Taurine Enhances Antioxidant Enzyme Activity and Immune Response in Seriola rivoliana Juveniles After Lipopolysaccharide Injection
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Previous Nutritional Trial
2.3. LPS Challenge
2.4. Sampling
2.5. Biochemical Analyses
2.5.1. SOD Activity
2.5.2. Catalase Activity
2.5.3. Lysozyme Activity
2.5.4. Protein Determination
2.6. Molecular Analysis
2.6.1. RNA Extraction
2.6.2. DNase Treatment
2.6.3. cDNA Synthesis
2.6.4. RT-qPCR
2.7. Statistical Analysis
3. Results
3.1. Enzyme Activity
3.2. Immune System Gene Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramos-Pinto, L.; Machado, M.; Calduch-Giner, J.; Pérez-Sánchez, J.; Dias, J.; Conceição, L.E.C.; Silva, T.S.; Costas, B. Dietary Histidine, Threonine, or Taurine Supplementation Affects Gilthead Seabream (Sparus aurata) Immune Status. Animals 2021, 11, 1193. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Choubey, A.K.; Srivastava, P.K. The Effects of Dietary Immunostimulants on the Innate Immune Response of Indian Major Carp: A Review. Fish Shellfish Immunol. 2022, 123, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Contreras, Á.; Teles, A.; Salas-Leiva, J.S.; Chaves-Pozo, E.; Tovar-Ramírez, D. Feed Additives in Aquaculture. In Sustainable Use of Feed Additives in Livestock; Arsenos, G., Giannenas, I., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 811–846. ISBN 978-3-031-42854-8. [Google Scholar]
- Salze, G.P.; Davis, D.A. Taurine: A Critical Nutrient for Future Fish Feeds. Aquaculture 2015, 437, 215–229. [Google Scholar] [CrossRef]
- Sampath, W.W.H.A.; Rathnayake, R.M.D.S.; Yang, M.; Zhang, W.; Mai, K. Roles of Dietary Taurine in Fish Nutrition. Mar. Life Sci. Technol. 2020, 2, 360–375. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Li, R.; Deng, S.; Qin, Q.; Ran, C.; Hao, Y.; Zhang, J.; Zhu, L. Mechanism of Taurine Reducing Inflammation and Organ Injury in Sepsis Mice. Cell. Immunol. 2022, 375, 104503. [Google Scholar] [CrossRef]
- Peng, L.; Li, D.; Yang, D.; Peng, B. Taurine Promotes Oreochromis niloticus Survival against Edwardsiella Tarda Infection. Fish Shellfish Immunol. 2022, 129, 137–144. [Google Scholar] [CrossRef]
- Aragão, C.; Gonçalves, A.T.; Costas, B.; Azeredo, R.; Xavier, M.J.; Engrola, S. Alternative Proteins for Fish Diets: Implications beyond Growth. Animals 2022, 12, 1211. [Google Scholar] [CrossRef]
- Yan, L.; Feng, L.; Jiang, W.; Wu, P.; Liu, Y.; Jiang, J.; Tang, L.; Tang, W.; Zhang, Y.; Yang, J.; et al. Dietary Taurine Supplementation to a Plant Protein Source-based Diet Improved the Growth and Intestinal Immune Function of Young Grass Carp (Ctenopharyngodon idella). Aquac. Nutr. 2019, 25, 873–896. [Google Scholar] [CrossRef]
- Gunathilaka, G.L.B.E.; Kim, M.-G.; Lee, C.; Shin, J.; Lee, B.-J.; Lee, K.-J. Effects of Taurine Supplementation in Low Fish Meal Diets for Red Seabream (Pagrus major) in Low Water Temperature Season. Fish Aquatic Sci. 2019, 22, 23. [Google Scholar] [CrossRef]
- Han, H.; Zhang, J.; Chen, Y.; Shen, M.; Yan, E.; Wei, C.; Yu, C.; Zhang, L.; Wang, T. Dietary Taurine Supplementation Attenuates Lipopolysaccharide-Induced Inflammatory Responses and Oxidative Stress of Broiler Chickens at an Early Age. J. Anim. Sci. 2020, 98, skaa311. [Google Scholar] [CrossRef]
- Holen, E.; Chen, M.; Fjelldal, P.G.; Skjærven, K.; Sissener, N.H.; Remø, S.; Prabhu, A.J.; Hamre, K.; Vikeså, V.; Subramanian, S.; et al. Tailoring Freshwater Diets towards Boosted Immunity and Pancreas Disease Infection Robustness in Atlantic Salmon Post Smolts. Fish Shellfish Immunol. 2022, 120, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhong, L.; Fan, Y.; Zhang, J.; Dai, J.; Zhong, H.; Fu, G.; Hu, Y. Taurine Inhibits Hydrogen Peroxide-Induced Oxidative Stress, Inflammatory Response and Apoptosis in Liver of Monopterus albus. Fish Shellfish Immunol. 2022, 128, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Cheong, S.H.; Lee, S.-H.; Jeon, Y.-J.; Lee, D.-S. Mussel (Mytilus coruscus) Water Extract Containing Taurine Prevents LPS-Induced Inflammatory Responses in Zebrafish Model. In Taurine 10; Advances in Experimental Medicine and Biology; Lee, D.-H., Schaffer, S.W., Park, E., Kim, H.W., Eds.; Springer: Dordrecht, The Netherlands, 2017; Volume 975, pp. 931–942. ISBN 978-94-024-1077-8. [Google Scholar]
- Kim, Y.-S.; Kim, E.-K.; Jeon, N.-J.; Ryu, B.-I.; Hwang, J.-W.; Choi, E.-J.; Moon, S.-H.; Jeon, B.-T.; Park, P.-J. Antioxidant Effect of Taurine-Rich Paroctopus Dofleini Extracts Through Inhibiting ROS Production Against LPS-Induced Oxidative Stress In Vitro and In Vivo Model. In Taurine 10; Advances in Experimental Medicine and Biology; Lee, D.-H., Schaffer, S.W., Park, E., Kim, H.W., Eds.; Springer: Dordrecht, The Netherlands, 2017; Volume 975, pp. 1165–1177. ISBN 978-94-024-1077-8. [Google Scholar]
- Angulo, M.; Reyes-Becerril, M.; Cepeda-Palacios, R.; Angulo, C. Oral Administration of Debaryomyces hansenii CBS8339-β-Glucan Induces Trained Immunity in Newborn Goats. Dev. Comp. Immunol. 2020, 105, 103597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, X.; Zhu, H.; Wang, Y.; Hou, Y.; Liu, Y. Dietary Fish Oil Supplementation Alters Liver Gene Expressions to Protect against LPS-Induced Liver Injury in Weanling Piglets. Innate Immun. 2019, 25, 60–72. [Google Scholar] [CrossRef]
- Park, B.S.; Lee, J.-O. Recognition of Lipopolysaccharide Pattern by TLR4 Complexes. Exp. Mol. Med. 2013, 45, e66. [Google Scholar] [CrossRef]
- Farhana, A.; Khan, Y.S. Biochemistry, Lipopolysaccharide; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Swain, P.; Nayak, S.; Nanda, P.; Dash, S. Biological Effects of Bacterial Lipopolysaccharide (Endotoxin) in Fish: A Review. Fish Shellfish Immunol. 2008, 25, 191–201. [Google Scholar] [CrossRef]
- Alves, A.P.D.C.; Paulino, R.R.; Pereira, R.T.; Costa, D.V.; Rosa, P.V. Nile Tilapia Fed Insect Meal: Growth and Innate Immune Response in Different Times under Lipopolysaccharide Challenge. Aquac. Res. 2021, 52, 529–540. [Google Scholar] [CrossRef]
- Li, Q. Polyunsaturated Fatty Acids Influence LPS-Induced Inflammation of Fish Macrophages Through Differential Modulation of Pathogen. Front. Immunol. 2020, 11, 559332. [Google Scholar]
- Giri, S.S.; Kim, H.J.; Kim, S.G.; Kim, S.W.; Kwon, J.; Lee, S.B.; Sukumaran, V.; Chang Park, S. Effectiveness of the Guava Leaf Extracts against Lipopolysaccharide-Induced Oxidative Stress and Immune Responses in Cyprinus carpio. Fish Shellfish Immunol. 2020, 105, 164–176. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Zhang, L.; Wu, J.; Wang, Y.; Yu, H. Taurine Alleviates Lipopolysaccharide-Induced Liver Injury by Anti-Inflammation and Antioxidants in Rats. Mol. Med. Rep. 2017, 16, 6512–6517. [Google Scholar] [CrossRef]
- Zhu, X.; Li, M.; Liu, X.; Xia, C.; Niu, X.; Wang, G.; Zhang, D. Effects of Dietary Astaxanthin on Growth, Blood Biochemistry, Antioxidant, Immune and Inflammatory Response in Lipopolysaccharide-challenged Channa argus. Aquac. Res. 2020, 51, 1980–1991. [Google Scholar] [CrossRef]
- Biller, J.D.; Polycarpo, G.D.V.; Moromizato, B.S.; Sidekerskis, A.P.D.; Silva, T.D.D.; Reis, I.C.D.; Fierro-Castro, C. Lysozyme Activity as an Indicator of Innate Immunity of Tilapia (Oreochromis niloticus) When Challenged with LPS and Streptococcus agalactiae. Rev. Bras. Zootec. 2021, 50, e20210053. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Mandiki, S.N.M.; Salomon, J.M.A.J.; Baruti, J.B.; Thi, N.T.T.; Nguyen, T.H.; Nhu, T.Q.; Kestemont, P. Pro- and Anti-Inflammatory Responses of Common Carp Cyprinus carpio Head Kidney Leukocytes to E. coli LPS as Modified by Different Dietary Plant Oils. Dev. Comp. Immunol. 2021, 114, 103828. [Google Scholar] [CrossRef]
- Guzmán-Villanueva, L.T.; Ascencio-Valle, F.; Macías-Rodríguez, M.E.; Tovar-Ramírez, D. Effects of Dietary β-1,3/1,6-Glucan on the Antioxidant and Digestive Enzyme Activities of Pacific Red Snapper (Lutjanus peru) after Exposure to Lipopolysaccharides. Fish Physiol. Biochem. 2014, 40, 827–837. [Google Scholar] [CrossRef]
- Saravia, J.; Paschke, K.; Pontigo, J.P.; Nualart, D.; Navarro, J.M.; Vargas-Chacoff, L. Effects of Temperature on the Innate Immune Response on Antarctic and Sub-Antarctic Fish Harpagifer antarcticus and Harpagifer bispinis Challenged with Two Immunostimulants, LPS and Poly I:C: In Vivo and In Vitro Approach. Fish Shellfish Immunol. 2022, 130, 391–408. [Google Scholar] [CrossRef]
- Mazón-Suástegui, J.; Salas-Leiva, J.; Teles, A.; Tovar-Ramírez, D. Immune and Antioxidant Enzyme Response of Longfin Yellowtail (Seriola rivoliana) Juveniles to Ultra-Diluted Substances Derived from Phosphorus, Silica and Pathogenic Vibrio. Homeopathy 2019, 108, 43–53. [Google Scholar] [CrossRef]
- Hernández-López, I.A.; Tovar-Ramírez, D.; De La Rosa-García, S.; Álvarez-Villagómez, C.S.; Asencio-Alcudia, G.G.; Martínez-Burguete, T.; Galaviz, M.A.; Guerrero-Zárate, R.; Martínez-García, R.; Peña-Marín, E.S.; et al. Dietary Live Yeast (Debaryomyces hansenii) Provides No Advantages in Tropical Gar, Atractosteus tropicus (Actinopterygii: Lepisosteiformes: Lepisosteidae), Juvenile Aquaculture. Acta Ichthyol. Piscat. 2021, 51, 311–320. [Google Scholar] [CrossRef]
- Asencio-Alcudia, G.G.; Sepúlveda-Quiroz, C.A.; Pérez-Urbiola, J.C.; Rodríguez-Jaramillo, M.D.C.; Teles, A.; Salas-Leiva, J.S.; Martínez-García, R.; Jiménez-Martínez, L.D.; Galaviz, M.; Tovar-Ramírez, D.; et al. Stress-Protective Role of Dietary α-Tocopherol Supplementation in Longfin Yellowtail (Seriola rivoliana) Juveniles. Fishes 2023, 8, 526. [Google Scholar] [CrossRef]
- Teles, A.; Alvarez-González, C.A.; Llera-Herrera, R.; Gisbert, E.; Salas-Leiva, J.; Del Carmen Rodríguez-Jaramillo, M.; Tovar-Ramírez, D. Debaryomyces hansenii CBS 8339 Promotes Larval Development in Seriola rivoliana. Aquaculture 2022, 560, 738587. [Google Scholar] [CrossRef]
- Percie Du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE Guidelines 2.0: Updated Guidelines for Reporting Animal Research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- Hernández-de Dios, M.A.; Tovar-Ramírez, D.; Maldonado-García, D.; Galaviz- Espinoza, M.A.; Barreto-Curiel, F.; Spanopoulos-Zarco, M.; Maldonado-García, M. Taurine Improves Juvenile Seriola rivoliana Growth Performance and Biochemical Profiles in Blood Serum and Skeletal Muscle. Lat. Am. J. Aquat. Res. 2024, 52, 443–458. [Google Scholar] [CrossRef]
- Johansson, L.H.; Håkan Borg, L.A. A Spectrophotometric Method for Determination of Catalase Activity in Small Tissue Samples. Anal. Biochem. 1988, 174, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.; Guđmundsdottir, B.K.; Magnadottir, B. Humoral Immune Parameters of Cultured Atlantic Halibut (Hippoglossus hippoglossus L.). Fish Shellfish Immunol. 2001, 11, 523–535. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Bañuelos-Vargas, I.; López, L.M.; Pérez-Jiménez, A.; Peres, H. Effect of Fishmeal Replacement by Soy Protein Concentrate with Taurine Supplementation on Hepatic Intermediary Metabolism and Antioxidant Status of Totoaba Juveniles (Totoaba macdonaldi). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2014, 170, 18–25. [Google Scholar] [CrossRef]
- Dehghani, R.; Oujifard, A.; Mozanzadeh, M.T.; Morshedi, V.; Bagheri, D. Effects of Dietary Taurine on Growth Performance, Antioxidant Status, Digestive Enzymes Activities and Skin Mucosal Immune Responses in Yellowfin Seabream, Acanthopagrus latus. Aquaculture 2020, 517, 734795. [Google Scholar] [CrossRef]
- Shi, Y.; Hu, Y.; Wang, Z.; Zhou, J.; Zhang, J.; Zhong, H.; Fu, G.; Zhong, L. The Protective Effect of Taurine on Oxidized Fish-Oil-Induced Liver Oxidative Stress and Intestinal Barrier-Function Impairment in Juvenile Ictalurus punctatus. Antioxidants 2021, 10, 1690. [Google Scholar] [CrossRef]
- Tan, X.; Sun, Z.; Zhu, X.; Ye, C. Dietary Supplementation with Taurine Improves Ability to Resist Ammonia Stress in Hybrid Snakehead (Channa maculatus ♀ × Channa argus ♂). Aquac. Res. 2018, 49, 3400–3410. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Guo, Z.-X.; Wang, A.-L. The Protective Effects of Taurine on Oxidative Stress, Cytoplasmic Free-Ca2+ and Apoptosis of Pufferfish (Takifugu obscurus) under Low Temperature Stress. Fish Shellfish Immunol. 2018, 77, 457–464. [Google Scholar] [CrossRef]
- Li, M.; Lai, H.; Li, Q.; Gong, S.; Wang, R. Effects of Dietary Taurine on Growth, Immunity and Hyperammonemia in Juvenile Yellow Catfish Pelteobagrus fulvidraco Fed All-Plant Protein Diets. Aquaculture 2016, 450, 349–355. [Google Scholar] [CrossRef]
- Liu, J.-X.; Guo, H.-Y.; Zhu, K.-C.; Liu, B.-S.; Zhang, N.; Zhang, D.-C. Effects of Exogenous Taurine Supplementation on the Growth, Antioxidant Capacity, Intestine Immunity, and Resistance against Streptococcus agalactiae in Juvenile Golden Pompano (Trachinotus ovatus) Fed with a Low-Fishmeal Diet. Front. Immunol. 2022, 13, 1036821. [Google Scholar] [CrossRef] [PubMed]
- Magnadóttir, B. Innate Immunity of Fish (Overview). Fish Shellfish Immunol. 2006, 20, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Becerril, M.; Guluarte, C.; Ceballos-Francisco, D.; Angulo, C.; Esteban, M.Á. Dietary Yeast Sterigmatomyces halophilus Enhances Mucosal Immunity of Gilthead Seabream (Sparus aurata L.). Fish Shellfish Immunol. 2017, 64, 165–175. [Google Scholar] [CrossRef]
- Rodriguez, M.F.; Wiens, G.D.; Purcell, M.K.; Palti, Y. Characterization of Toll-like Receptor 3 Gene in Rainbow Trout (Oncorhynchus mykiss). Immunogenetics 2005, 57, 510–519. [Google Scholar] [CrossRef]
- Herrero, M.J. ABC de los «Toll-like receptors»: Relación con el desarrollo y progresión de enfermedades autoinmunes. Semin. Fund. Española Reumatol. 2010, 11, 135–143. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, C.; Wang, C.; Fan, S.; Yan, L.; Qiu, L. TLR3 Gene in Japanese Sea Perch (Lateolabrax japonicus): Molecular Cloning, Characterization and Expression Analysis after Bacterial Infection. Fish Shellfish Immunol. 2018, 76, 347–354. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, J.; Zhao, Y.; Ma, X.; Yi, H. Toll-like Receptor 3 (TLR3) Regulation Mechanisms and Roles in Antiviral Innate Immune Responses. J. Zhejiang Univ. Sci. B 2021, 22, 609–632. [Google Scholar] [CrossRef]
- Zhang, X.-T.; Zhang, G.-R.; Shi, Z.-C.; Yuan, Y.-J.; Zheng, H.; Lin, L.; Wei, K.-J.; Ji, W. Expression Analysis of Nine Toll-like Receptors in Yellow Catfish (Pelteobagrus fulvidraco) Responding to Aeromonas hydrophila Challenge. Fish Shellfish Immunol. 2017, 63, 384–393. [Google Scholar] [CrossRef]
- De Pablo Sánchez, R.; Monserrat Sanz, J.; Prieto Martín, A.; Reyes Martín, E.; Álvarez De Mon Soto, M.; Sánchez García, M. Balance entre citocinas pro y antiinflamatorias en estados sépticos. Med. Intensiv. 2005, 29, 151–158. [Google Scholar] [CrossRef]
- Angulo, M.; Reyes-Becerril, M.; Tovar-Ramírez, D.; Ascencio, F.; Angulo, C. Debaryomyces hansenii CBS 8339 β-Glucan Enhances Immune Responses and down-Stream Gene Signaling Pathways in Goat Peripheral Blood Leukocytes. Dev. Comp. Immunol. 2018, 88, 173–182. [Google Scholar] [CrossRef]
Gene | Function | Primer Sequences (5′-3′) | Amplicon Size (bp) |
---|---|---|---|
marco | Scavenger receptor | Fw: GACTCAGTGGACAACGTGG Rv: GTCTCCTTTGTCTCCTTTG | 220 |
il-10 | Anti-inflammatory cytokine | Fw: ACAGTGGTATCAGGGATCCTCA Rv: CCGACTGTGTAGGGTATGACTG | 155 |
il-1β | Proinflammatory cytokine | Fw: AGCCAGCAGAGACACTTAG Rv: TGGGTAAAGGTGGCAAGTAG3 | 124 |
tnf-α | Proinflammatory cytokine | Fw: TTCATGCCTCTTAGCCACAGG Rv: CTCCGTCCGTCTCTGTAACTG | 131 |
myd-88 | Signaling molecule stimulator | Fw: ATGAAGCGACGAAAAACCCC Rv: AAGACTGAAGATCCTCCACAATGTC | 135 |
tlr3 | Pattern recognition receptor | Fw: CAAATGTTACCAGATTGCCAAACC Rv: TTACCATCAGCATCGGGACAAC | 168 |
18s | 18S Ribosomal RNA (reference gene) | Fw: CTGAACTGGGGCCATGATTAAGAG Rv: GGTATCTGATCGTCGTCGAACCTC | 165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teles, A.; Guzmán-Villanueva, L.; Hernández-de Dios, M.A.; Corona-Rojas, D.A.; Maldonado-García, M.; Tovar-Ramírez, D. Taurine Enhances Antioxidant Enzyme Activity and Immune Response in Seriola rivoliana Juveniles After Lipopolysaccharide Injection. Fishes 2025, 10, 225. https://doi.org/10.3390/fishes10050225
Teles A, Guzmán-Villanueva L, Hernández-de Dios MA, Corona-Rojas DA, Maldonado-García M, Tovar-Ramírez D. Taurine Enhances Antioxidant Enzyme Activity and Immune Response in Seriola rivoliana Juveniles After Lipopolysaccharide Injection. Fishes. 2025; 10(5):225. https://doi.org/10.3390/fishes10050225
Chicago/Turabian StyleTeles, Andressa, Laura Guzmán-Villanueva, Marco A. Hernández-de Dios, Daniela A. Corona-Rojas, Minerva Maldonado-García, and Dariel Tovar-Ramírez. 2025. "Taurine Enhances Antioxidant Enzyme Activity and Immune Response in Seriola rivoliana Juveniles After Lipopolysaccharide Injection" Fishes 10, no. 5: 225. https://doi.org/10.3390/fishes10050225
APA StyleTeles, A., Guzmán-Villanueva, L., Hernández-de Dios, M. A., Corona-Rojas, D. A., Maldonado-García, M., & Tovar-Ramírez, D. (2025). Taurine Enhances Antioxidant Enzyme Activity and Immune Response in Seriola rivoliana Juveniles After Lipopolysaccharide Injection. Fishes, 10(5), 225. https://doi.org/10.3390/fishes10050225