Wild and Farmed Sea Bass (Dicentrarchus Labrax): Comparison of Biometry Traits, Chemical and Fatty Acid Composition of Fillets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proximate Composition of Feed
2.2. Sample Treatment and Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Biometric Parameters
3.2. Proximate Composition
3.3. Fatty Acid Profiles of Fillets
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Carminato, A.; Pascoli, F.; Trocino, A.; Locatello, L.; Maccatrozzo, L.; Palazzi, R.; Radaelli, G.; Ballarin, C.; Bortoletti, M.; Bertotto, D. Productive results, oxidative stress and contaminant markes in European Sea Bass: Conventional vs. organic feeding. Animals 2020, 10, 1226. [Google Scholar] [CrossRef]
- Betancor, M.B.; MacEwan, A.; Sprague, M.; Gong, X.; Montero, D.; Han, L.; Napier, J.A.; Norambuena, F.; Izquierdo, M.; Tocher, D.R. Oil from transgenic Camelina sativa as a source of EPA and DHA in feed for European sea bass (Dicentrarchus labrax L.). Aquaculture 2021, 530, 735759. [Google Scholar] [CrossRef] [PubMed]
- Rodde, C.; de Verdal, H.; Vandeputte, M.; Allal, F.; Nati, J.; Besson, M.; Blasco, F.R.; Benzie, J.A.H.; McKenzie, D.J. An investigation of links between metabolic rate and feed efficiency in European sea bass Dicentrarchus labrax. J. Anim. Sci. 2021, 99, 152. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Prineas, R.J.; Stein, P.K.; Siscovick, D.S. Dietary fish and n-3 fatty acid intake and cardiac electrocardiographic parameters in humans. J. Am. Coll. Cardiol. 2006, 48, 478–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reader, M.B.; Steen, V.M.; Vollset, S.E.; Bjelland, I. Association between cod liver oil use and symptoms of depression: The hordal and health study. J. Affect. Disord. 2007, 101, 245–249. [Google Scholar] [CrossRef]
- Badiani, A.; Stipa, S.; Bitossi, F.; Pirini, M.; Bonaldo, A.; Gatta, P.P.; Rotolo, M.; Testi, S. True retention of nutrients upon household cooking of farmed portion-size European sea bass (Dicentrarchus labrax L.). LWT—Food Sci. Technol. 2013, 50, 72–77. [Google Scholar] [CrossRef]
- BØrrensen, T. Quality aspects of wild and reared fish. In Quality Assurance in the Food Industry; Huss, H.H., Jacobsen, M., Liston, J., Eds.; Elselvier: Amsterdam, The Netherlands, 1992; pp. 1–17. [Google Scholar]
- Fuentes, A.; Fernandez-Segovia, I.; Serra, J.A.; Barat, J.M. Comparison of wild and cultured sea bass (Dicentrarchus labrax) quality. Food Chem. 2010, 119, 1514–1518. [Google Scholar] [CrossRef]
- Pascon, G.; Messina, M.; Petit, L.; Pinheiro Valente, L.M.; Oliveira, B.; Przybyla, C.; Dutto, G.; Tulli, F. Potential application and beneficial effects of a marine microalgal biomass produced in a high-rate algal pond (HRAP) in diets of European sea bass, Dicentrarchus labrax. Environ. Sci. Pollut. Res. 2021, 28, 62185–62199. [Google Scholar] [CrossRef]
- Katsika, L.; Huesca Flores, M.; Kotzamanis, Y.; Estevez, A.; Chatzifotis, S. Understanding the Interaction Effects between Dietary Lipid Content and Rearing Temperature on Growth Performance, Feed Utilization, and Fat Deposition of Sea Bass (Dicentrarchus labrax). Animals 2021, 11, 392. [Google Scholar] [CrossRef]
- Kumar, N.; Chandan, N.K.; Gupta, S.K.; Bhushan, S.; Patole, P.B. Omega-3 fatty acids effectively modulate growth performance, immune response, and disease resistance in fish against multiple stresses. Aquaculture 2022, 547, 737506. [Google Scholar] [CrossRef]
- Torrecillas, S.; Betancor, M.B.; Caballero, M.J.; Rivero, F.; Robaina, L.; Izquierdo, M.; Montero, D. Supplementation of arachidonic acid rich oil in European sea bass juveniles (Dicentrarchus labrax) diets: Effects on growth performance, tissue fatty acid profile and lipid metabolism. Fish Physiol. Biochem. 2018, 44, 283–300. [Google Scholar] [CrossRef]
- Mastoraki, M.; Mollá Ferrándiz, P.; Vardali, S.C.; Kontodimas, D.C.; Kotzamanis, Y.P.; Gasco, L.; Chatzifotis, S.; Antonopoulou, E. A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European sea bass (Dicentrarchus labrax L.). Aquaculture 2020, 528, 735511. [Google Scholar] [CrossRef]
- Orban, E.; Nevigato, T.; Di Lena, G.; Casini, I.; Marzetti, A. Differentiation in the lipid quality of wild and farmed seabass (Dicentrarchus labrax) and gilthead sea bream (Sparum aurata). J. Food Sci. 2003, 68, 128–132. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pateiro, M.; Domínguez, R.; Zhou, J.; Barba, F.J.; Lorenzo, J.M. Nutritional Characterization of Sea Bass Processing By-Products. Biomolecules 2020, 10, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izquierdo, M.S.; Obach, A.; Arantzamendi, L.; Montero, D.; Robaina, L.; Rosenlund, G. Dietary lipid sources for sea bream and sea bass: Growth performance, tissue composition and flesh quality. Aquac. Nutr. 2003, 9, 397–407. [Google Scholar] [CrossRef]
- Dernekbaş, S.; Karayücel, I. Effect of alternate feeding with fish oil- and peanut oil-based diets on the growth and fatty acid compositions of European seabass fingerlings (Dicentrarchus labrax) in the recirculated systems. Aquac. Res. 2021, 52, 3137–3147. [Google Scholar] [CrossRef]
- Available online: https://www.oie.int/en/what-we-do/standards/codes-and-manuals/aquatic-code-online-access/ (accessed on 30 April 2021).
- AOAC. Official Methods of Analysis of the AOAC. In Association of Official Agricultural Chemistry, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Cagnetta, P.; Zezza, L.; Bongermino, L.; Demetrio, G. Caratteristiche corporee e resa in porzione edule di spigola (Dicentrarchus labrax) proveniente da due diverse tipologie di allevamento. In Proceedings of the Atti Convegno Internazionale “Parliamo di … Acquacoltura”, Fossano, Italy, 13–14 October 1994; pp. 237–244. (In Italian). [Google Scholar]
- Folch, J.; Less, M.; Sloane-Stanley, G.H. A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Christie, W.W. Lipid Analysis-Isolation, Separation, Identification and Structural Analysis of Lipids; Pergamon: Oxford, UK, 1982; p. 270. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- SAS. SAS/STAT User’s Guide: Statistics; SAS Institute Inc.: Cary, NC, USA, 2000. [Google Scholar]
- Favaloro, E.M.; Mazzolla, A. Shape change during the growth of sharpsnout seabream reared under different conditions in a fish farm of southern Tyrrenian Sea. Aqualcult. Eng. 2003, 29, 57–63. [Google Scholar] [CrossRef]
- Tulli, F.; Balenovic, I.; Messina, M.; Tibaldi, E. Biometry traits and geometric morphometrics in sea bass (Dicentrarchus labrax) from different farming systems. Ital. J. Anim. Sci. 2009, 8, 881–883. [Google Scholar] [CrossRef]
- Di Turi, L.; Ragni, M.; Caputi Jambrenghi, A.; Lastilla, M.; Vicenti, A.; Colonna, M.A.; Giannico, F.; Vonghia, G. Effect of dietary rosemary oil on growth performance and flesh quality of farmed seabass (Dicentrarchus labrax). Ital. J. Anim. Sci. 2009, 8, 857–859. [Google Scholar] [CrossRef]
- Alasalvar, C.; Taylor, K.D.A.; Zubcov, E.; Shahidi, F.; Alexis, M. Differentiation of cultured and wild sea bass (Dicentrarchus labrax): Total lipid content fatty acid and trace mineral composition. Food Chem. 2002, 79, 145–150. [Google Scholar] [CrossRef]
- Orban, E.; Lena, G.D.; Nevigato, T.; Casini, I.; Santaroni, G.; Marzetti, A.; Caproni, R. Quality characteristics of sea bass intensively reared and from lagoon as affected by growth conditions and the aquatic environment. J. Food Sci. 2002, 67, 542–546. [Google Scholar] [CrossRef]
- Grigorakis, K.; Alexis, M.N.; Taylor, K.A.; Hole, M. Hole Comparison of wild and cultured gilthead sea bream (Sparus aurata): Composition, appearance and seasonal variations. Intern. J. Food Sci. Tech. 2002, 37, 477–484. [Google Scholar] [CrossRef]
- Grigorakis, K.; Alexis, M.N.; Taylor, K.A.; Hole, M. Alexis Organoleptic and volatile aroma compounds comparison of wild and cultured gilthead sea bream (Sparus aurata): Sensory differences and possible chemical basis. Aquaculture 2003, 225, 109–119. [Google Scholar] [CrossRef]
- Johnston, I.A.; Li, X.; Vieira, V.L.; Nickell, D.; Dingwall, A.; Alderson, R.; Campbell, P.; Bickerdike, R. Alderson Muscle and flesh quality traits in wild and farmed Atlantic salmon. Aquaculture 2006, 256, 323–336. [Google Scholar] [CrossRef]
- Periago, M.J.; Ayala, M.D.; Lopez-Albors, O.; Abdel, I.; Martinez, C.; Garcia-Alcazar, A.; Ros, G.; Gil, F. Muscle cellularity and flesh quality of wild and farmed sea bass, Dicentrarchus labrax L. Aquaculture 2005, 249, 175–188. [Google Scholar] [CrossRef]
- Baki, B.; Gönener, S.; Kaya, D. Comparison of food, amino acid and fatty acid compositions of wild and cultivated sea bass (Dicentrarchus labrax L., 1758). Turk. J. Fish. Aquat. Sci. 2015, 15, 175–179. [Google Scholar]
- Magalhãesa, R.; Guardiola, F.A.; Guerreiro, I.; Fontinha, F.; Moutinho, S.R.; Lsen, E.O.; Peres, H.; Oliva-Telesa, A. Effect of different dietary arachidonic, eicosapentaenoic, and docosahexaenoic acid content on selected immune parameters in gilthead sea bream (Sparus aurata). Fish Shellfish Immunol. Rep. 2021, 2, 100014. [Google Scholar] [CrossRef]
- Aydın, B. A preliminary assessment of the effects of dietary black cumin seed cake on growth performance, serum biochemical parameters and fatty acid composition of mirror carp (Cyprinus carpio var. specularis) fingerlings. Aquac. Rep. 2021, 21, 100847. [Google Scholar] [CrossRef]
- Pirini, M.; Gatta, P.P.; Testi, S.; Trigari, G.; Monetti, P.G. Effect of refrigerate storage on muscle lipid quality of sea bass (Dicentrarchus labrax) fed on diets containing different levels of vitamin E. Food Chem. 2000, 68, 289–293. [Google Scholar] [CrossRef]
- Dernekbaşı, S.; Karayücel, I.; Karataş, E.; Akyüz, A.P. Potential of Using Peanut Oil as Alternative to Fish Oil for European Seabass Diets (Dicentrarchus Labrax) in Recirculated Systems. Alinteri J. Agric. Sci. 2021, 36, 109–121. [Google Scholar] [CrossRef]
- Terova, G.; Moroni, F.; Antonini, M.; Bertacchi, S.; Pesciaroli, C.; Branduardi, P.; Labra, D.; Porro, M.; Ceccotti, C.; Rimoldi, S. Using Glycerol to Produce European Sea Bass Feed With Oleaginous Microbial Biomass: Effects on Growth Performance, Filet Fatty Acid Profile, and FADS2 Gene Expression. Front. Mar. Sci. 2021, 8, 715078. [Google Scholar] [CrossRef]
- Alasalvar, C.; Taylor, K.D.A.; Öksüz, A.; Garthwaise, T.; Alexis, M.N.; Grigorakis, K. Freshness assessment of cultured sea bream (Sparus aurata) by chemical, physical and sensory methods. Food Chem. 2001, 72, 33–44. [Google Scholar] [CrossRef]
- Tsopelakos, A.; Zogopoulou, E.; Panagiotaki, p.; Miliou, H. Combined effects of dietary n-3 long-chain polyunsaturated fatty acid levels and saturated to monounsaturated fatty acid ratio on growth, fillet composition and blood parameters of European sea bass, Dicentrarchus labrax L. Aquac. Res. 2021, 52, 5213–5228. [Google Scholar] [CrossRef]
- Available online: https://www.efsa.europa.eu/en/press/news/120727 (accessed on 16 November 2021).
- Gladyshev, M.I. Terrestrial Sources of Polyunsaturated Fatty Acids for Aquaculture. J. Ichth. Yol. 2021, 61, 632–645. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Annuario Settore Ittico. Available online: https://www.bmti.it/wp-content/uploads/2020/04/Le-principali-evidenze-per-il-settore-ittico-nel-2019.pdf (accessed on 2 March 2021).
- World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; Volume 916, pp. 54–60. [Google Scholar]
Proximate Composition (% on DM Basis) | % |
Moisture | 10.0 |
Crude protein | 50.0 |
Total lipid | 18.5 |
Ash | 9.0 |
Crude fibre | 1.5 |
Fatty acid composition (% FA methyl esters) | % |
C14:0 (myristic) | 5.1 |
C15:0 (pentadecanoic) | 0.4 |
C16:0 (palmitic) | 15.8 |
C18:0 (stearic) | 5.1 |
C16:1 n7 (palmitoleic) | 5.4 |
C18:1 n9 (oleic) | 16.5 |
C20:1 n9 (eicosanoic) | 2.9 |
C18:2 n6 (linoleic) | 11.3 |
C18:3 n6 (γ- linolenic) | 1.1 |
C18:3 n3 (α-linolenic) | 1.9 |
C18:4 n3 | 1.6 |
C20:4 n6 (arachidonic, ARA) | 0.7 |
C20:5 n3 (eicosapentaenoic, EPA) | 7.9 |
C22:5 n6 (docosapentaenoic, DPA) | 0.3 |
C22:5 n3 | 0.4 |
C22:6 n3 (docosahexaenoic, DHA) | 10.2 |
Origin | |||||
---|---|---|---|---|---|
ES (n = 25) | IRS (n = 25) | WF (n = 25) | SEM | p Value | |
Total body weight (g) | 292.65 | 325.90 | 347.97 | 32.54 | 0.655 |
Total body length (cm) | 30.77 B | 30.92 B | 32.64 A | 0.87 | 0.007 |
Fork length (cm) | 29.36 B | 29.45 B | 31.00 A | 0.94 | 0.004 |
Viscera (% of TBW) | 5.28 | 8.28 | 5.51 | 1.21 | 0.065 |
Relative profile | 22.27 b | 23.14 a | 22.31 b | 1.04 | 0.022 |
Cranial index | 26.84 A | 25.10 B | 26.58 A | 0.88 | 0.002 |
Condition factor | 1.15 B | 1.28 A | 1.17 B | 0.08 | 0.004 |
Carcass yield (%) | 94.72 A | 91.72 B | 94.49 A | 1.21 | 0.009 |
Edible yield (%) | 56.55 | 56.77 | 56.70 | 2.17 | 0.078 |
Origin | |||||
---|---|---|---|---|---|
ES (n = 25) | IRS (n = 25) | WF (n = 25) | SEM | p Value | |
Moisture | 77.33 A | 73.07 B | 76.75 A | 0.684 | 0.003 |
Crude Protein | 19.65 B | 21.39 A | 19.95 B | 0.145 | 0.008 |
Lipid | 1.23 B | 3.05 A | 1.04 B | 0.155 | 0.006 |
Ash | 1.50 B | 1.64 A | 1.46 B | 0.030 | 0.009 |
N free-extract | 0.60 b | 0.87 a | 0.95 a | 0.100 | 0.037 |
Origin | |||||
---|---|---|---|---|---|
ES (n = 25) | IRS (n = 25) | WF (n = 25) | SEM | p Value | |
C12:0 (lauric) | 0.07 ab | 0.06 b | 0.08 a | 0.01 | 0.034 |
C14:0 (myristic) | 4.04 B | 5.56 A | 2.23 C | 0.15 | 0.004 |
C15:0 (pentadecanoic) | 0.50 B | 0.56 b | 0.67 Aa | 0.03 | 0.003 |
C16:0 (palmitic) | 21.96 | 21.98 | 22.99 | 0.50 | 0.058 |
C17:0 (heptadecanoic) | 0.47 Bc | 0.55 b | 0.65 Aa | 0.02 | 0.001 |
C18:0 (stearic) | 4.93 B | 3.88 C | 6.65 A | 0.13 | 0.002 |
∑ SFA 1 | 31.98 | 32.60 | 33.27 | 0.66 | 0.087 |
C16:1 n9 | 0.69 C | 0.86 B | 0.97 A | 0.03 | 0.002 |
C16:1 n7 (palmitoleic) | 5.63 B | 7.20 A | 7.37 A | 0.19 | 0.006 |
C17:1 | 0.33 Bc | 0.46 b | 0.63 Aa | 0.04 | 0.002 |
C18:1 n9 (oleic) | 21.59 a | 20.24 b | 20.54 ab | 0.40 | 0.039 |
C18:1 n7 | 3.12 B | 3.22 B | 4.88 A | 0.07 | 0.005 |
C20:1 n9 (eicosanoic) | 3.47 B | 4.44 A | 1.41 C | 0.08 | 0.005 |
∑ MUFA 2 | 34.84 | 36.41 | 35.80 | 0.59 | 0.077 |
C18:2 n6 (linoleic) | 7.65 A | 5.06 B | 2.24 C | 0.20 | 0.007 |
C18:3n6 (γ-linolenic) | 0.53 B | 0.57 B | 0.75 A | 0.02 | 0.001 |
C18:3n3 (α-linolenic) | 1.01 | 0.90 | 0.78 | 0.10 | 0.082 |
C18:4n3 | 0.94 B | 1.68 A | 0.85 B | 0.09 | 0.003 |
C20:4 n6 (arachidonic) | 2.60 C | 3.70 B | 4.28 A | 0.14 | 0.006 |
C20:4 n3 | 1.00 A | 0.55 B | 0.52 B | 0.05 | 0.004 |
C20:5 n3 (eicosapentaenoic, EPA) | 5.61 c | 6.74 a | 6.09 b | 0.33 | 0.024 |
C22:5 n6 (docosapentaenoic, DPA) | 0.43B | 0.23 C | 1.05 A | 0.05 | 0.003 |
C22:5 n3 | 1.28 B | 1.14 B | 2.31 A | 0.09 | 0.004 |
C22:6 n3 (docosahexaenoic, DHA) | 12.13 a | 10.42 b | 12.05 a | 0.68 | 0.036 |
Total n-6 3 | 11.21 A | 9.54 B | 8.32 C | 1.06 | 0.008 |
Total n-3 4 | 21.97 | 21.45 | 22.61 | 0.19 | 0.084 |
∑ PUFA 5 | 33.18 | 30.98 | 30.93 | 1.11 | 0.102 |
∑ UFA 6 | 68.02 | 67.39 | 66.73 | 0.85 | 0.097 |
n-6/n-3 | 0.51 A | 0.45 B | 0.37 B | 0.04 | 0.009 |
A.I. 7 | 0.56 b | 0.66 a | 0.55 b | 0.05 | 0.045 |
T.I. 8 | 0.34 | 0.35 | 0.35 | 0.01 | 0.061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarricone, S.; Caputi Jambrenghi, A.; Cagnetta, P.; Ragni, M. Wild and Farmed Sea Bass (Dicentrarchus Labrax): Comparison of Biometry Traits, Chemical and Fatty Acid Composition of Fillets. Fishes 2022, 7, 45. https://doi.org/10.3390/fishes7010045
Tarricone S, Caputi Jambrenghi A, Cagnetta P, Ragni M. Wild and Farmed Sea Bass (Dicentrarchus Labrax): Comparison of Biometry Traits, Chemical and Fatty Acid Composition of Fillets. Fishes. 2022; 7(1):45. https://doi.org/10.3390/fishes7010045
Chicago/Turabian StyleTarricone, Simona, Anna Caputi Jambrenghi, Prospero Cagnetta, and Marco Ragni. 2022. "Wild and Farmed Sea Bass (Dicentrarchus Labrax): Comparison of Biometry Traits, Chemical and Fatty Acid Composition of Fillets" Fishes 7, no. 1: 45. https://doi.org/10.3390/fishes7010045
APA StyleTarricone, S., Caputi Jambrenghi, A., Cagnetta, P., & Ragni, M. (2022). Wild and Farmed Sea Bass (Dicentrarchus Labrax): Comparison of Biometry Traits, Chemical and Fatty Acid Composition of Fillets. Fishes, 7(1), 45. https://doi.org/10.3390/fishes7010045