AI Ethics and Value Alignment for Nonhuman Animals
Abstract
:1. Introduction
2. Value Extraction
2.1. Introduction
2.2. Challenges
2.3. Non-AI Activities on Value Extraction for NonHuman Animals
2.4. Potential AI Approaches
2.5. Summary
3. Value Aggregation
3.1. Introduction
3.2. Challenges
3.3. Non-AI Activities on Value Aggregation for NonHuman Animals
3.4. Potential AI Approaches
3.5. Summary
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Müller, V.C.; Ethics of Artificial Intelligence and Robotics. In The Stanford Encyclopedia of Philosophy (Winter 2020 Edition); Zalta, E.N., Ed.; 2020. Available online: https://plato.stanford.edu/archives/win2020/entries/ethics-ai. (accessed on 11 April 2021).
- Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schulman, J.; Mané, D. Concrete problems in AI safety. arXiv 2016, arXiv:1606.06565. [Google Scholar]
- Bostrom, N. Superintelligence: Paths, Dangers, Strategies; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Yudkowsky, E. Artificial intelligence as a positive and negative factor in global risk. In Global Catastrophic Risks; Bostrom, N., Ćirković, M.M., Eds.; Oxford University Press: New York, NY, USA, 2008; pp. 308–345. Available online: https://intelligence.org/files/AIPosNegFactor.pdf (accessed on 10 March 2021).
- Bostrom, N.; Yudkowsky, E. The ethics of artificial intelligence. In The Cambridge Handbook of Artificial Intelligence; Frankish, K., Ramsey, W.M., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 316–334. Available online: http://faculty.smcm.edu/acjamieson/s13/artificialintelligence.pdf (accessed on 10 March 2021).
- Rollin, B.E. The regulation of animal research and the emergence of animal ethics: A conceptual history. Theor. Med. Bioeth. 2006, 27, 285–304. Available online: https://org.uib.no/dyreavd/handouts/Rollin__B._2006._Animal_Research_Regulation_in_Theoret._Medicin_....PDF (accessed on 10 March 2021). [CrossRef] [PubMed] [Green Version]
- Scanlon, T. What We Owe to Each Other; Belknap Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Singer, P. Animal Liberation: A New Ethics for Our Treatment of Animals; HarperCollins: New York, NY, USA, 1975. [Google Scholar]
- Horta, O. What is speciesism? J. Agric. Environ. Ethics 2010, 23, 243–266. [Google Scholar]
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. Resolution A/RES/70/1. 2015. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 10 March 2021).
- Tomasik, B. The importance of wild-animal suffering. Relat. Beyond Anthr. 2015, 3, 133. Available online: https://www.ledonline.it/index.php/Relations/article/download/880/717 (accessed on 10 March 2021). [CrossRef]
- Zeng, Y.; Lu, E.; Huangfu, C. Linking artificial intelligence principles. arXiv 2018, arXiv:1812.04814. [Google Scholar]
- High-Level Expert Group on AI. Ethic Guidelines for Trustworthy AI. 2019. Available online: https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=60419 (accessed on 10 March 2021).
- Friedman, B.; Hendry, D.G. Value Sensitive Design: Shaping Technology with Moral Imagination; MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Umbrello, S. The Ecological Turn in Design: Adopting a Posthumanist Ethics to Inform Value Sensitive Design. Philosophies 2021, 6, 29. Available online: https://www.mdpi.com/2409-9287/6/2/29/htm (accessed on 5 April 2021). [CrossRef]
- Baum, S.D. Social choice ethics in artificial intelligence. AI Soc. 2020, 35, 165–176. Available online: https://sethbaum.com/ac/2020_SocialChoice.pdf (accessed on 10 March 2021).
- Gabriel, I. Artificial intelligence, values, and alignment. Minds Mach. 2020, 30, 411–437. Available online: https://link.springer.com/content/pdf/10.1007/s11023-020-09539-2.pdf (accessed on 10 March 2021).
- Sarma, G.; Hay, N. Mammalian value systems. Informatica 2017, 41. Available online: https://arxiv.org/pdf/1607.08289.pdf (accessed on 10 March 2021). [CrossRef]
- Sarma, G.P.; Safron, A.; Hay, N.J. Integrative biological simulation, neuropsychology, and AI safety. arXiv 2018, arXiv:1811.03493. [Google Scholar] [CrossRef] [Green Version]
- Ziesche, S.; Yampolskiy, R.V. Towards AI Welfare Science and Policies. Spec. Issue Artif. Superintelligence Coord. Strategy Big Data Cogn. Comput. 2018, 3, 2. Available online: https://www.mdpi.com/2504-2289/3/1/2/htm (accessed on 10 March 2021).
- Bostrom, N. Existential risks: Analyzing human extinction scenarios and related hazards. J. Evol. Technol. 2002, 9. Available online: https://nickbostrom.com/existential/risks.html (accessed on 10 March 2021).
- Althaus, D.; Gloor, L. Reducing Risks of Astronomical Suffering: A Neglected Priority. 2016. Available online: https://foundational-research.org/reducing-risksofastronomical-suffering-a-neglected-priority/ (accessed on 10 March 2021).
- Yudkowsky, E. Coherent Extrapolated Volition; The Singularity Institute: San Francisco, CA, USA, 2004; Available online: https://intelligence.org/files/CEV.pdf (accessed on 10 March 2021).
- Broom, D.M. Animal welfare: Concepts and measurement. J. Anim. Sci. 1991, 69, 4167–4175. [Google Scholar] [CrossRef]
- Broom, D.M. A history of animal welfare science. Acta Biotheor. 2011, 59, 121–137. [Google Scholar] [CrossRef]
- Carey, M.P.; Fry, J.P. Evaluation of animal welfare by the self-expression of an anxiety state. Lab. Anim. 1995, 29, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Jukan, A.; Masip-Bruin, X.; Amla, N. Smart computing and sensing technologies for animal welfare: A systematic review. ACM Comput. Surv. CSUR 2017, 50, 1–27. Available online: https://dl.acm.org/doi/pdf/10.1145/3041960 (accessed on 10 March 2021). [CrossRef] [Green Version]
- Mancini, C. Towards an animal-centred ethics for Animal–Computer Interaction. Int. J. Hum. Comput. Stud. 2017, 98, 221–233. Available online: http://oro.open.ac.uk/46164/1/Mancini_1-s2.0-S1071581916300180-main.pdf (accessed on 10 March 2021). [CrossRef] [Green Version]
- Gibbons, W.J.; Andrews, K.M. PIT tagging: Simple technology at its best. Bioscience 2004, 54, 447–454. Available online: https://academic.oup.com/bioscience/article/54/5/447/417483 (accessed on 10 March 2021). [CrossRef] [Green Version]
- Neethirajan, S.; Reimert, I.; Kemp, B. Measuring Farm Animal Emotions—Sensor-Based Approaches. Sensors 2021, 21, 553. Available online: https://www.mdpi.com/1424-8220/21/2/553/htm (accessed on 10 March 2021). [CrossRef]
- Paul, E.S.; Harding, E.J.; Mendl, M. Measuring emotional processes in animals: The utility of a cognitive approach. Neurosci. Biobehav. Rev. 2005, 29, 469–491. [Google Scholar] [CrossRef]
- Mormède, P.; Andanson, S.; Aupérin, B.; Beerda, B.; Guémené, D.; Malmkvist, J.; Manteca, X.; Manteuffel, G.; Prunet, P.; van Reenen, C.G.; et al. Exploration of the hypothalamic–pituitary–adrenal function as a tool to evaluate animal welfare. Physiol. Behav. 2007, 92, 317–339. [Google Scholar] [CrossRef]
- Dawkins, M.S. The science of animal suffering. Ethology 2008, 114, 937–945. Available online: http://users.ox.ac.uk/~snikwad/resources/eth1557.pdf (accessed on 10 March 2021). [CrossRef]
- McLennan, K.M.; Miller, A.L.; Dalla Costa, E.; Stucke, D.; Corke, M.J.; Broom, D.M.; Leach, M.C. Conceptual and methodological issues relating to pain assessment in mammals: The development and utilisation of pain facial expression scales. Appl. Anim. Behav. Sci. 2019, 217, 1–15. Available online: https://chesterrep.openrepository.com/bitstream/handle/10034/622559/ChesterREP_KMcLennan_Review.pdf?sequence=4&isAllowed=n (accessed on 10 March 2021). [CrossRef]
- Lansade, L.; Nowak, R.; Lainé, A.L.; Leterrier, C.; Bonneau, C.; Parias, C.; Bertin, A. Facial expression and oxytocin as possible markers of positive emotions in horses. Sci. Rep. 2018, 8, 14680. Available online: https://www.nature.com/articles/s41598-018-32993-z (accessed on 10 March 2021). [CrossRef] [Green Version]
- Ahumada, J.A.; Fegraus, E.; Birch, T.; Flores, N.; Kays, R.; O’Brien, T.G.; Dancer, A. Wildlife insights: A platform to maximize the potential of camera trap and other passive sensor wildlife data for the planet. Environ. Conserv. 2020, 47, 1–6. Available online: https://www.cambridge.org/core/journals/environmental-conservation/article/wildlife-insights-a-platform-to-maximize-the-potential-of-camera-trap-and-other-passive-sensor-wildlife-data-for-the-planet/98295387F86A977F2ECD96CCC5705CCC (accessed on 10 March 2021). [CrossRef] [Green Version]
- Wang, D.; Shao, Q.; Yue, H. Surveying wild animals from satellites, manned aircraft and unmanned aerial systems (UASs): A review. Remote Sens. 2019, 11, 1308. Available online: https://www.mdpi.com/2072-4292/11/11/1308/pdf (accessed on 10 March 2021). [CrossRef] [Green Version]
- Harari, Y.N. Industrial Farming is One of the Worst Crimes in History. The Guardian. 25 September 2015. Available online: https://www.theguardian.com/books/2015/sep/25/industrial-farming-one-worst-crimes-history-ethical-question (accessed on 10 March 2021).
- Balcombe, J. Animal pleasure and its moral significance. Appl. Anim. Behav. Sci. 2009, 118, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Balcombe, J. Pleasurable Kingdom: Animals and the Nature of Feeling Good; St. Martin’s Press: New York, NY, USA, 2006. [Google Scholar]
- Yeates, J.W.; Main, D.C. Assessment of positive welfare: A review. Vet. J. 2008, 175, 293–300. [Google Scholar] [CrossRef]
- Wathes, C. Lives worth living? Vet. Rec. 2010, 166, 468–469. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1005.6278&rep=rep1&type=pdf (accessed on 10 March 2021). [CrossRef]
- Brennan, O. “Fit and Happy”: How Do We Measure Wild-Animal Suffering. 2017. Available online: https://was-research.org/paper/fit-happy-measure-wild-animal-suffering/ (accessed on 10 March 2021).
- Botreau, R.; Veissier, I.; Butterworth, A.; Bracke, M.B.; Keeling, L.J. Definition of criteria for overall assessment of animal welfare. Animal Welfare 2007, 16, 225. Available online: https://www.researchgate.net/profile/Isabelle_Veissier/publication/40105884_Definition_of_criteria_for_overall_assessment_of_animal_welfare/links/0912f5086cafe81def000000.pdf (accessed on 10 March 2021).
- Mellor, D.J.; Reid, C.S.W. Concepts of Animal Wellbeing and Predicting the Impact of Procedures on Experimental Animals. 1994. Available online: https://www.wellbeingintlstudiesrepository.org/cgi/viewcontent.cgi?article=1006&context=exprawel (accessed on 10 March 2021).
- Allen, C.; Trestman, M. Animal consciousness. In The Stanford Encyclopedia of Philosophy (Winter 2020 Edition); Zalta, E.N., Ed.; 2020; Available online: https://plato.stanford.edu/archives/win2020/entries/consciousness-animal/ (accessed on 11 April 2021).
- Tomasik, B. The Importance of Insect Suffering. 2016. Available online: https://reducing-suffering.org/the-importance-of-insect-suffering/ (accessed on 10 March 2021).
- De Vos, J.M.; Joppa, L.N.; Gittleman, J.L.; Stephens, P.R.; Pimm, S.L. Estimating the normal background rate of species extinction. Conserv. Biol. 2015, 29, 452–462. Available online: https://www.zora.uzh.ch/id/eprint/98443/1/Conservation_Biology_2014_early-view.pdf (accessed on 10 March 2021). [CrossRef] [Green Version]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement learning. arXiv 2013, arXiv:1312.5602. Available online: https://arxiv.org/pdf/1312.5602.pdf (accessed on 10 March 2021).
- Ng, A.Y.; Russell, S. Algorithms for inverse reinforcement learning. In Proceedings of the Seventeenth International Conference on Machine Learning, Stanford, CA, USA; 2000. Available online: https://ai.stanford.edu/~ang/papers/icml00-irl.pdf (accessed on 12 April 2021).
- Duporge, I.; Isupova, O.; Reece, S.; Macdonald, D.W.; Wang, T. Using very-high-resolution satellite imagery and deep learning to detect and count African elephants in heterogeneous landscapes. Remote Sens. Ecol. Conserv. 2020. Available online: https://zslpublications.onlinelibrary.wiley.com/doi/full/10.1002/rse2.195 (accessed on 10 March 2021). [CrossRef]
- Russell, S. Should we fear supersmart robots? Sci. Am. 2016, 314, 58–59. Available online: http://aima.cs.berkeley.edu/~russell/papers/sciam16-supersmart.pdf (accessed on 10 March 2021). [CrossRef] [PubMed]
- Bjorck, J.; Rappazzo, B.H.; Chen, D.; Bernstein, R.; Wrege, P.H.; Gomes, C.P. Automatic detection and compression for passive acoustic monitoring of the African forest elephant. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 476–484. [Google Scholar]
- Lamba, A.; Cassey, P.; Segaran, R.R.; Koh, L.P. Deep learning for environmental conservation. Curr. Biol. 2019, 29, R977–R982. Available online: https://www.sciencedirect.com/science/article/pii/S0960982219310322#bib21 (accessed on 10 March 2021). [CrossRef]
- Kamminga, J.; Ayele, E.; Meratnia, N.; Havinga, P. Poaching detection technologies—A survey. Sensors 2018, 18, 1474. Available online: https://www.mdpi.com/1424-8220/18/5/1474/pdf (accessed on 10 March 2021). [CrossRef] [Green Version]
- Yampolskiy, R.V. Personal universes: A solution to the multi-agent value alignment problem. arXiv 2019, arXiv:1901.01851. [Google Scholar]
- Allen, C.; Smit, I.; Wallach, W. Artificial morality: Top-down, bottom-up, and hybrid approaches. Ethics Inf. Technol. 2005, 7, 149–155. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7558&rep=rep1&type=pdf (accessed on 10 March 2021). [CrossRef]
- United Nations, General Assembly. Universal Declaration of Human Rights A/RES/3/217A. 1948. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_217(III).pdf (accessed on 11 April 2021).
- Ruby, M.B. Vegetarianism. A blossoming field of study. Appetite 2012, 58, 141–150. Available online: https://vegstudies.univie.ac.at/fileadmin/user_upload/p_foodethik/Ruby__Matthew_2012._Research_Review_Vegetarianism._A_blossoming_field_of_study.pdf (accessed on 10 March 2021). [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019; Available online: https://ipbes.net/global-assessment (accessed on 10 March 2021).
- Kahneman, D. Thinking, Fast and Slow; Farrar, Straus, & Giroux: New York, NY, USA, 2011. [Google Scholar]
- McDevitt, M.A.; Dunn, R.M.; Spetch, M.L.; Ludvig, E.A. When good news leads to bad choices. J. Exp. Anal. Behav. 2016, 105, 23–40. Available online: https://core.ac.uk/download/pdf/208891271.pdf (accessed on 10 March 2021). [CrossRef] [Green Version]
- Tomasik, B. Should We Intervene in Nature? Essays on Reducing Suffering. 2016. Available online: https://reducing-suffering.org/should-we-intervene-in-nature/ (accessed on 10 March 2021).
- Horta, O. Debunking the Idyllic View of Natural Processes: Population Dynamics and Suffering in the Wild. Télos 2010, 17. Available online: https://www.academia.edu/2290959/Debunking_the_Idyllic_View_of_Natural_Processes_Population_Dynamics_and_Suffering_in_the_Wild (accessed on 10 March 2021).
- Simmons, A. Animals, predators, the right to life, and the duty to save lives. Ethics Environ. 2009, 14, 15–27. [Google Scholar] [CrossRef]
- Pearce, D. The Abolitionist Project. 2007. Available online: https://www.abolitionist.com/ (accessed on 10 March 2021).
- Pearce, D. Compassionate biology. 2020. Available online: https://www.gene-drives.com/ (accessed on 10 March 2021).
- Mak, K.K.; Pichika, M.R. Artificial intelligence in drug development: Present status and future prospects. Drug Discov. Today 2019, 24, 773–780. [Google Scholar] [CrossRef]
- Burki, T. A new paradigm for drug development. Lancet Digit. Health 2020, 2, e226. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194950/ (accessed on 10 March 2021). [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziesche, S. AI Ethics and Value Alignment for Nonhuman Animals. Philosophies 2021, 6, 31. https://doi.org/10.3390/philosophies6020031
Ziesche S. AI Ethics and Value Alignment for Nonhuman Animals. Philosophies. 2021; 6(2):31. https://doi.org/10.3390/philosophies6020031
Chicago/Turabian StyleZiesche, Soenke. 2021. "AI Ethics and Value Alignment for Nonhuman Animals" Philosophies 6, no. 2: 31. https://doi.org/10.3390/philosophies6020031
APA StyleZiesche, S. (2021). AI Ethics and Value Alignment for Nonhuman Animals. Philosophies, 6(2), 31. https://doi.org/10.3390/philosophies6020031