Transcriptome Analysis of Immune Responses and Metabolic Regulations of Chinese Soft-Shelled Turtle (Pelodiscus sinensis) against Edwardsiella tarda Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethic Statements, Bacterial Challenge, and Sample Collection
2.2. RNA Isolation and Illumina Sequencing
2.3. De Novo Assembly, Unigene Annotation and Functional Classification
2.4. Differentially Expressed Unigene and GO/KEGG Enrichment Analysis
2.5. Gene Expression Validation by Real-Time Quantitative PCR
3. Results
3.1. Bacterial Challenge and Accumulative Mortality
3.2. Sequencing Identify and Functional Annotation of the Unigenes
3.3. Identification and Analysis of Differentially Expressed Genes (DEGs)
3.4. Gene Ontology Classification and Enrichment Analysis of DEGs
3.5. KEGG Pathway Classification and Enrichment Analysis of DEGs
3.6. Results of Gene Expression Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haitao, S.; Parham, J.F.; Zhiyong, F.; Meiling, H.; Feng, Y. Evidence for the massive scale of turtle farming in China. Oryx 2008, 42, 147–150. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Zhang, H.; Cai, Y. High-Efficiency Culture Models Strategy for Soft-Shelled Turtle; China Agriculture Press: Beijing, China, 2015; pp. 1–80. (In Chinese) [Google Scholar]
- Shen, J.; Yin, W.; Qian, D.; Cao, Z.; Shen, Z. Studies on the immunization of bacterin against bacterial diseases of cultivated soft-shelled turtle. J. Zhejiang Univ. (Agric. Life Sci. Version) 2000, 26, 325–328. [Google Scholar]
- Rosskopf, W.J.; Shindo, M.K. Syndromes and conditions of commonly kept tortoise and turtle species. Semin. Avian Exot. Pet. Med. 2003, 12, 149–161. [Google Scholar] [CrossRef]
- Chen, J.; Ding, X.; Zhu, N.; Kong, L.; He, Z. Prevalence and antimicrobial susceptibility of Aeromonas species from diseased Chinese soft-shelled turtles (Trionyx sinensis). Aquacult. Res. 2013, 46, 1527–1536. [Google Scholar] [CrossRef]
- Pan, X.; Hao, G.; Yao, J.; Xu, Y.; Shen, J.; Yin, W. Identification and pathogenic facts studying for Edwardsiella tarda from Edwardsiellosis of Trionyx sinensis. Freshw. Fish. 2010, 40, 40–45. (In Chinese) [Google Scholar]
- Lin, Q.; Zhu, L.; Li, Z.; Xu, B.; Xie, N. Isolation, determination and antimicrobial susceptibility test of the Citrobacter freundii septicemia from soft-shelled turtle Trionyx sinensis. Fish. Sci. 2008, 27, 42–43. (In Chinese) [Google Scholar]
- Trotta, A.; Marinaro, M.; Sposato, A.; Galgano, M.; Ciccarelli, S.; Paci, S.; Corrente, M. Antimicrobial Resistance in Loggerhead Sea Turtles (Caretta caretta): A Comparison between Clinical and Commensal Bacterial Isolates. Animals 2021, 11, 2435. [Google Scholar] [CrossRef]
- Trotta, A.; Margie, C.; Mariarosaria, M.; Sunčica, B.; Georgia, D.; Stefano, C.; Serena, P.; Domenico, B.; Marialaura, C. Detection of multi-drug resistance and AmpC β-lactamase/extended-spectrum β-lactamase genes in bacterial isolates of loggerhead sea turtles (Caretta caretta) from the Mediterranean Sea. Mar. Pollut. Bull. 2021, 164, 112015. [Google Scholar] [CrossRef]
- Ding, L.; Yue, Y.; Song, J. Pathogenic bacteria and drug therapy for white floor and ulcerate disease of Trionyx sinensis. Freshw. Fish. Sin. 2001, 31, 46–48. (In Chinese) [Google Scholar]
- Shen, J.; Pan, X.; Yu, X.; Yin, W.; Cao, Z.; Wu, Y. Pathogen in white abdominal shell disease of soft-shelled turtle (Trionyx sinensis) J. Fish. Sci. Chin. 2007, 14, 815–822, (Abstract in English). [Google Scholar]
- Zhu, N.; Cao, F.; Zheng, X.; Zheng, T. Identification of Edwardsiella tarda from diseased Chinese soft-shelled turtle (Pelodiscus sinensis) and analysis on antimicrobial resistance. Chin. Fish. Qual. Stan. 2018, 8, 65–71. [Google Scholar]
- Xu, T.; Zhang, X.-H. Edwardsiella tarda: An intriguing problem in aquaculture. Aquaculture 2014, 431, 129–135. [Google Scholar] [CrossRef]
- Janda, J.; Abbott, S. Infections associated with the genus Edwardsiella: The role of Edwardsiella tarda in human disease. Clin. Infect. Dis. 1993, 17, 742–748. [Google Scholar]
- Leung, K.Y.; Siame, B.A.; Tenkink, B.J.; Noort, R.J.; Mok, Y.-K. Edwardsiella tarda—Virulence mechanisms of an emerging gastroenteritis pathogen. Microbes Infect. 2012, 14, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chang, X.; Wu, H.; Xiao, J.; Gao, Y.; Zhang, Y. Role of intestinal inflammation in predisposition of Edwardsiella tarda infection in zebrafish (Danio rerio). Fish Shellfish Immunol. 2014, 41, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Tang, X.; Sheng, X.; Xing, J.; Zhan, W. Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment. Fish Shellfish Immunol. 2016, 55, 274–280. [Google Scholar] [CrossRef]
- Kole, S.; Anand, D.; Sharma, R.; Tripathi, G.; Makesh, M.; Rajendran, K.; Bedekar, M.K. Tissue specific expression profile of some immune related genes in Labeo rohita to Edwardsiella tarda infection. Fish Shellfish Immunol. 2017, 66, 575–582. [Google Scholar] [CrossRef]
- Reza, M.A.N.; Mohapatra, S.; Shimizu, S.; Kitamura, S.-I.; Harakawa, S.; Kawakami, H.; Nakayama, K.; Sawayama, E.; Matsubara, T.; Ohta, K.; et al. Molecular cloning, characterization and expression analysis of complement components in red sea bream (Pagrus major) after Edwardsiella tarda and red sea bream Iridovirus (RSIV) challenge. Fish Shellfish Immunol. 2018, 82, 286–295. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, G.; Nie, P. Ig M, Ig D and Ig Y and their expression pattern in the Chinese soft-shelled turtle Pelodiscus sinensis. Mol. Immunol. 2009, 46, 2124–2132. [Google Scholar] [CrossRef]
- Zhou, Y.; Liang, Q.; Li, W.; Gu, Y.; Liao, X.; Fang, W.; Li, X. Characterization and functional analysis of toll-like receptor 4 in Chinese soft-shelled turtle Pelodiscus sinensis. Dev. Comp. Immunol. 2016, 63, 128–135. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, Q.; Dai, H. Molecular characterization and expression profiles in response to bacterial infection of Chinese soft-shelled turtle interleukin-8 (IL-8), the first reptilian chemokine gene. Dev. Comp. Immunol. 2009, 33, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Chien, J.-T.; Chowdhury, I.; Lin, Y.-S.; Liao, C.-F.; Shen, S.-T.; Yu, J.Y.-L. Molecular cloning and sequence analysis of a cDNA encoding pituitary thyroid stimulating hormone β-subunit of the Chinese soft-shell turtle Pelodiscus sinensis and regulation of its gene expression. Gen. Comp. Endocrinol. 2006, 146, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Hrdlickova, R.; Toloue, M.; Tian, B. RNA -Seq methods for transcriptome analysis. Wiley Interdiscip. Rev. RNA 2016, 8, 1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutz, K.-O.; Heilkenbrinker, A.; Lönne, M.; Walter, J.-G.; Stahl, F. Transcriptome analysis using next-generation sequencing. Curr. Opin. Biotechnol. 2013, 24, 22–30. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Lu, Y.; Wang, F.; Liu, L.; Liu, J.; Liu, X. Comparative transcriptome analysis of zebrafish (Danio rerio) brain and spleen infected with spring viremia of carp virus (SVCV). Fish Shellfish Immunol. 2017, 69, 35–45. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X.; Sun, Z.; Li, F.; Xiang, J. Transcriptome Analysis on Chinese Shrimp Fenneropenaeus chinensis during WSSV Acute Infection. PLoS ONE 2013, 8, e58627. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, J.; Guo, H. Transcriptome analysis and discovery of genes involved in immune pathways in Solen strictus (Gould, 1861) under Vibrio anguillarum. Fish Shellfish Immunol. 2019, 88, 237–243. [Google Scholar] [CrossRef]
- Qi, Z.; Zhang, Q.; Wang, Z.; Ma, T.; Zhou, J.; Holland, J.W.; Gao, Q. Transcriptome analysis of the endangered Chinese giant salamander (Andrias davidianus): Immune modulation in response to Aeromonas hydrophila infection. Veter-Immunol. Immunopathol. 2016, 169, 85–95. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, J.; Li, Y.; Zou, Y.; Lu, B.; Chen, Y.; Ma, Y.; Xu, H. Evaluation of differentially expressed immune-related genes in intestine of Pelodiscus sinensis after intragastric challenge with lipopolysaccharide based on transcriptome analysis. Fish Shellfish Immunol. 2016, 56, 417–426. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, X.; He, Z.; Zheng, T.; Shao, J. De novo transcriptome analysis reveals insights into different mechanisms of growth and immunity in a Chinese soft-shelled turtle hybrid and the parental varieties. Gene 2017, 605, 54–62. [Google Scholar] [CrossRef]
- Zhang, W.-Y.; Niu, C.-J.; Chen, B.-J.; Storey, K.B. Digital Gene Expression Profiling reveals transcriptional responses to acute cold stress in Chinese soft-shelled turtle Pelodiscus sinensis juveniles. Cryobiology 2018, 81, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Lyu, S.; Yuan, X.; Zhang, H.; Hang, X.; Li, Y.; Shi, W.; Liu, L.; Yu, Z.; Wu, Y. Transcriptome profiling analysis of lung tissue of Chinese soft-shell turtle infected by Trionyx sinensis Hemorrhagic Syndrome Virus. Fish Shellfish Immunol. 2020, 98, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [Green Version]
- Mortazavi, A.; Williams, B.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Met. 2008, 5, 621. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Cui, C.; Liang, Q.; Sheng, X.; Xing, J.; Zhan, W. Apoptosis of hemocytes is associated with the infection process of white spot syndrome virus in Litopenaeus vannamei. Fish Shellfish. Immunol. 2019, 94, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhang, D.; Liu, W.; Cai, W.; Qian, Y.; Wang, K.; Li, X.; Jiang, G.; Xu, W. Growth performance, digestion and metabolism to fish meal replacement by rice protein concentrate in Chinese soft-shelled turtle Pelodiscus sinensis. Aquaculture 2018, 492, 321–326. [Google Scholar] [CrossRef]
- Li, H.-H.; Pan, Y.-X.; Liu, L.; Li, Y.-L.; Huang, X.-Q.; Zhong, Y.-W.; Tang, T.; Zhang, J.-S.; Chu, W.-Y.; Shen, Y.-D. Effects of high-fat diet on muscle textural properties, antioxidant status and autophagy of Chinese soft-shelled turtle (Pelodiscus sinensis). Aquaculture 2019, 511, 734228. [Google Scholar] [CrossRef]
- Huang, C.-H.; Lin, W.-Y.; Chu, J.-H. Dietary lipid level influences fatty acid profiles, tissue composition, and lipid peroxidation of soft-shelled turtle, Pelodiscus sinensis. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2005, 142, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Ding, X.-Y.; Feng, H.; Xu, Y.-B.; Xue, H.-L.; Zhang, J.-R.; Ng, W.-K. The dietary protein requirement of a new Japanese strain of juvenile Chinese soft shell turtle, Pelodiscus sinensis. Aquaculture 2013, 412–413, 74–80. [Google Scholar] [CrossRef]
- Yasumasu, S.; Uzawa, M.; Iwasawa, A.; Yoshizaki, N. Hatching mechanism of the Chinese soft-shelled turtle Pelodiscus sinensis. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2010, 155, 435–441. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.-Y.; Ge, C.-T.; Lei, L.; Gao, Y.-L.; Qian, G.-Y. De-novo characterization of the soft-shelled turtle Pelodiscus sinensis transcriptome using Illumina RNA-Seq technology. J. Zhejiang Univ. Sci. B 2013, 14, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Trouw, L.A.; Daha, M.R. Role of complement in innate immunity and host defense. Immunol. Lett. 2011, 138, 35–37. [Google Scholar] [CrossRef]
- Zimmerman, L.M.; Vogel, L.A.; Bowden, R.M. Understanding the vertebrate immune system: Insights from the reptilian perspective. J. Exp. Biol. 2010, 213, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Yin, F.; Gao, Q.; Tang, B.; Sun, P.; Han, K.; Huang, W. Transcriptome and analysis on the complement and coagulation cascades pathway of large yellow croaker (Larimichthys crocea) to ciliate ectoparasite Cryptocaryon irritans infection. Fish Shellfish Immunol. 2016, 50, 127–141. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Cao, Y.; Wang, D.; Liu, H.; Lu, T. Trancriptome profiles of Amur sturgeon spleen in response to Yersinia ruckeri infection. Fish Shellfish Immunol. 2017, 70, 451–460. [Google Scholar] [CrossRef]
- Diao, J.; Liu, H.; Hu, F.; Li, L.; Wang, X.; Gai, C.; Yu, X.; Fan, Y.; Xu, L.; Ye, H. Transcriptome analysis of immune response in fat greenling (Hexagrammos otakii) against Vibrio harveyi infection. Fish Shellfish Immunol. 2019, 84, 937–947. [Google Scholar] [CrossRef]
- Netea, M.G.; Schlitzer, A.; Placek, K.; Joosten, L.A.; Schultze, J.L. Innate and Adaptive Immune Memory: An Evolutionary Continuum in the Host’s Response to Pathogens. Cell Host Microbe 2019, 25, 13–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calame, D.G.; Mueller-Ortiz, S.L.; Wetsel, R.A. Innate and adaptive immunologic functions of complement in the host response to Listeria monocytogenes infection. Immunobiology 2016, 221, 1407–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Oss, C.J. Phagocytosis: An overview. Methods Enzymol. 1986, 132, 3–15. [Google Scholar] [PubMed]
- Stuart, L.M.; Ezekowitz, R.A.B. Phagocytosis: Elegant Complexity. Immunity 2005, 22, 539–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Lv, Z.; Li, C.; Sun, Y.; Jiang, H.; Zhao, M.; Zhao, X.; Shao, Y.; Chang, Y. Transcriptome profiling reveals key roles of phagosome and NOD-like receptor pathway in spotting diseased Strongylocentrotus intermedius. Fish Shellfish Immunol. 2019, 84, 521–531. [Google Scholar] [CrossRef]
- Ge, Q.; Li, J.; Wang, J.; Li, J.; Ge, H.; Zhai, Q. Transcriptome analysis of the hepatopancreas in Exopalaemon carinicauda infected with an AHPND-causing strain of Vibrio parahaemolyticus. Fish Shellfish Immunol. 2017, 67, 620–633. [Google Scholar] [CrossRef]
- Wang, R.; Hu, X.; Lü, A.; Liu, R.; Sun, J.; Sung, Y.Y.; Song, Y. Transcriptome analysis in the skin of Carassius auratus challenged with Aeromonas hydrophila. Fish Shellfish Immunol. 2019, 94, 510–516. [Google Scholar] [CrossRef]
- Pasmans, F.; Herdt, P.; Nerom, A.; Haesebrouck, F. Induction of the respiratory burst in turtle peritoneal macrophages by Salmonella muenchen. Dev. Comp. Immunol. 2000, 25, 159–168. [Google Scholar] [CrossRef]
- Rousselet, E.; Levin, M.; Gebhard, E.; Higgins, B.M.; DeGuise, S.; Godard-Codding, C. Evaluation of immune functions in captive immature loggerhead sea turtles (Caretta caretta). Veter-Immunol. Immunopathol. 2013, 156, 43–53. [Google Scholar] [CrossRef]
- Wilkens, S.; Zhang, Z.; Zheng, Y. A structural model of the vacuolar ATPase from transmission electron microscopy. Micron 2005, 36, 109–126. [Google Scholar] [CrossRef]
- Yan, S.R.; Bortolussi, R.; Issekutz, T.B.; Issekutz, A.C. Increased chemoattractant induced neutrophil oxidative burst, accelerated apoptosis, and dysregulated tyrosine phosphorylation associated with lifelong bacterial infections. Clin. Immunol. 2005, 117, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Ciraci, C.; Janczy, J.R.; Sutterwala, F.S.; Cassel, S.L. Control of innate and adaptive immunity by the inflammasome. Microbes Infect. 2012, 14, 1263–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rock, K.; Reits, E.; Neefjes, J. Present Yourself! By MHC Class I and MHC Class II Molecules. Trends Immunol. 2016, 37, 724–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auchus, R.; Miller, W. The Principles, Enzymes, and Pathways of Human Steroidogenesis. In Endocrinology: Adult and Pediatric, 7th ed.; Elsevier: Philadelphia, PA, USA, 2010; Volume 2, pp. 1784–1804. [Google Scholar] [CrossRef]
- Watson, I.P.B.; Brüne, M.; Bradley, A.J. The evolution of the molecular response to stress and its relevance to trauma and stressor-related disorders. Neurosci. Biobehav. Rev. 2016, 68, 134–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemenade, B.L.V.-V.; Cohen, N.; Chadzinska, M. Neuroendocrine-immune interaction: Evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. Dev. Comp. Immunol. 2017, 66, 2–23. [Google Scholar] [CrossRef]
- Silvestre, A.M. How to Assess Stress in Reptiles. J. Exot. Pet Med. 2014, 23, 240–243. [Google Scholar] [CrossRef]
Primer Name | Sequences (5′–3′) | Annealing Temperature |
---|---|---|
PsMASP2 F | TGCTGGGGTTGAAGAAGGG | 55 °C |
PsMASP2 R | CAGGATACAATACCACCGAC | |
PsC3 F | GTACCTGCCCATCACGC | 55 °C |
PsC3 R | CGTTCCCATGCAAGTGT | |
PsCTSL F | TGCTAATGATACTGGCTTTGTGG | 60 °C |
PsCTSL R | CATCTTCGTCTGCTCCCTGA | |
PsATP6AP1 F | GTGGACCTGACGCCCTTGA | 60 °C |
PsATP6AP1 R | TGAACATGGTGGACTGGAC | |
PsTLR4 F | TGCTGGCATTCTGTTCGTG | 60 °C |
PsTLR4 R | GGATGATGTTGGTAGTGATGGG | |
PsMHCII F | AGACGACTGAGCCTACCG | 53 °C |
PsMHCII R | AAAGAGGGTGGTAAGTGTTG | |
PsF10 F | TGTATTCCAACAGAGCCATTCC | 60 °C |
PsF10 R | CCAGGCAAACAGTCTTTACCAC | |
PsComt F | GTGAGGATTGCTGGGCTGTT | 60 °C |
PsComt R | GAAATGGTTGTTATTGCGGATG | |
PsHSD17B6 F | GACGAGATGCAGCACCAAC | 59 °C |
PsHSD17B6 R | CCCCAGGTCAACACCCAAT | |
PsAKR1C3 F | GATGGAGCCTTTGTCTATGGG | 60 °C |
PsAKR1C3 R | TGAGAACAGGTTTGTACTTGAGCC | |
Psβ-actin F | GAGACCTGACAGACTACCT | 58 °C |
Psβ-actin R | AGGATGATGAAGCAGCAGT |
Sample | Raw Reads | Raw Bases | Valid Reads | Valid Bases | Valid% | Q20% | Q30% | GC% |
---|---|---|---|---|---|---|---|---|
Experimental Group | 57,337,308 | 8.60 G | 56,448,314 | 8.34 G | 98.45 | 98.35 | 95.30 | 54.90 |
Control Group | 58,207,196 | 8.73 G | 57,285,180 | 8.46 G | 98.42 | 98.28 | 95.11 | 52.91 |
Pathway Definition | Gene Name | Annotation | log2FC |
---|---|---|---|
Complement and coagulation cascades | C3 | complement C3 | 4.98 |
CFD | complement factor D | 4.64 | |
C7 | complement component C7 isoform X1 | 4.15 | |
MASP2 | mannan-binding lectin serine protease 2 isoform X1 | 3.60 | |
CFH | complement factor H isoform X1 | 2.75 | |
C6 | complement component C6 | 2.26 | |
CR1 | complement receptor type 1 | 2.18 | |
CFB | complement factor B | 1.99 | |
fibrinogen | fibrinogen gamma chain isoform X1 | 1.70 | |
F13B | coagulation factor XIII B chain-like | 1.57 | |
C8 | complement component C8 gamma chain isoform X1 | 1.31 | |
C4 | complement C4 | 1.29 | |
C1qc | complement C1q subcomponent subunit C | 1.21 | |
CR2 | complement receptor type 2 | 1.15 | |
C1qa | complement C1q subcomponent subunit A-like | 1.06 | |
F7 | coagulation factor VII | −1.11 | |
SERPINC1 | antithrombin-III isoform X1 | −1.78 | |
F10 | coagulation factor X | −2.24 | |
C4 | complement C4 | −2.46 | |
Phagosome | TAP2 | antigen peptide transporter 2 | 3.20 |
TLR2 | toll-like receptor 2 | 3.03 | |
TAP1 | antigen peptide transporter 1 | 2.94 | |
MHCI | major histocompatibility complex class I | 2.84 | |
CTSL | cathepsin L1 | 2.55 | |
CALR | calreticulin | 2.51 | |
ATP6AP1 | V-type proton ATPase subunit S1 isoform X1 | 2.39 | |
SEC61G | protein transport protein Sec61 subunit gamma isoform X1 | 2.37 | |
CTSS | cathepsin S | 2.26 | |
MHCII | major histocompatibility complex class II beta chain | 2.15 | |
TLR4 | toll-like receptor 4 precursor | 2.03 | |
SEC61B | protein transport protein Sec61 subunit beta | 1.56 | |
SEC22B | vesicle-trafficking protein SEC22b | 1.21 | |
ATP6V0D1 | V-type proton ATPase subunit d 1 | 1.06 | |
Steroid hormone biosynthesis | HSD11B1 | corticosteroid 11-beta-dehydrogenase isozyme 1 | 2.60 |
AKR1D1 | 3-oxo-5-beta-steroid 4-dehydrogenase | 1.24 | |
HSD17B3 | testosterone 17-beta-dehydrogenase 3 | 1.02 | |
HSD17B6 | 17-beta-hydroxysteroid dehydrogenase type 6 | −1.24 | |
Comt | catechol O-methyltransferase | −2.17 | |
HSD17B7 | 3-keto-steroid reductase | −2.25 | |
CYP3A24 | cytochrome P450 3A24 | −2.37 | |
AKR1C3 | aldo-keto reductase family 1 member C3 | −2.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Q.; Zhu, N.; Zheng, X.; Ding, X.; He, R.; Xu, H.; Cao, F.; Xue, H.; Zhou, F.; Zheng, T. Transcriptome Analysis of Immune Responses and Metabolic Regulations of Chinese Soft-Shelled Turtle (Pelodiscus sinensis) against Edwardsiella tarda Infection. Fishes 2022, 7, 79. https://doi.org/10.3390/fishes7020079
Liang Q, Zhu N, Zheng X, Ding X, He R, Xu H, Cao F, Xue H, Zhou F, Zheng T. Transcriptome Analysis of Immune Responses and Metabolic Regulations of Chinese Soft-Shelled Turtle (Pelodiscus sinensis) against Edwardsiella tarda Infection. Fishes. 2022; 7(2):79. https://doi.org/10.3390/fishes7020079
Chicago/Turabian StyleLiang, Qianrong, Ningyu Zhu, Xiaoye Zheng, Xueyan Ding, Runzhen He, Hongsen Xu, Feifei Cao, Huili Xue, Fan Zhou, and Tianlun Zheng. 2022. "Transcriptome Analysis of Immune Responses and Metabolic Regulations of Chinese Soft-Shelled Turtle (Pelodiscus sinensis) against Edwardsiella tarda Infection" Fishes 7, no. 2: 79. https://doi.org/10.3390/fishes7020079
APA StyleLiang, Q., Zhu, N., Zheng, X., Ding, X., He, R., Xu, H., Cao, F., Xue, H., Zhou, F., & Zheng, T. (2022). Transcriptome Analysis of Immune Responses and Metabolic Regulations of Chinese Soft-Shelled Turtle (Pelodiscus sinensis) against Edwardsiella tarda Infection. Fishes, 7(2), 79. https://doi.org/10.3390/fishes7020079