 ± 112 ab | 53.00 ± 4.10 b | 1.29 ± 0.07 b | 3.99 ± 0.23 b | 336 ± 22 c | 52.6 ± 2.25 b | 12.84 ± 1.11 abc | 14.96 ± 1.12 ab | 16.12 ± 1.19 b |
5.0 | 1264 ± 110 bc | 53.10 ± 3.60 b | 1.27 ± 0.09 b | 4.31 ± 0.31 bc | 332 ± 30 c | 53.56 ± 4.49 b | 13.01 ± 0.77 abc | 15.87 ± 0.80 ab | 16.48 ± 1.22 b |
6.0 | 1359 ± 120 c | 54.06 ± 3.70 b | 1.34 ± 0.07 b | 4.53 ± 0.32 c | 332 ± 30 c | 52.11 ± 3.82 b | 12.18 ± 0.87 ab | 16.29 ± 0.98 b | 16.16 ± 1.44 b |
7.0 | 1231 ± 94 abc | 52.30 ± 3.60 ab | 1.22 ± 0.08 b | 4.41 ± 0.26 bc | 329 ± 21 bc | 52.45 ± 3.49 b | 11.98 ± 0.90 a | 15.98 ± 0.92 ab | 16.24 ± 1.20 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Chen, G.; Wu, M.; Yang, Q.; Li, H. The Extract of Astragalus membranaceus Inhibits Lipid Oxidation in Fish Feed and Enhances Growth Performance and Antioxidant Capacity in Jian Carp (Cyprinus carpio var. Jian). Fishes 2023, 8, 594. https://doi.org/10.3390/fishes8120594
Xu J, Chen G, Wu M, Yang Q, Li H. The Extract of Astragalus membranaceus Inhibits Lipid Oxidation in Fish Feed and Enhances Growth Performance and Antioxidant Capacity in Jian Carp (Cyprinus carpio var. Jian). Fishes. 2023; 8(12):594. https://doi.org/10.3390/fishes8120594
Chicago/Turabian StyleXu, Jing, Gangfu Chen, Min Wu, Qihui Yang, and Huatao Li. 2023. "The Extract of Astragalus membranaceus Inhibits Lipid Oxidation in Fish Feed and Enhances Growth Performance and Antioxidant Capacity in Jian Carp (Cyprinus carpio var. Jian)" Fishes 8, no. 12: 594. https://doi.org/10.3390/fishes8120594
APA StyleXu, J., Chen, G., Wu, M., Yang, Q., & Li, H. (2023). The Extract of Astragalus membranaceus Inhibits Lipid Oxidation in Fish Feed and Enhances Growth Performance and Antioxidant Capacity in Jian Carp (Cyprinus carpio var. Jian). Fishes, 8(12), 594. https://doi.org/10.3390/fishes8120594