Short-Term Feeding with Hesperozygis ringens Essential Oil Modulates Transportation-Induced Physiological Responses in Colossoma macropomum
Abstract
1. Introduction
2. Materials and Methods
2.1. Oil Extraction
2.2. Study Location, Pre-Transport Conditions, and Animals
2.3. Zootechnical Performance: Pre-Transport Period
- ▪
- WG: Final weight − Initial weight;
- ▪
- DWG (g): Weight gain (g)/experiment time (days);
- ▪
- FCR: Total feed intake (g)/weight gain (g);
- ▪
- SGR (% day−1): 100 × (lnPf − lnPi)/interval between biometrics (days), where Pi is the initial weight, Pf is the final weight;
- ▪
- Survival (%): (final number of fish/initial number of fish) × 100.
2.4. Blood Analysis
- ▪
- MCV (fL) = (Hematocrit × 10)/(No. of erythrocytes (×106 μL−1));
- ▪
- MCH (pg) = (Hemoglobin concentration × 10/(No. of erythrocytes (×106 μL−1));
- ▪
- MCHC (g dL−1) = (Hemoglobin concentration × 100)/Hematocrit.
2.5. Viscerosomatic and Hepatosomatic Indices
- ▪
- HSI (%) = 100 × (liver weight (g)/body weight (g));
- ▪
- IC = intestine length (cm)/total fish length (cm);
- ▪
- VSI (%) = 100 × (visceral weight (g)/body weight (g)).
2.6. Transport Experiment
2.7. Statistical Analysis
3. Results
3.1. Pre-Transport Period
3.2. Transport Experiment Results
4. Discussion
4.1. Pre-Transport Period Performance
4.2. Transport Experiment Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Sharma, K.; Brotto, A.C.; Khanal, S.K. Nitrogen transformations in intensive aquaculture system and its implication to climate change through nitrous oxide emission. Bioresour. Technol. 2013, 130, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Oddsson, G.V. A Definition of Aquaculture Intensity Based on Production Functions—The Aquaculture Production Intensity Scale (APIS). Water 2020, 12, 765. [Google Scholar] [CrossRef]
- Crab, R.; Defoirdt, T.; Bossier, P.; Verstraete, W. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture 2012, 356–357, 351–356. [Google Scholar] [CrossRef]
- Lima, J.F.; Montagner, D.; Duarte, S.S.; Yoshioka, E.T.O.; Dias, M.K.R.; Tavares-Dias, M. Recirculating system using biological aerated filters on tambaqui fingerling farming. Pesq. Agropec. Bras. 2019, 54, e00294. [Google Scholar] [CrossRef]
- Ahmed, N.; Turchini, G.M. Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. J. Clean Prod. 2021, 297, 126604. [Google Scholar] [CrossRef]
- Lin, W.; Li, L.; Chen, J.; Li, D.; Hou, J.; Guo, H.; Shen, J. Long-term crowding stress causes compromised nonspecific immunity and increases apoptosis of spleen in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2018, 80, 540–545. [Google Scholar] [CrossRef]
- Lefrançois, C.; Claireaux, G.; Mercier, C.; Aubin, J. Effect of density on the routine metabolic expenditure of farmed rainbow trout (Oncorhynchus mykiss). Aquaculture 2001, 195, 269–277. [Google Scholar] [CrossRef]
- Coyle, S.D.; Durborow, R.M.; Tidwell, J.H. Anesthetics in Aquaculture; Southern Regional Aquaculture Center Publication: College Station, TX, USA, 2004; Volume 3900, pp. 1–6. [Google Scholar]
- Ross, L.G.; Ross, B. Anaesthetic and Sedative Techniques for Aquatic Animals, 3rd ed.; Blackwell Publishing: Scotland, UK, 2008; ISBN 978-1-4051-4938-9. [Google Scholar]
- Jerez-Cepa, I.; Ruiz-Jarabo, I. Physiology: An important tool to assess the welfare of aquatic animals. Biology 2021, 10, 61. [Google Scholar] [CrossRef]
- Manuel, R.; Boerrigter, J.; Roques, J.; van der Heul, J.; van den Bos, R.; Flik, G.; van de Vis, H. Stress in African catfish (Clarias gariepinus) following overland transportation. Fish Physiol. Biochem. 2014, 40, 33–44. [Google Scholar] [CrossRef]
- Santos, E.L.R.; Rezende, F.P.; Moron, S.E. Stress-related physiological and histological responses of tambaqui (Colossoma macropomum) to transportation in water with tea tree and clove essential oil anesthetics. Aquaculture 2020, 523, 735164. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Yin, T.; You, J.; Liu, R.; Huang, Q.; Shi, L.; Wang, L.; Liao, T.; Wang, W.; et al. Recent understanding of stress response on muscle quality of fish: From the perspective of industrial chain. Trends Food Sci. Technol. 2023, 140, 104145. [Google Scholar] [CrossRef]
- Nair, V.R.; Parvathy, U.; Jithin, T.J.; Binsi, P.K.; Ravishankar, C.N. Live transportation of food fishes: Current scenario and future prospects. Curr. Sci. 2023, 124, 418–425. [Google Scholar] [CrossRef]
- Luz, R.K.; Favero, G.C. Use of salt, anesthetics, and stocking density in transport of live fish: A review. Fishes 2024, 9, 286. [Google Scholar] [CrossRef]
- Lim, L.C.; Dhert, P.; Sorgeloos, P. Recent developments and improvements in ornamental fish packaging systems for air transport. Aquac. Res. 2003, 34, 923–935. [Google Scholar] [CrossRef]
- Karpiński, T.M. Essential oils of Lamiaceae family plants as antifungals. Biomolecules 2020, 10, 103. [Google Scholar] [CrossRef]
- Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef]
- Zhu, F. A review on the application of herbal medicines in the disease control of aquatic animals. Aquaculture 2020, 526, 735422. [Google Scholar] [CrossRef]
- Biswal, A.; Srivastava, P.P.; Pal, P.; Gupta, S.; Varghese, T.; Jayant, M. A multi-biomarker approach to evaluate the effect of sodium chloride in alleviating the long-term transportation stress of Labeo rohita fingerlings. Aquaculture 2021, 531, 735979. [Google Scholar] [CrossRef]
- Brandão, F.R.; Farias, C.F.S.; Souza, D.C.M.; de Oliveira, M.I.B.; de Matos, L.V.; Majolo, C.; de Oliveira, M.R.; Chaves, F.C.M.; O’Sullivan, F.L.A.; Chagas, E.C. Anesthetic potential of the essential oils of Aloysia triphylla, Lippia sidoides and Mentha piperita for Colossoma macropomum. Aquaculture 2021, 534, 736275. [Google Scholar] [CrossRef]
- Oliveira, I.C.; Oliveira, R.S.M.; Lemos, C.H.D.; Pereira, L.R.; Santana, F.M.S.; Albinati, R.C.B.; Almeida, A.P. Essential oils from Cymbopogon citratus and Lippia sidoides in the anesthetic induction and transport of ornamental fish Pterophyllum scalare. Fish Physiol. Biochem. 2022, 48, 501–519. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.; Yiap, B.C.; Ping, H.C.; Lim, S.H. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef]
- Boijink, C.L.; Queiroz, C.A.; Chagas, E.C.; Chaves, F.C.M.; Inoue, L.A.K. Anesthetic and anthelminthic effects of clove basil (Ocimum gratissimum) essential oil for tambaqui (Colossoma macropomum). Aquaculture 2016, 457, 24–28. [Google Scholar] [CrossRef]
- Bandeira-Junior, G.; Pês, T.S.; Saccol, E.M.; Sutili, F.J.; Rossi, W., Jr.; Murari, A.L.; Heinzmann, B.M.; Pavanato, M.A.; de Vargas, A.C.; Silva, L.L.; et al. Potential uses of Ocimum gratissimum and Hesperozygis ringens essential oils in aquaculture. Ind. Crops Prod. 2017, 97, 484–491. [Google Scholar] [CrossRef]
- Bento, M.H.L.; Ouwehand, A.C.; Tiihonen, K.; Lahtinen, S.; Nurminen, P.; Saarinen, M.T.; Schulze, H.; Mygind, T.; Fischer, J. Essential oils and their use in animal feeds for monogastric animals—Effects on feed quality, gut microbiota, growth performance and food safety: A review. Vet. Med. 2013, 58, 449–458. [Google Scholar] [CrossRef]
- Aydin, B.; Barbas, L.A.L. Sedative and anesthetic properties of essential oils and their active compounds in fish: A review. Aquaculture 2020, 520, 734999. [Google Scholar] [CrossRef]
- Miura, P.T.; Queiroz, S.C.N.; Jonsson, C.M.; Chagas, E.C.; Chaves, F.C.M.; Reyes, F.G. Study of the chemical composition and ecotoxicological evaluation of essential oils in Daphnia magna with potential use in aquaculture. Aquac. Res. 2021, 52, 3415–3424. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; El Basuini, M.F.; Zaineldin, A.I.; Yilmaz, S.; Hasan, M.T.; Ahmadifar, E.; El Asely, A.M.; Abdel-Latif, H.M.R.; Alagawany, M.; Abu-Elala, N.M.; et al. Antiparasitic and antibacterial functionality of essential oils: An alternative approach for sustainable aquaculture. Pathogens 2021, 10, 185. [Google Scholar] [CrossRef]
- Toni, C.; Becker, A.G.; Simões, L.N.; Pinheiro, C.G.; Silva, L.L.; Heinzmann, B.M.; Caron, B.O.; Baldisserotto, B. Fish anesthesia: Effects of the essential oils of Hesperozygis ringens and Lippia alba on the biochemistry and physiology of silver catfish (Rhamdia quelen). Fish Physiol. Biochem. 2014, 40, 701–714. [Google Scholar] [CrossRef]
- Ferreira, A.L.; dos Santos, F.A.C.; Souza, A.S.; Gonçalves, R.G.; Pedras, P.P.C.; Palheta, G.D.A.; Heinzmann, B.M.; Luz, R.K. Efficacy of Hesperozygis ringens essential oil as an anesthetic and for sedation of juvenile tambaqui (Colossoma macropomum) during simulated transport. Aquac. Int. 2022, 30, 1549–1561. [Google Scholar] [CrossRef]
- Ferreira, A.L.; Souza, A.D.S.; Santos, F.A.C.D.; Pinheiro, C.G.; Favero, G.C.; Heinzmann, B.M.; Baldisserotto, B.; Luz, R.K. Hesperozygis ringens essential oil as an anesthetic for Colossoma macropomum during biometric handling. Ciênc. Rural 2023, 53, e20220264. [Google Scholar] [CrossRef]
- Rosa, I.A.; Bianchini, A.E.; Bressan, C.A.; Ferrari, F.T.; Ariotti, K.; Mori, N.C.; Baldisserotto, B.; Heinzmann, B.M. Redox profile of silver catfish challenged with Aeromonas hydrophila and treated with hexane extract of Hesperozygis ringens (Benth.) Epling through immersion bath. An. Acad. Bras. Cienc. 2024, 96, e20230188. [Google Scholar] [CrossRef]
- Sönmez, A.Y.; Bilen, S.; Albayrak, M.; Yılmaz, S.; Biswas, G.; Hisar, O.; Yanık, T. Effects of dietary supplementation of herbal oils containing 1, 8-cineole, carvacrol or pulegone on growth performance, survival, fatty acid composition, and liver and kidney histology of rainbow trout (Oncorhynchus mykiss) fingerlings. Turkish J. Fish. Aquat. Sci. 2015, 15, 813–819. [Google Scholar] [CrossRef]
- Yousefi, M.; Adineh, H.; Ghadamkheir, M.; Hashemianfar, S.A.M.; Yilmaz, S. Effects of dietary Pennyroyal essential oil on growth performance, digestive enzymes’ activity, and stress responses of common carp, Cyprinus carpio. Aquac. Rep. 2023, 30, 101574. [Google Scholar] [CrossRef]
- Mirande, J.M. Phylogeny of the family Characidae (Teleostei: Characiformes): From characters to taxonomy. Neotrop. Ichthyol. 2010, 8, 385–568. [Google Scholar] [CrossRef]
- Amanajás, R.D.; Val, A.L. Thermal biology of tambaqui (Colossoma macropomum): General insights for aquaculture in a changing world. Rev. Aquac. 2023, 15, 480–490. [Google Scholar] [CrossRef]
- Valladão, G.M.R.; Gallani, S.U.; Pilarski, F. South American fish for continental aquaculture. Rev. Aquacult. 2018, 10, 351–369. [Google Scholar] [CrossRef]
- Val, A.L.; de Oliveira, A.M. Colossoma macropomum—A tropical fish model for biology and aquaculture. J. Exp. Zool. A Ecol. Integr. Physiol. 2021, 335, 761–770. [Google Scholar] [CrossRef]
- Santos, F.A.; Boaventura, T.P.; da Costa Julio, G.S.; Cortezzi, P.P.; Figueiredo, L.G.; Favero, G.C.; Palheta, G.D.A.; Luz, R.K. Growth performance and physiological parameters of Colossoma macropomum in a recirculating aquaculture system (RAS): Importance of stocking density and classification. Aquaculture 2021, 534, 736274. [Google Scholar] [CrossRef]
- Santos, F.A.C.; da Costa Julio, G.S.; Batista, F.S.; Miranda, L.N.L.; Pedras, P.P.C.; Luz, R.K. High stocking densities in the larviculture of Colossoma macropomum in a recirculating aquaculture system: Performance, survival and economic viability. Aquaculture 2022, 552, 738016. [Google Scholar] [CrossRef]
- Ananias, I.D.M.C.; Silva, S.D.S.; Santos, F.A.C.D.; Souza, A.D.S.; Magalhães, T.B.; Reis, P.A.R.; Boaventura, T.P.; Luz, R.K. Tambaqui production at different stocking densities in RAS: Growth and physiology. Fishes 2023, 9, 19. [Google Scholar] [CrossRef]
- Boaventura, T.P.; de Oliveira, C.G.; dos Santos, F.A.C.; de Oliveira Correia, R.; dos Santos Silva, S.; Souza, A.S.; Palheta, G.D.A.; Luz, R.K. Use of the essential oil of Thymus vulgaris (thyme) and its nanoemulsion as an anesthetic during the cultivation of tambaqui (Colossoma macropomum): Anesthesia induction and recovery curve, physiology, performance, and feed consumption. Aquac. Int. 2024, 32, 9375–9939. [Google Scholar] [CrossRef]
- Morais, I.S.; O’Sullivan, F.A. Biologia, habitat e cultivo do tambaqui Colossoma macropomum (CUVIER, 1816). Sci. Amaz. 2017, 6, 81–93. [Google Scholar]
- Silva, W.D.E.; Ferreira, A.L.; Neves, L.C.; Ferreira, N.S.; Palheta, G.D.A.; Takata, R.; Luz, R.K. Effects of stocking density on survival, growth and stress resistance of juvenile tambaqui (Colossoma macropomum) reared in a recirculating aquaculture system (RAS). Aquac. Int. 2021, 29, 609–621. [Google Scholar] [CrossRef]
- Santos, F.A.; Batista, F.S.; Souza, A.S.; Julio, G.S.; Favero, G.C.; Junior, J.F.; Luz, R.K. Growth performance and histomorphology of intestine, skin, gills and liver of juvenile Colossoma macropomum fed diets containing different levels of the essential oil of Nectandra grandiflora. Fishes 2023, 8, 509. [Google Scholar] [CrossRef]
- Chung, S.; Ribeiro, K.; Teixeira, D.V.; Copatti, C.E. Inclusion of essential oil from ginger in the diet improves physiological parameters of tambaqui juveniles (Colossoma macropomum). Aquaculture 2021, 543, 736934. [Google Scholar] [CrossRef]
- Ferreira, A.L.; Bonifácio, C.T.; Souza Silva, W.; Favero, G.C.; Takata, R.; Luz, R.K. Anesthesia with eugenol and menthol for juvenile Piaractus brachypomus (Cuvier, 1818): Induction and recovery times, ventilatory frequency and hematological and biochemical responses. Aquaculture 2021, 544, 737076. [Google Scholar] [CrossRef]
- Goldenfarb, P.B.; Bowyer, F.P.; Hall, E.; Brosious, E. Reproducibility in the hematology laboratory: The microhematocrit determination. Am. J. Clin. Pathol. 1971, 56, 35–39. [Google Scholar] [CrossRef]
- Wintrobe, M.M. Anemia: Classification and treatment on the basis of differences in the average volume and hemoglobin content of the red corpuscles. Arch. Intern. Med. 1934, 54, 256–280. [Google Scholar] [CrossRef]
- Mattioli, C.C.; Takata, R.; Leme, F.D.O.P.; Costa, D.C.; Melillo Filho, R.; Silva, W.D.S.; Luz, R.K. Effects of acute and chronic exposure to water salinity in juveniles of the freshwater carnivorous catfish Lophiosilurus alexandri. Aquaculture 2017, 481, 255–266. [Google Scholar] [CrossRef]
- Copatti, C.E.; Felix e Silva, A.; Lorenzo, V.P.; da Costa, M.M.; Melo, J.F.B. Addition of lemongrass essential oil to tambaqui (Colossoma macropomum) diet: Effects on growth, intestinal enzymes, hematological and metabolic variables, and antimicrobial challenge. Aquac. Res. 2022, 53, 5656–5666. [Google Scholar] [CrossRef]
- Oliveira, M.I.B.; Brandão, F.R.; Tavares-Dias, M.; Barbosa, B.C.N.; Rocha, M.J.S.; Matos, L.V.; Chagas, E.C. Essential oils of Ocimum gratissimum, Lippia grata and Lippia origanoides are effective in the control of the acanthocephalan Neoechinorhynchus buttnerae in Colossoma macropomum. Aquaculture 2024, 578, 740043. [Google Scholar] [CrossRef]
- Pereira, G.A.; Copatti, C.E.; Rocha, A. Physiological and growth responses of tambaqui (Colossoma macropomum) fed Croton conduplicatus essential oil and challenged with Aeromonas hydrophila. Vet. Res. Commun. 2025, 49, 58. [Google Scholar] [CrossRef] [PubMed]
- Hoseini, S.M.; Yousefi, M.; Hoseinifar, S.H.; Van Doan, H. Antioxidant, enzymatic and hematological responses of common carp (Cyprinus carpio) fed with myrcene- or menthol-supplemented diets and exposed to ambient ammonia. Aquaculture 2019, 506, 246–255. [Google Scholar] [CrossRef]
- Mohamadi-Saei, M.; Beiranvand, K.; Khalesi, M.K.; Mehrabi, F. Effects of dietary savory and myrtle essential oils on growth, survival, nutritional indices, serum biochemistry, and hematology of farmed rainbow trout, Oncorhynchus mykiss, fry. J. World Aquac. Soc. 2016, 47, 779–785. [Google Scholar] [CrossRef]
- Adel, M.; Amiri, A.A.; Zorriehzahra, J.; Nematolahi, A.; Esteban, M.Á. Effects of dietary peppermint (Mentha piperita) on growth performance, chemical body composition and hematological and immune parameters of fry Caspian white fish (Rutilus frisii kutum). Fish Shellfish Immunol. 2015, 45, 841–847. [Google Scholar] [CrossRef]
- Al-Sagheer, A.A.; Mahmoud, H.K.; Reda, F.M.; Mahgoub, S.A.; Ayyat, M.S. Supplementation of diets for Oreochromis niloticus with essential oil extracts from lemongrass (Cymbopogon citratus) and geranium (Pelargonium graveolens) and effects on growth, intestinal microbiota, antioxidant and immune activities. Aquac. Nutr. 2018, 24, 1006–1014. [Google Scholar] [CrossRef]
- Talpur, A.D.; Ikhwanuddin, M. Dietary effects of garlic (Allium sativum) on haemato-immunological parameters, survival, growth, and disease resistance against Vibrio harveyi infection in Asian sea bass, Lates calcarifer (Bloch). Aquaculture 2012, 364–365, 6–12. [Google Scholar] [CrossRef]
- Brum, A.; Pereira, S.A.; Owatari, M.S.; Chagas, E.C.; Chaves, F.C.M.; Mouriño, J.L.P.; Martins, M.L. Effect of dietary essential oils of clove basil and ginger on Nile tilapia (Oreochromis niloticus) following challenge with Streptococcus agalactiae. Aquaculture 2017, 468, 235–243. [Google Scholar] [CrossRef]
- Souza, E.M.; de Souza, R.C.; Melo, J.F.B.; da Costa, M.M.; de Souza, A.M.; Copatti, C.E. Evaluation of the effects of Ocimum basilicum essential oil in Nile tilapia diet: Growth, biochemical, intestinal enzymes, haematology, lysozyme and antimicrobial challenges. Aquaculture 2019, 504, 7–12. [Google Scholar] [CrossRef]
- Ribeiro, S.C.; Castelo, A.S.; Silva, B.M.P.D.; Cunha, A.D.S.; Proietti Junior, A.A.; Oba-Yoshioka, E.T. Hematological responses of tambaqui Colossoma macropomum (Serrassalmidae) fed with diets supplemented with essential oil of Mentha piperita (Lamiaceae) and challenged with Aeromonas hydrophila. Acta Amazon 2016, 46, 99–106. [Google Scholar] [CrossRef]
- Sutili, F.J.; Velasquez, A.; Pinheiro, C.G.; Heinzmann, B.M.; Gatlin, D.M.; Baldisserotto, B. Evaluation of Ocimum americanum essential oil as an additive in red drum (Sciaenops ocellatus) diets. Fish Shellfish Immunol. 2016, 56, 155–161. [Google Scholar] [CrossRef]
- Dernekbaşı, S.; Karayücel, İ.; Akyüz, A.P. Effect of diets containing laurel seed oil on growth and fatty acid composition of rainbow trout, Oncorhynchus mykiss. Aquac. Nutr. 2017, 23, 219–227. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A. Toxicity of Selected Monoterpenes and Essential Oils Rich in These Compounds. Molecules 2022, 27, 1716. [Google Scholar] [CrossRef]
- Fernández-Mendez, C.; Chate Benites, Z.; Espinoza Ortiz, C.; Diaz, L.R.; Gonzales-Flores, A.P.P.; Tavares-Dias, M. Growth, fillet composition, hematological parameters and disease resistance of juvenile Brycon amazonicus fed diets supplemented with essential oil of Minthostachys mollis. Aquac. Int. 2024, 32, 2115–2130. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.R.; Abdel-Tawwab, M.; Khafaga, A.F.; Dawood, M.A.O. Dietary oregano essential oil improved the growth performance via enhancing the intestinal morphometry and hepato-renal functions of common carp (Cyprinus carpio L.) fingerlings. Aquaculture 2020, 526, 735432. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.W.; Liu, L.L.; Cao, Y.C.; Zhu, H. Dietary oregano essential oil improved the immune response, activity of digestive enzymes, and intestinal microbiota of the koi carp, Cyprinus carpio. Aquaculture 2020, 518, 734781. [Google Scholar] [CrossRef]
- Valladão, G.M.R.; Gallani, S.U.; Pala, G. Practical diets with essential oils of plants activate the complement system and alter the intestinal morphology of Nile tilapia. Aquac. Res. 2017, 48, 640–5649. [Google Scholar] [CrossRef]
- Heluy, G.M.; Ramos, L.R.V.; Pedrosa, V.F.; Sarturi, C.; Figueiredo, P.G.P.; Vidal, L.G.P.; França, I.F.; Pereira, M.M. Oregano (Origanum vulgare) essential oil as an additive in diets for Nile tilapia (Oreochromis niloticus) fingerlings reared in salinized water. Aquac. Res. 2020, 51, 3237–3243. [Google Scholar] [CrossRef]
- Magouz, F.I.; Amer, A.A.; Faisal, A.; Sewilam, H.; Aboelenin, S.M.; Dawood, M.A. The effects of dietary oregano essential oil on the growth performance, intestinal health, immune, and antioxidative responses of Nile tilapia under acute heat stress. Aquaculture 2022, 548, 737632. [Google Scholar] [CrossRef]
- Sampaio, F.D.F.; Freire, C.A. An overview of stress physiology of fish transport: Changes in water quality as a function of transport duration. Fish Fish 2016, 17, 1055–1072. [Google Scholar] [CrossRef]
- Weingartner, M.; Zaniboni-Filho, E. Effect of abiotic factors on larviculture of yellow catfish Pimelodus maculatus (Lacépède, 1803): Salinity and tank color. Acta Sci. 2004, 26, 151–157. [Google Scholar]
- Souza, P.C.; Bonilla-Rodriguez, G.O. Fish hemoglobins. Braz. J. Med. Biol. Res. 2007, 40, 769–778. [Google Scholar] [CrossRef]
- Witeska, M.; Kondera, E.; Ługowska, K.; Bojarski, B. Hematological methods in fish—Not only for beginners. Aquaculture 2022, 547, 737498. [Google Scholar] [CrossRef]
- Boaventura, T.P.; Souza, C.F.; Ferreira, A.L.; Favero, G.C.; Baldissera, M.D.; Heinzmann, B.M.; Baldisserotto, B.; Luz, R.K. Essential oil of Ocimum gratissimum (Linnaeus, 1753) as anesthetic for Lophiosilurus alexandri: Induction, recovery, hematology, biochemistry and oxidative stress. Aquaculture 2020, 529, 735676. [Google Scholar] [CrossRef]
- Chagas, E.C.; Araújo, L.D.; Boijink, C.D.L.; Inoue, L.A.K.A.; Gomes, L.D.C.; Moraes, F.R. Tambaqui responses to transport stress after feeding diets supplemented with β-glucan. Biotemas 2012, 25, 221–227. [Google Scholar] [CrossRef]
- Abreu, J.S.D.; Sanabria-Ochoa, A.I.; Gonçalves, F.D.; Urbinati, E.C. Respostas ao estresse de juvenis de matrinxã (Brycon amazonicus) após transporte em sistema fechado sob diferentes densidades de carregamento. Cienc. Rural 2008, 38, 1413–1417. [Google Scholar] [CrossRef]
- Varandas, D.N.; Martins, M.L.; Moraes, F.R.; Ramos, F.M.; Santos, R.F.B.; Fujimoto, R.Y. Catch and release: Repetitive fishing, hematological variables and parasitism in the hybrid fish tambacu. Pesqui. Agropecu. Bras. 2013, 48, 1058–1063. [Google Scholar] [CrossRef]
- Souza, R.C.; Baldisserotto, B.; Melo, J.F.B.; da Costa, M.M.; de Souza, E.M.; Copatti, C.E. Dietary Aloysia triphylla essential oil on growth performance and biochemical and haematological variables in Nile tilapia. Aquaculture 2020, 519, 734913. [Google Scholar] [CrossRef]
- Nikinmaa, M. Vertebrate red blood cells: Adaptation of function to respiratory requirements. Zoophysiology 1990, 28, 156–207. [Google Scholar] [CrossRef]
- Wojtaszek, J.; Dziewulska-Szwajkowska, D.; Łozińska-Gabska, M.; Adamowicz, A.; Dżugaj, A. Hematological effects of high dose of cortisol on the carp (Cyprinus carpio L.): Cortisol effect on the carp blood. Gen. Comp. Endocrinol. 2002, 125, 176–183. [Google Scholar] [CrossRef]
- Parrino, V.; Cappello, T.; Costa, G.; Cannavà, C.; Sanfilippo, M.; Fazio, F.; Fasulo, S. Comparative study of haematology of two teleost fish (Mugil cephalus and Carassius auratus) from different environments and feeding habits. Eur. Zool. J. 2018, 85, 193–199. [Google Scholar] [CrossRef]
- Sehonova, P.; Svobodova, Z.; Dolezelova, P.; Vosmerova, P.; Faggio, C. Effects of waterborne antidepressants on non-target animals living in the aquatic environment: A review. Sci. Total Environ. 2018, 631, 789–794. [Google Scholar] [CrossRef]
- Souza-Silva, L.T.; de Pádua Pereira, U.; de Oliveira, H.M.; Brasil, E.M.; Pereira, S.A.; Chagas, E.C.; Jesus, G.F.A.; Cardoso, L.; Mouriño, J.L.P.; Martins, M.L. Hemato-immunological and zootechnical parameters of Nile tilapia fed essential oil of Mentha piperita after challenge with Streptococcus agalactiae. Aquaculture 2019, 50, 205–211. [Google Scholar] [CrossRef]
- Lockridge, K.A. Fish Stress and Health in Aquaculture; Cambridge University Press: Cambridge, UK, 1981; Volume 62. [Google Scholar]
- Acar, Ü.; Kesbiç, O.S.; Yılmaz, S.; Gültepe, N.; Türker, A. Evaluation of the effects of essential oil extracted from sweet orange peel (Citrus sinensis) on growth rate of tilapia (Oreochromis mossambicus) and possible disease resistance against Streptococcus iniae. Aquaculture 2015, 437, 282–286. [Google Scholar] [CrossRef]
- Gulec, A.K.; Danabas, D.; Ural, M.; Seker, E.; Arslan, A.; Serdar, O. Effect of mixed use of thyme and fennel oils on biochemical properties and electrolytes in rainbow trout as a response to Yersinia ruckeri infection. Acta Vet. Brno 2013, 82, 297–302. [Google Scholar] [CrossRef]
- Magnadóttir, B. Innate immunity of fish (overview). Fish Shellfish Immunol. 2006, 20, 137–151. [Google Scholar] [CrossRef]
- Melo, D.C.; Oliveira, D.A.A.; Melo, M.M.; Junior, D.V.; Teixeira, E.A.; Guimarães, S.R. Proteic electrophoretic profile of chitralada tilapia nilotic (Oreochromis niloticus), exposed to hypoxia chronic stress. Arq. Bras. Med. Vet. Zootec. 2009, 61, 1183–1190. [Google Scholar] [CrossRef]
- Mazeaud, M.M.; Mazeaud, F.; Donaldson, E.M. Primary and secondary effects of stress in fish: Some new data with a general review. Trans. Am. Fish Soc. 1977, 106, 201–212. [Google Scholar] [CrossRef]
- Immanuel, G.; Uma, R.P.; Iyapparaj, P.; Citarasu, T.; Punitha Peter, S.M.; Michael Babu, M.; Palavesam, A. Dietary medicinal plant extracts improve growth, immune activity and survival of tilapia Oreochromis mossambicus. J. Fish Biol. 2009, 74, 1462–1475. [Google Scholar] [CrossRef]
- Brum, A.; Pereira, S.A.; Cardoso, L.; Chagas, E.C.; Chaves, F.C.M.; Mouriño, J.L.P.; Martins, M.L. Blood biochemical parameters and melanomacrophage centers in Nile tilapia fed essential oils of clove basil and ginger. Fish Shellfish Immunol. 2018, 74, 444–449. [Google Scholar] [CrossRef]
- Iversen, M.; Eliassen, R.A.; Finstad, B. Potential benefit of clove oil sedation on animal welfare during salmon smolt, Salmo salar L. transport and transfer to sea. Aquac. Res. 2009, 40, 233–241. [Google Scholar] [CrossRef]
- Boaventura, T.P.; Pedras, P.P.C.; Júlio, G.S.C.; dos Santos, F.A.C.; Ferreira, A.L.; de Souza e Silva, W.; Luz, R.K. Use of eugenol, benzocaine or salt during the transport of panga, Pangasianodon hypophthalmus (Sauvage, 1878): Effects on water quality, haematology and blood biochemistry. Aquac. Res. 2022, 53, 1395–1403. [Google Scholar] [CrossRef]
- Metwally, M.A.A. Effects of garlic (Allium sativum) on some antioxidant activities in tilapia nilotica (Oreochromis niloticus). World J. Fish Mar. Sci. 2009, 1, 56–64. [Google Scholar]
- Santos-Silva, M.J.; da Costa, F.F.B.; Leme, F.P.; Takata, R.; Costa, D.C.; Mattioli, C.C.; Miranda-Filho, K.C. Biological responses of Neotropical freshwater fish Lophiosilurus alexandri exposed to ammonia and nitrite. Sci. Total Environ. 2018, 616, 1566–1575. [Google Scholar] [CrossRef]
- Xie, T.; Gao, Y.; Qin, H.; Zhang, J.; Li, M.; Gao, Y.; Jia, Y. Physiological response of Oplegnathus punctatus (spotted knifejaw) during offshore aquaculture net cage transport. Aquaculture 2023, 563, 739029. [Google Scholar] [CrossRef]
Ingredients | (%) |
---|---|
Soybean meal 1 | 35 |
Fish meal 2 | 30 |
Rice bran 3 | 12 |
Corn bran 4 | 15 |
Canola oil 5 | 3 |
Salt 6 | 1 |
Vitamin and mineral premix * | 3 |
Phosphate dicalcium 7 | 1 |
Analyzed proximate composition | |
Dry matter content | 94.36 |
Crude protein | 35.24 |
Crude fat | 7.56 |
Mineral matter | 13.5 |
1–10 Days | ||||||||
---|---|---|---|---|---|---|---|---|
HREO Inclusion (g kg of Feed−1) | W (g) | TL (cm) | WG (g) | DWG (g Day−1) | SGR (% Day−1) | Biomass (kg m−3) | FCR | Survival (%) |
HR0.0 | 7.79 ± 0.19 | 7.89 ± 0.06 | 3.71 ± 0.19 | 0.37 ± 0.01 | 6.45 ± 0.24 | 3.89 ± 0.09 | 1.73 ± 0.22 | 100.00 |
HR0.75 | 7.67 ± 0.31 | 7.86 ± 0.15 | 3.58 ± 0.31 | 0.35 ± 0.03 | 6.26 ± 0.41 | 3.83 ± 0.15 | 1.56 ± 0.11 | 100.00 |
HR1.0 | 7.91 ± 0.31 | 8.20 ± 0.28 | 3.83 ± 0.32 | 0.38 ± 0.03 | 6.60 ± 0.42 | 3.95 ± 0.16 | 1.53 ± 0.13 | 100.00 |
HR2.0 | 8.11 ± 0.18 | 7.99 ± 0.09 | 4.02 ± 0.18 | 0.40 ± 0.01 | 6.84 ± 0.22 | 4.05 ± 0.09 | 1.51 ± 0.07 | 100.00 |
p-value | 0.6870 | 0.5137 | 0.6824 | 0.6824 | 0.6771 | 0.6870 | 0.7309 | 1.0000 |
CV (%) | 6.34 | 4.18 | 13.19 | 13.19 | 9.89 | 6.34 | 17.53 | 0.00 |
11–20 days | ||||||||
HR0.0 | 13.73 ± 0.87 | 10.84 ± 0.18 | 5.94 ± 0.69 | 0.59 ± 0.06 | 5.61 ± 0.42 | 6.60 ± 0.29 | 1.24 ± 0.10 | 100.00 |
HR0.75 | 13.49 ± 0.85 | 10.60 ± 0.18 | 5.81 ± 0.60 | 0.58 ± 0.06 | 5.60 ± 0.36 | 7.16 ± 0.34 | 1.04 ± 0.12 | 98.21 ± 1.78 |
HR1.0 | 13.83 ± 0.80 | 10.60 ± 0.15 | 5.91 ± 0.56 | 0.59 ± 0.05 | 5.54 ± 0.31 | 6.68 ± 0.50 | 1.25 ± 0.24 | 98.21 ± 1.78 |
HR2.0 | 14.50 ± 0.87 | 10.81 ± 0.13 | 6.38 ± 0.70 | 0.63 ± 0.07 | 5.75 ± 0.39 | 7.07 ± 0.46 | 1.29 ± 0.26 | 100.00 |
p-value | 0.8565 | 0.6122 | 0.9249 | 0.9249 | 0.9822 | 0.7213 | 0.8049 | 0.5885 |
CV (%) | 11.32 | 2.99 | 19.53 | 19.53 | 12.14 | 11.3 | 11.24 | 2.46 |
21–30 days | ||||||||
HR0.0 | 22.81 ± 1.45 | 11.39 ± 0.13 | 9.07 ± 0.64 | 0.90 ± 0.06 | 5.07 ± 0.16 | 11.40 ± 0.72 | 1.10 ± 0.11 | 100.00 |
HR0.75 | 22.78 ± 1.81 | 11.47 ± 0.27 | 9.28 ± 1.19 | 0.92 ± 0.11 | 5.19 ± 0.46 | 10.95 ± 0.79 | 1.16 ± 0.19 | 96.42 ± 2.06 |
HR1.0 | 22.52 ± 1.23 | 11.34 ± 0.15 | 8.69 ± 0.64 | 0.86 ± 0.06 | 4.88 ± 0.26 | 11.26 ± 0.61 | 1.15 ± 0.14 | 98.21 ± 1.78 |
HR2.0 | 23.95 ± 1.48 | 11.47 ± 0.30 | 9.45 ± 0.66 | 0.94 ± 0.06 | 5.01 ± 0.15 | 11.97 ± 0.74 | 1.14 ± 0.13 | 100.00 |
p-value | 0.9091 | 0.9694 | 0.9209 | 0.9209 | 0.9003 | 0.7898 | 0.9928 | 0.2476 |
CV (%) | 12.01 | 3.62 | 16.45 | 16.45 | 10.53 | 11.86 | 21.85 | 2.91 |
Parameters | HREO Inclusion (g kg of Feed−1) | |||||
---|---|---|---|---|---|---|
HR0.0 | HR0.75 | HR1.0 | HR2.0 | p-Value | CV (%) | |
Hematocrit (%) | 22.87 ± 0.47 | 22.33 ± 0.83 | 22.60 ± 0.49 | 23.20 ± 0.46 | 0.7818 | 8.68 |
Erythrocyte (×106 µL−1) | 0.41 ± 0.05 | 0.49 ± 0.05 | 0.45 ± 0.05 | 0.51 ± 0.05 | 0.6178 | 37.24 |
MCV (fL) | 645.34 ± 93.10 | 461.99 ± 51.00 | 551.65 ± 73.10 | 524.48 ± 60.10 | 0.3143 | 37.67 |
MCH (pg) | 182.46 ± 24.82 | 144.48 ± 14.57 | 170.72 ± 21.07 | 174.80 ± 18.89 | 0.5494 | 37.71 |
Total proteins (g dL−1) | 4.07 ± 0.05 | 4.11 ± 0.09 | 4.12 ± 0.09 | 4.12 ± 0.06 | 0.9821 | 6.32 |
Glucose (mg dL−1) | 49.79 ± 3.54 | 56.38 ± 3.43 | 53.50 ± 3.23 | 56.28 ± 5.05 | 0.5948 | 24.62 |
Cholesterol (mg dL−1) | 69.78 ±3.51 | 65.71 ± 4.37 | 70.69 ± 4.42 | 78.68 ± 3.99 | 0.1972 | 19.67 |
Triglycerides (mg dL−1) | 158.27 ± 11.16 | 184.24 ± 9.83 | 171.90 ± 13.85 | 191.54 ± 16.26 | 0.3569 | 23.79 |
ALT (U L−1) | 11.83 ± 2.50 | 8.63 ± 1.40 | 8.00 ± 1.02 | 7.33 ± 1.21 | 0.6550 | 28.09 |
AST (U L−1) | 244.66 ± 28.86 | 195.41 ± 9.82 | 220.41 ± 20.57 | 181.10 ± 26.58 | 0.2203 | 36.50 |
HREO Inclusion (g kg of Feed−1) | ||||||
---|---|---|---|---|---|---|
HR0.0 | HR0.75 | HR1.0 | HR2.0 | p-Value | CV (%) | |
Hepatosomatic index (%) | 1.30 ± 0.10 | 1.35 ± 0.07 | 1.44 ± 0.09 | 1.51 ± 0.06 | 0.3360 | 21.41 |
Viscerosomatic index (%) | 6.94 ± 0.41 | 6.90 ± 0.30 | 7.33 ± 0.31 | 7.63 ± 0.24 | 0.3483 | 15.72 |
Temperature (°C) | Dissolved Oxygen (mg L−1) | pH | Non-Ionized Ammonia (NH3) (mg L−1) | |
---|---|---|---|---|
HREO inclusion (g kg of feed−1) | ||||
HR0.0 | 27.20 ± 0.34 | 7.55 ± 1.29 | 6.05 ± 0.18 | 0.020 |
HR0.75 | 27.46 ± 0.08 | 7.91 ± 0.61 | 5.92 ± 0.02 | 0.020 |
HR1.0 | 27.53 ± 0.03 | 7.38 ± 0.73 | 5.91 ± 0.01 | 0.020 |
HR2.0 | 27.56 ± 0.03 | 6.48 ± 0.53 | 5.93 ± 0.01 | 0.020 |
p-value | 0.1640 | 0.6837 | 0.6764 | 1.0000 |
CV (%) | 0.81 | 18.64 | 2.50 | 0.00 |
HREO Inclusion (g kg of Feed−1) | Collection Times (Hours) | Hemoglobin (g dL−1) | Hematocrit (%) | Erythrocytes (×106 µL−1) | MCV (fL) | MCH (pg) | MCHC (g dL−1) |
---|---|---|---|---|---|---|---|
HR0.0 | Basal | 6.80 ± 0.38 ABa | 24.90 ± 0.79 ABb | 0.50 ± 0.05 Ca | 547.72 ± 51.09 Aa | 138.84 ± 13.42 Aa | 27.20 ± 1.03 Aa |
IAT | 7.64 ± 0.28 Aa | 25.80 ± 0.64 Aa | 0.41 ± 0.03 Ca | 605.78 ± 42.79 Aa | 165.16 ± 8.99 Aa | 29.76 ± 1.29 Aa | |
AT24 | 7.78 ± 0.47 Aa | 26.55 ± 0.70 Aa | 1.29 ± 0.05 Aa | 208.97 ± 11.52 Cc | 61.47 ± 5.61 Bc | 29.09 ± 1.44 Ab | |
AT48 | 5.92 ± 0.72 Bb | 23.00 ± 1.25 Bb | 0.89 ± 0.09 Bb | 289.18 ± 17.96 Ba | 67.74 ± 6.43 Bab | 22.19 ± 1.57 Bc | |
HR0.75 | Basal | 6.83 ± 0.11 Ba | 27.20 ± 0.41 Aa | 0.56 ± 0.08 Ba | 558.38 ± 66.21 Aa | 139.62 ± 15.86 Aa | 25.16 ± 0.51 Ca |
IAT | 7.68 ± 0.41 ABa | 25.60 ± 0.70 Aa | 0.54 ± 0.04 Ba | 500.72 ± 44.20 Aa | 140.93 ± 14.40 Aa | 28.91 ± 1.38 ABa | |
AT24 | 5.41 ± 0.46 Cb | 22.14 ± 1.18 Bbc | 0.73 ± 0.12 Bb | 229.89 ± 19.43 Bbc | 68.56 ± 11.56 Cbc | 25.47 ± 1.14 BCb | |
AT48 | 8.88 ± 0.56 Aa | 25.70 ± 1.14 Aa | 1.20 ± 0.09 Aa | 226.09 ± 22.19 Bb | 74.44 ± 1.80 Ba | 31.79 ± 2.25 Aa | |
HR1.0 | Basal | 7.19 ± 0.14 ABa | 28.40 ± 0.54 Aa | 0.60 ± 0.03 Ba | 480.37 ± 27.04 Aa | 131.39 ± 11.52 Aa | 25.47 ± 0.73 Ba |
IAT | 7.97 ± 0.19 Aa | 24.50 ± 0.65 Ba | 0.59 ± 0.07 Ba | 455.43 ± 52.64 Aa | 131.40 ± 14.82 Aa | 32.56 ± 1.40 Aa | |
AT24 | 6.60 ± 0.38 Bab | 23.87 ± 0.83 Bb | 0.70 ± 0.08 Bb | 318.71 ± 26.50 Ba | 96.06 ± 9.76 Ba | 28.13 ± 0.87 Bb | |
AT48 | 6.68 ± 0.48 Bb | 24.37 ± 1.25 Bab | 1.09 ± 0.10 Aa | 226.11 ± 22.00 Cb | 63.57 ± 5.28 Cbc | 28.04 ± 0.69 Bb | |
HR2.0 | Basal | 6.58 ± 0.30 ABa | 24.37 ± 0.82 Ab | 0.47 ± 0.04 Ca | 492.84 ± 46.22 Aa | 131.40 ± 12.44 Aa | 28.61 ± 1.83 BCa |
IAT | 7.59 ± 0.56 Aa | 25.44 ± 0.85 Aa | 0.50 ± 0.01 Ca | 498.38 ± 30.42 Aa | 161.30 ± 14.02 Aa | 31.46 ± 1.69 Ba | |
AT24 | 5.75 ± 0.68 Bb | 20.42 ± 0.99 Bc | 0.78 ± 0.06 Bb | 301.87 ± 57.36 Bab | 73.25 ± 6.42 Bb | 41.54 ± 2.15 Aa | |
AT48 | 6.70 ± 0.32 ABb | 23.90 ± 0.86 Aab | 1.26 ± 0.05 Aa | 190.69 ± 6.85 Cb | 53.09 ± 1.48 Cc | 28.03 ± 0.92 Cb |
Total Proteins (g dL−1) | Glucose (mg dL−1) | Triglycerides (mg dL−1) | Cholesterol (mg dL−1) | ALT (U L−1) | AST (U L−1) | |
---|---|---|---|---|---|---|
HREO inclusion (g kg of feed−1) | ||||||
HR0.0 | 4.09 ± 0.08 a | 67.16 ± 3.32 | 136.48 ± 5.45 ab | 79.00 ± 2.16 | 7.93 ± 0.57 | 188.37 ± 9.87 |
HR0.75 | 4.08 ± 0.08 a | 69.99 ± 3.87 | 145.39 ± 6.82 a | 81.08 ± 2.72 | 8.41 ± 0.71 | 199.14 ± 10.18 |
HR1.0 | 3.92 ± 0.07 ab | 66.26 ± 3.61 | 134.00 ± 5.88 ab | 79.61 ± 2.29 | 7.17 ± 0.43 | 187.91 ± 8.85 |
HR2.0 | 3.78 ± 0.07 b | 63.44 ± 3.64 | 129.64 ± 6.19 b | 79.09 ± 2.48 | 7.38 ± 0.53 | 209.48 ± 13.22 |
Collecting times (hours) | ||||||
Basal | 4.21 ± 0.04 a | 65.70 ± 1.77 b | 189.45 ± 5.59 a | 77.16 ± 2.29 b | 6.92 ± 0.35 bc | 193.77 ± 10.94 ab |
IAT | 4.12 ± 0.05 a | 96.85 ± 2.21 a | 130.59 ± 3.23 b | 86.47 ± 1.26 a | 5.97 ± 0.33 c | 168.65 ± 7.53 b |
AT24 | 3.81 ± 0.11 b | 53.35 ± 2.37 c | 119.71 ± 2.83 b | 74.72 ± 2.69 b | 9.73 ± 0.83 a | 224.10 ± 11.10 a |
AT48 | 3.73 ± 0.08 b | 50.94 ± 2.15 c | 105.77 ± 2.74 c | 80.43 ± 2.72 ab | 8.27 ± 0.56 ab | 198.38 ± 11.54 ab |
p-value HREO inclusion | 0.0038 | 0.1836 | 0.0119 | 0.8954 | 0.6347 | 0.8305 |
p-value Collecting times | <0.0001 | <0.0001 | <0.0001 | 0.0011 | <0.0001 | 0.0035 |
p-value Interaction | <0.0001 | 0.1770 | 0.0086 | <0.0001 | 0.0078 | 0.0036 |
CV (%) | 12.81 | 34.08 | 28.23 | 18.97 | 18.52 | 16.62 |
HREO Inclusion (g kg of feed−1) | Collection Times (Hours) | Total Proteins (g dL−1) | Triglycerides (mg dL−1) | Cholesterol (mg dL−1) | ALT (U L−1) | AST (U L−1) |
---|---|---|---|---|---|---|
HR0.0 | Basal | 4.24 ± 0.08 Aa | 175.59 ± 10.82 Ab | 70.79 ± 3.74 Ca | 5.80 ± 0.57 Ba | 170.80 ± 13.03 Bb |
IAT | 4.19 ± 0.06 Aa | 145.30 ± 6.09 Ba | 82.84 ± 2.06 ABa | 5.90 ± 0.84 Ba | 151.80 ± 10.89 Ba | |
AT24 | 4.48 ± 0.10 Aa | 126.15 ± 4.41 Cab | 89.59 ± 1.77 Aa | 8.62 ± 0.62 Aa | 198.67 ± 21.73 Aba | |
AT48 | 3.43 ± 0.21 Bb | 98.88 ± 4.80 Db | 72.79 ± 5.85 BCb | 11.40 ± 1.23 Aa | 232.22 ± 24.31 Aa | |
HR0.75 | Basal | 4.42 ± 0.05 Aa | 208.79 ± 12.47 Aa | 77.58 ± 5.08 Ba | 7.00 ± 0.47 ABa | 187.78 ± 12.81 ABab |
IAT | 4.18 ± 0.12 Aa | 135.90 ± 6.16 Bab | 88.55 ± 2.05 ABa | 5.50 ± 0.37 Ba | 164.00 ± 16.27 Ba | |
AT24 | 3.46 ± 0.23 Bc | 116.01 ± 6.50 Cab | 63.94 ± 5.12 Cb | 12.57 ± 2.77 Aa | 230.78 ± 22.40 Aa | |
AT48 | 4.27 ± 0.11 Aa | 120.86 ± 4.97 BCa | 94.24 ± 3.54 Aa | 8.60 ± 1.05 Aab | 214.00 ± 23.40 ABa | |
HR1.0 | Basal | 4.11 ± 0.07 Aa | 185.36 ± 8.09 Ab | 79.55 ± 4.40 ABa | 6.90 ± 0.58 ABa | 169.90 ± 17.63 Ab |
IAT | 4.15 ± 0.07 Aa | 121.53 ± 5.67 Bb | 86.35 ± 1.32 Aa | 5.60 ± 0.22 Ba | 168.20 ± 10.10 Aa | |
AT24 | 3.95 ± 0.20 Ab | 128.82 ± 6.01 Ba | 73.45 ± 4.62 Bb | 9.11 ± 1.37 Aa | 214.25 ± 20.54 Aa | |
AT48 | 3.50 ± 0.13 Bb | 100.31 ± 5.18 Cb | 79.09 ± 6.26 ABb | 7.10 ± 0.72 ABbc | 199.30 ± 19.84 Aa | |
HR2.0 | Basal | 4.07 ± 0.13 Aa | 188.07 ± 12.81 Ab | 80.72 ± 5.16 ABa | 8.00 ± 1.08 Aa | 246.60 ± 30.38 Aa |
IAT | 3.99 ± 0.12 Aa | 119.64 ± 4.94 Bb | 88.13 ± 3.88 Aa | 6.90 ± 0.92 Aa | 190.60 ± 20.27 Aa | |
AT24 | 3.34 ± 0.14 Bc | 107.86 ± 3.19 Bb | 71.90 ± 6.01 Bb | 8.62 ± 1.54 Aa | 252.70 ± 22.73 Aa | |
AT48 | 3.73 ± 0.11 ABb | 103.01 ± 4.62 Bab | 75.61 ± 3.50 Bb | 6.00 ± 0.71 Ac | 148.00 ± 18.92 Bb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magalhães, T.B.; Martins, W.J.d.F.; Silva, S.d.S.; Ananias, I.d.M.C.; da Silva, N.C.S.; Favero, G.C.; Descovi, S.N.; Baldisserotto, B.; Pinheiro, C.G.; Heinzmann, B.M.; et al. Short-Term Feeding with Hesperozygis ringens Essential Oil Modulates Transportation-Induced Physiological Responses in Colossoma macropomum. Fishes 2025, 10, 532. https://doi.org/10.3390/fishes10100532
Magalhães TB, Martins WJdF, Silva SdS, Ananias IdMC, da Silva NCS, Favero GC, Descovi SN, Baldisserotto B, Pinheiro CG, Heinzmann BM, et al. Short-Term Feeding with Hesperozygis ringens Essential Oil Modulates Transportation-Induced Physiological Responses in Colossoma macropomum. Fishes. 2025; 10(10):532. https://doi.org/10.3390/fishes10100532
Chicago/Turabian StyleMagalhães, Thamara Bentivole, Wagner Junio de Freitas Martins, Sidney dos Santos Silva, Imaculada de Morais Carvalho Ananias, Nárcia Carolina Santos da Silva, Gisele Cristina Favero, Sharine Nunes Descovi, Bernardo Baldisserotto, Carlos Garrido Pinheiro, Berta Maria Heinzmann, and et al. 2025. "Short-Term Feeding with Hesperozygis ringens Essential Oil Modulates Transportation-Induced Physiological Responses in Colossoma macropomum" Fishes 10, no. 10: 532. https://doi.org/10.3390/fishes10100532
APA StyleMagalhães, T. B., Martins, W. J. d. F., Silva, S. d. S., Ananias, I. d. M. C., da Silva, N. C. S., Favero, G. C., Descovi, S. N., Baldisserotto, B., Pinheiro, C. G., Heinzmann, B. M., & Luz, R. K. (2025). Short-Term Feeding with Hesperozygis ringens Essential Oil Modulates Transportation-Induced Physiological Responses in Colossoma macropomum. Fishes, 10(10), 532. https://doi.org/10.3390/fishes10100532