Nutritional and Growth Effect of Insect Meal Inclusion on Seabass (Dicentrarchuss labrax) Feeds
Abstract
:1. Introduction
2. Results
2.1. Nutritional and Growth Indices of Fish
2.2. Proximal Composition and Morphology of Fish
2.3. In Vitro Hydrolysis
3. Discussion
4. Materials and Methods
4.1. Diet Ingredients and Formulation
4.2. The D. Labrax Feeding Trial
4.3. Fish Performance Indices
4.4. Sampling
4.5. Analytical Methods
4.5.1. Chemical Composition of Diets and Fish
4.5.2. Enzymatic Extract
4.5.3. Alkaline Protease Activity
4.5.4. In Vitro Protein Hydrolysis
4.5.5. Soluble Protein
4.5.6. Free Amino Acids (OPA)
4.6. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramos-Elorduy, J.; Pino, J.M.; Correa, S.C. Insectos comestibles del Estado de México y determinación de su valor nutritivo. Ann. Inst. Biol. Ser. Zool. 1998, 69, 65–104. [Google Scholar]
- Barroso, F.G.; de Haro, C.; Sánchez-Muros, M.-J.; Venegas, E.; Martínez-Sánchez, A.; Pérez-Bañón, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422, 193–201. [Google Scholar] [CrossRef]
- Blonk, H.; Kool, A.; Luske, B. Milieueffecten van Nederlandse Consumptie van Eiwitrijke Producten (Environmental Effects of Dutch Consumption of Proteinrich Products); BMA/VROM: Gouda, The Netherlands, 2008. [Google Scholar]
- Sánchez-Muros, M.-J.; Barroso, F.G.; Manzano-Agugliaro, F. Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod. 2014, 65, 16–27. [Google Scholar] [CrossRef]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed. Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Nogales-Mérida, S.; Gobbi, P.; Józefiak, D.; Mazurkiewicz, J.; Dudek, K.; Rawski, M.; Kierończyk, B.; Józefiak, A. Insect meals in fish nutrition. Rev. Aquac. 2018, 11, 1080–1103. [Google Scholar] [CrossRef]
- Zheng, L.; Hou, Y.; Li, W.; Yang, S.; Li, Q.; Yu, Z. Exploring the potential of grease from yellow mealworm beetle (Tenebrio molitor) as a novel biodiesel feedstock. Appl. Energy 2013, 101, 618–621. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed. Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Veldkamp, T.; van Duinkerken, G.; van Huis, A.; Iakemond, C.M.M.; Ottevanger, E.; Bosch, G.; van Boekel, M.A.J.S. Insects as a Sustainable FeedIngredient in Pig and Poultry Diets A Feasibility Study; Report 638; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2012. [Google Scholar]
- Williams, J.; Williams, J.; Kirabo, A.; Chester, D.; Peterson, M. Nutrient Content and Health Benefits of Insects. In Insects as Sustainable Food Ingredients; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 61–84. [Google Scholar]
- Barroso, F.G.; Sánchez-Muros, M.J.; Rincón, M.Á; Rodriguez-Rodriguez, M.; Fabrikov, D.; Morote, E.; Guil-Guerrero, J.L. Production of n-3-rich insects by bioaccumulation of fishery waste. J. Food Compos. Anal. 2019, 82, 103237. [Google Scholar] [CrossRef]
- Secretaria de Nacional de Pesca Mercado de la lubina en España. Ministerio de Agriculuta, Alimentacion y Medio Ambiente. Available online: https://www.mapa.gob.es/es/pesca/temas/mercados-economia-pesquera/informe%20lubina%20nov%202014_tcm30-288722.pdf (accessed on 23 March 2020).
- Gasco, L.; Henry, M.; Piccolo, G.; Marono, S.; Gai, F.; Renna, M.; Lussiana, C.; Antonopoulou, E.; Mola, P.; Chatzifotis, S. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim. Feed. Sci. Technol. 2016, 220, 34–45. [Google Scholar] [CrossRef]
- Magalhães, R.; Sánchez-López, A.; Leal, R.S.; Llorens, S.M.; Oliva-Teles, A.; Peres, H. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 2017, 476, 79–85. [Google Scholar] [CrossRef]
- Lindsay, G.J.; Walton, M.; Adron, J.; Fletcher, T.C.; Cho, C.; Cowey, C. The growth of rainbow trout (Salmo gairdneri) given diets containing chitin and its relationship to chitinolytic enzymes and chitin digestibility. Aquaculture 1984, 37, 315–334. [Google Scholar] [CrossRef]
- Longvah, T.; Mangthya, K.; Ramulu, P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 2011, 128, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Matsumiya, M.; Mochizuki, A. Distribution of chitinase and -N-acetylhexosaminidase in the organs of several fishes. Fish. Sci. 1996, 62, 150–151. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Muros, M.; de Haro, C.; Sanz, A.; Trenzado, C.; Villareces, S.; Barroso, F.G. Nutritional evaluation ofTenebrio molitormeal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquac. Nutr. 2015, 22, 943–955. [Google Scholar] [CrossRef]
- Piccolo, G.; Iaconisi, V.; Marono, S.; Gasco, L.; Loponte, R.; Nizza, S.; Bovera, F.; Parisi, G. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Anim. Feed. Sci. Technol. 2017, 226, 12–20. [Google Scholar] [CrossRef]
- Papadopoulos, M.C.; el Boushy, A.; Roodbeen, A.; Ketelaars, E. Effects of processing time and moisture content on amino acid composition and nitrogen characteristics of feather meal. Anim. Feed. Sci. Technol. 1986, 14, 279–290. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J. Energy Supplied by Edible Insects from Mexico and their Nutritional and Ecological Importance. Ecol. Food Nutr. 2008, 47, 280–297. [Google Scholar] [CrossRef]
- Kouba, M.; Mourot, J. A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochimie 2011, 93, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Barroso, F.G.; Sánchez-Muros, M.-J.; Segura, M.; Morote, E.; Torres, A.; Ramos, R.; Guil, J.-L. Insects as food: Enrichment of larvae of Hermetia illucens with omega 3 fatty acids by means of dietary modifications. J. Food Compos. Anal. 2017, 62, 8–13. [Google Scholar] [CrossRef]
- St-Hilaire, S.; Sheppard, C.; Tomberlin, J.K.; Irving, S.; Newton, L.; A McGuire, M.; E Mosley, E.; Hardy, R.W.; Sealey, W. Fly Prepupae as a Feedstuff for Rainbow Trout, Oncorhynchus mykiss. J. World Aquac. Soc. 2007, 38, 59–67. [Google Scholar] [CrossRef]
- Kroeckel, S.; Harjes, A.-G.; Roth, I.; Katz, H.; Wuertz, S.; Susenbeth, A.; Schulz, C. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 2012, 364, 345–352. [Google Scholar] [CrossRef]
- Skalli, A.; Robin, J.H. Requirement of n-3 long chain polyunsaturated fatty acids for European sea bass (Dicentrarchus labrax) juveniles: Growth and fatty acid composition. Aquaculture 2004, 240, 399–415. [Google Scholar] [CrossRef] [Green Version]
- Stadtlander, T.; Stamer, A.; Buser, A.; Wohlfahrt, J.; Leiber, F.; Sandrock, C. Hermetia illucens meal as fish meal replacement for rainbow trout on farm. J. Insects Food Feed. 2017, 3, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Karapanagiotidis, I.T.; Daskalopoulou, E.; Vogiatzis, I.; Rumbos, C.; Mente, E.; Athanassiou, C.G. Substitution of fishmeal by fly Hermetia illucens prepupae meal in the diet of gilthead seabream (Sparus aurata). HydroMedit 2014, 110–114. [Google Scholar]
- Lock, E.; Arsiwalla, T.; Waagbø, R. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr. 2015, 22, 1202–1213. [Google Scholar] [CrossRef]
- Sealey, W.M.; Gaylord, G.; Barrows, F.T.; Tomberlin, J.K.; McGuire, M.A.; Ross, C.; St-Hilaire, S. Sensory Analysis of Rainbow Trout, Oncorhynchus mykiss, Fed Enriched Black Soldier Fly Prepupae, Hermetia illucens. J. World Aquac. Soc. 2011, 42, 34–45. [Google Scholar] [CrossRef]
- Newton, G.L.; Sheppard, D.C.; Watson, D.W.; Burtle, G.J.; Dove, C.R.; Tomberlin, J.K.; Thelen, E.E. The Black Soldier fly, Hermetia Illucens as a Manure Management/Resource Recovery Tool. In Proceedings of the Symposium on the State of the Science of Animal Manure and Waste Management, San Antonio, TX, USA, 5–7 January 2005. [Google Scholar]
- Ekpo, K.E. Effect of processing on the protein quality of four popular insects consumed in Southern Nigeria. Arch. Appl. Sci. Res. 2011, 3, 307–326. [Google Scholar]
- Finot, P.A. Influence of processing on the nutritional value of proteins. Plant Foods Hum. Nutr. 1983, 32, 439–453. [Google Scholar] [CrossRef]
- Womeni, H.M.; Tiencheu, B.; Linder, M.; Martial, E.; Nabayo, C.; Tenyang, N.; Mbiapo, F.T.; Villeneuve, P.; Fanni, J.; Parmentier, M. Nutritional value and effect of cooking, drying and storage process on some functional properties of Rhynchophorus phoenicis. Int. J. Life Sci. Pharma Res. 2012, 2, 203–219. [Google Scholar]
- Vidanarachchi, J.; Kurukulasuriya, M.; Kim, S.-K. Chitin, Chitosan, and Their Oligosaccharides and Their 36 Derivatives; Kim, S.K., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 543–560. [Google Scholar]
- Schiavone, A.; de Marco, M.; Rotolo, L.; Belforti, M.; Martinez Mirò, S.; Madrid Sanchez, J.; Hernandez Ruiperez, F.; Bianchi, C.; Sterpone, L.; Malfatto, V.; et al. Digestibility of Hermetia illucens and Tenebrio molitor meal in broiler chickens. In Proceedings of the 1st International Conference Insects to Feed the World, Wageningen, The Netherlands, 14–17 May 2014. [Google Scholar]
- Bovera, F.; Piccolo, G.; Gasco, L.; Marono, S.; Loponte, R.; Vassalotti, G.; Mastellone, V.; Lombardi, P.; Attia, Y.A.; Nizza, A. Yellow mealworms larvae (Tenebrio molitor, L.) as protein source for broilers: Effects on growth performance and blood profiles. Brit. Poultry Sci. 2015, 56, 569–575. [Google Scholar]
- Stefania Marono Dipartimento di Medicina Veterinaria e Produzioni Animali University of Napoli Federico II Italy; Attia, Y.A.; Nizza, A. In Vitro Crude Protein Digestibility of Tenebrio Molitor and Hermetia Illucens Insect Meals and its Correlation with Chemical Composition Traits. Ital. J. Anim. Sci. 2015, 14, 3889. [Google Scholar] [CrossRef] [Green Version]
- Belghit, I.; Liland, N.S.; Waagbø, R.; Biancarosa, I.; Pelusio, N.; Li, Y.; Krogdahl, Å; Lock, E.J. Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture 2018, 491, 72–81. [Google Scholar] [CrossRef]
- Belforti, M.; Gai, F.; Lussiana, C.; Renna, M.; Malfatto, V.; Rotolo, L.; De Marco, M.; Dabbou, S.; Schiavone, A.; Zoccarato, I.; et al. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: Effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital. J. Anim. Sci. 2015, 14, 4170. [Google Scholar] [CrossRef] [Green Version]
- Ohia Athletic Conference (OAC). Official Methods of Analysis of the Association of Official Analytical Chemists International; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Vizcaíno, A.; Sáez, M.; Martínez, T.; Acién, F.; Alarcón, F.J. Differential hydrolysis of proteins of four microalgae by the digestive enzymes of gilthead sea bream and Senegalese sole. Algal Res. 2019, 37, 145–153. [Google Scholar] [CrossRef]
- Church, F.C.; Swaisgood, H.E.; Porter, D.H.; Catignani, G. Spectrophotometric assay using o-phthaldehyde for determination of proteolysis in milk proteins. J. Dairy Sci. 1983, 66, 1219–1227. [Google Scholar] [CrossRef]
Diets | SGR | FCE | FI % | DGC | FCR | K | PER | WG (g) |
---|---|---|---|---|---|---|---|---|
C | 1.88 ± 0.02 a | 0.56 ± 0.01 b | 3.12 ± 0.07 a | 1.61 ± 0.04 a | 1.77 ± 0.02 c | 162.26 ± 2.85 a | 1.25 ± 0.02 b | 16.10 ± 0.74 a |
YW50 | 1.64 ± 0.02 b | 0.56 ± 0.01 b | 2.76 ± 0.08 b | 1.38 ± 0.02 b | 1.78 ± 0.03 c | 153.00 ± 4.03 a,b | 1.25 ± 0.02 b | 13.15 ± 0.48 b |
BSF30 | 1.52 ± 0.05 b | 0.49 ± 0.04 b | 2.94 ± 0.15 ab | 1.26 ± 0.07 b | 2.03 ± 0.17 c | 146.48 ± 8.74 b,c | 1.10 ± 0.09 b | 11.78 ± 1.19 b |
BSF50 | 0.95 ± 0.15 c | 0.31 ± 0.04 c | 3.06 ± 0.05 a | 0.76 ± 0.12 c | 3.31 ± 0.42 a | 126.26 ± 3.41 d | 0.68 ± 0.09 c | 6.36 ± 1.15 c |
BSF50 m | 1.16 ± 0.13 c | 0.38 ± 0.02 c | 2.99 ± 0.16 ab | 0.94 ± 0.13 c | 2.67 ± 0.14 b | 134.94 ± 7.58 c,d | 0.84 ± 0.05 c | 8.32 ± 1.51 c |
C | YW50 | BSF30 | BSF50 | BSF50m | |
---|---|---|---|---|---|
Dry matter (%) | 98.3 ± 0.29 | 97.6 ± 1.25 | 96.7 ± 1.80 | 97.2 ± 1.21 | 97.5 ± 0.81 |
Ash (%) | 11.4 ± 0.08 | 11.0 ± 0.76 | 12.3 ± 0.83 | 11.6 ± 0.82 | 11.3 ± 1.11 |
Organic matter (%) | 88.6 ± 0.13 | 89.0 ± 0.76 | 87.7 ± 0.83 | 88.4 ± 0.82 | 88.7 ± 1.11 |
Crude fat (%) | 21.3 ± 0.69 | 17.6 ± 3.21 | 20.4 ± 3.79 | 16.1 ± 1.53 | 17.3 ± 0.66 |
Crude protein (Nx6.25; %) | 68.0 ± 4.01 | 71.7 ± 4.93 | 69.3 ± 3.71 | 69.6 ± 4.23 | 72.5 ± 0.36 |
Diets | Fillet | Digestive | Liver | Visceral Fat |
---|---|---|---|---|
C | 25.16 ± 0.79 a | 0.98 ± 0.06 | 0.55 ± 0.03 a | 1.97 ± 0.39 a |
YW50 | 19.66 ± 2.37 b | 0.83 ± 0.12 | 0.38 ± 0.02 a,b,c | 1.61 ± 0.28 a,b |
BSF30 | 19.55 ± 2.55 b | 0.90 ± 0.15 | 0.45 ± 0.11 a,b | 1.20 ± 0.14 b,c |
BSF50 | 17.72 ± 2.16 b | 0.90 ± 0.09 | 0.31 ± 0.10 b,c | 0.75 ± 0.32 c |
BSF50m | 15.25 ± 2.38 b | 0.78 ± 0.05 | 0.30 ± 0.06 c | 0.69 ± 0.13 c |
Treatments | End Point (120′) |
---|---|
Control | 159.2 ± 2.9 a |
YW50 | 155.5 ± 1.4 a,b |
BSF30 | 122.8 ± 7.8 b,c |
BSF50 | 114.3 ± 14.5 c |
BSF50M | 150.2 ± 10.6 a,b |
C | YW50 | BSF30 | BSF50 | BSF50m | |
---|---|---|---|---|---|
Ingredients (% DM) | |||||
Fish meal | 35.9 | 18.0 | 25.3 | 18.0 | 18.0 |
BSF | 0.0 | 0.0 | 10.9 | 18.0 | 0.0 |
BSFm | 0.0 | 0.0 | 0.0 | 0.0 | 18.0 |
YW | 0.0 | 18.0 | 0.0 | 0.0 | 0.0 |
Wheat gluten | 10.5 | 11.9 | 13.0 | 15.4 | 15.0 |
Soy cake | 15.5 | 17.0 | 17.5 | 18.3 | 18.3 |
Fish oil | 12.2 | 9.0 | 10.4 | 9.5 | 9.7 |
Soy lecithin | 1.3 | 0.5 | 1.0 | 0.5 | 0.5 |
Wheat flour | 16.6 | 17.6 | 13.9 | 12.4 | 12.6 |
Vitamins and minerals | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Guar gum | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Hemoglobin powder | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
Gross energy (MJ/kg) | 16.8 | 17.0 | 16.7 | 16.5 | 16.6 |
Proximate composition (% DM) | |||||
Crude protein | 43.86 | 43.1 | 43.51 | 42.8 | 42.85 |
Crude fat | 17.16 | 17.97 | 17.6 | 17.12 | 7.6 |
Ash | 7.42 | 6.28 | 6.45 | 6.94 | 6.11 |
YW | BSF | BSFm | |
---|---|---|---|
10:0 | n.d. | 1.10 | 1.11 |
12:0 | 0.67 | 48.5 | 46.1 |
14:0 | 3.67 | 9.22 | 9.55 |
16:0 | 16.2 | 13.0 | 14.7 |
16:1n7 | 1.70 | 1.79 | 3.13 |
18:0 | 2.95 | 2.17 | 2.17 |
18:1n9 | 36.7 | 9.58 | 8.50 |
18:1n7 | n.d. | n.d. | 0.67 |
18:2n6 | 35.4 | 11.0 | 7.58 |
18:3n3 | 1.41 | 1.10 | 1.06 |
18:4n3 | n.d. | 0.99 | 0.70 |
20:5n3 (EPA) | n.d. | n.d. | 2.87 |
22:6n3 (DHA) | n.d. | n.d. | 1.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes, M.; Rodríguez, M.; Montes, J.; Barroso, F.G.; Fabrikov, D.; Morote, E.; Sánchez-Muros, M.J. Nutritional and Growth Effect of Insect Meal Inclusion on Seabass (Dicentrarchuss labrax) Feeds. Fishes 2020, 5, 16. https://doi.org/10.3390/fishes5020016
Reyes M, Rodríguez M, Montes J, Barroso FG, Fabrikov D, Morote E, Sánchez-Muros MJ. Nutritional and Growth Effect of Insect Meal Inclusion on Seabass (Dicentrarchuss labrax) Feeds. Fishes. 2020; 5(2):16. https://doi.org/10.3390/fishes5020016
Chicago/Turabian StyleReyes, María, María Rodríguez, Juan Montes, Fernando G. Barroso, Dmitri Fabrikov, Elvira Morote, and María José Sánchez-Muros. 2020. "Nutritional and Growth Effect of Insect Meal Inclusion on Seabass (Dicentrarchuss labrax) Feeds" Fishes 5, no. 2: 16. https://doi.org/10.3390/fishes5020016
APA StyleReyes, M., Rodríguez, M., Montes, J., Barroso, F. G., Fabrikov, D., Morote, E., & Sánchez-Muros, M. J. (2020). Nutritional and Growth Effect of Insect Meal Inclusion on Seabass (Dicentrarchuss labrax) Feeds. Fishes, 5(2), 16. https://doi.org/10.3390/fishes5020016