Biomimicry for Regenerative Built Environments: Mapping Design Strategies for Producing Ecosystem Services
Abstract
:1. Introduction
1.1. Context: The Need for a New Way to Design Built Environments
1.2. Regenerative Urban Design
1.3. Biomimicry for Regenerative Built Environments
1.4. Systemic Improvement of the Built Environment: Ecosystem Biomimicry
1.5. Mimicking How Ecosystems Work: Process Strategies
1.6. Mimicking What Ecosystems Do: Ecosystem Services
1.7. Ecosystem Services Analysis as a Tool for Regenerative Urban Development
2. Methodology
2.1. The ‘Strategies for Designing Urban Ecosystem Services Diagram’: Aims
2.2. Research Process
2.2.1. Step One: Literature and Design Precedent Review
2.2.2. Step Two: Relational Database Compilation
2.2.3. Step Three: Complex System Visualization
3. Results
4. Discussion
5. Future Work
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hayes, S.; Desha, C.; Gibbs, M. Findings of Case-Study Analysis: System-Level Biomimicry in Built-Environment Design. Biomimetics (Basel) 2019, 4, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grêt-Regamey, A.; Celio, E.; Klein, T.M.; Wissen Hayek, U. Understanding ecosystem services trade-offs with interactive procedural modeling for sustainable urban planning. Landsc. Urban Plan. 2013, 109, 107–116. [Google Scholar] [CrossRef]
- Van Vliet, J.; Eitelberg, D.A.; Verburg, P.H. A global analysis of land take in cropland areas and production displacement from urbanization. Glob. Environ. Chang. 2017, 43, 107–115. [Google Scholar] [CrossRef]
- Ruth, M.; Coelho, D. Understanding and managing the complexity of urban systems under climate change. Clim. Policy 2017, 7, 317–336. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Doughty, M.; Hammond, G. Sustainability and the Built Environment at and Beyond the City Scale. Build. Environ. 2014, 39, 1223–1233. [Google Scholar] [CrossRef]
- De la Rue du Can, S.; Price, L. Sectoral trends in global energy use and greenhouse gas emissions. Energy Policy 2008, 36, 1386. [Google Scholar] [CrossRef] [Green Version]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.; Pirani, A. Global Warming of 1.5 °C; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Barozzi, M.; Lienhard, J.; Zanelli, A.; Monticelli, C. The Sustainability of Adaptive Envelopes: Developments of Kinetic Architecture. Procedia Eng. 2016, 155, 275–284. [Google Scholar] [CrossRef] [Green Version]
- De Vita, M.; Beccarelli, P.; Laurini, E.; De Berardinis, P. Performance Analyses of Temporary Membrane Structures: Energy Saving and CO2 Reduction through Dynamic Simulations of Textile Envelopes. Sustainability 2018, 10, 2548. [Google Scholar] [CrossRef] [Green Version]
- Loonen, R.C.G.M.; Trčka, M.; Cóstola, D.; Hensen, J.L.M. Climate adaptive building shells: State-of-the-art and future challenges. Renew. Sustain. Energy Rev. 2013, 25, 483–493. [Google Scholar] [CrossRef] [Green Version]
- Romano, R.; Aelenei, L.; Aelenei, D.; Mazzuchelli, E.S. What is an adaptive façade? Analysis of Recent Terms and definitions from an international perspective. J. Facade Des. Eng. 2018, 6, 65–76. [Google Scholar]
- Chapin, F.S.; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Diaz, S. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Pedersen Zari, M. Ecosystem Services Analysis in Response to Biodiversity Loss Caused by the Built Environment. SAPI EN. S. Surv. Perspect. Integr. Environ. Soc. 2014, 7. Available online: http://journals.openedition.org/sapiens/1684 (accessed on 12 December 2019).
- Rastandeh, A.; Brown, D.K.; Pedersen Zari, M. Biodiversity conservation in urban environments: A review on the importance of spatial patterning of landscapes. In Proceedings of the Ecocity World Summit, Melbourne, Australia, 12–14 July 2017. [Google Scholar]
- Pedersen Zari, M. The importance of urban biodiversity—An ecosystem services approach. Biodivers. Int. J. 2018, 2, 357–360. [Google Scholar] [CrossRef]
- Cole, R.J. Regenerative design and development: Current theory and practice. Build. Res. Inf. 2012, 40, 1–6. [Google Scholar] [CrossRef]
- Reed, B. Shifting from ‘Sustainability’ to Regeneration. Build. Res. Inf. 2017, 35, 674–680. [Google Scholar] [CrossRef]
- Mang, P.; Reed, B. Designing from place: A regenerative framework and methodology. Build. Res. Inf. 2012, 40, 23–38. [Google Scholar] [CrossRef]
- Hes, D.; du Plessis, C. Designing for Hope: Pathways to Regenerative Sustainability; Routledge: Oxon, UK, 2014. [Google Scholar]
- Pedersen Zari, M.; Connolly, P.; Southcombe, S. Ecologies Design: Transforming Architecture, Landscape, and Urbanism; Routledge: Oxon, UK, 2020. [Google Scholar]
- Pedersen Zari, M. Regenerative Urban Design and Ecosystem Biomimicry; Routledge: Oxon, UK, 2018. [Google Scholar]
- Vincent, J.F.V.; Bogatyreva, O.A.; Bogatyrev, N.R.; Bowyer, A.; Pahl, A.-K. Biomimetics—Its practice and theory. J. R. Soc. Interface 2006, 3, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Baumeister, D.; Pedersen Zari, M.; Hayes, S. Biomimicry: An opportunity for buildings to relate to place. In Ecologies Design: Transforming Architecture, Landscape, and Urbanism; Pedersen Zari, M., Connolly, P., Southcombe, S., Eds.; Routledge: Oxon, UK, 2020. [Google Scholar]
- Benyus, J. Biomimicry—Innovation Inspired by Nature; Harper Collins Publishers: New York, NY, USA, 1997. [Google Scholar]
- Pawlyn, M. Biomimicry in Architecture; RIBA Publishing: London, UK, 2011. [Google Scholar]
- Vogel, S. Cat’s Paws and Catapults; Norton and Company: New York, NY, USA, 1998. [Google Scholar]
- Pedersen Zari, M. Can Biomimicry be a Useful Tool in Design for Climate Change Adaptation and Mitigation? In Biotechnologies and Biomimetics for Civil Engineering; Pacheco-Torgal, F., Labrincha, J.A., Diamanti, M.V., Yu, C.P., Lee, H.K., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 81–113. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C.S. Panarchy. Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389. [Google Scholar] [CrossRef]
- Valentine, S.V. Kalundborg Symbiosis: Fostering progressive innovation in environmental networks. J. Clean. Prod. 2016, 118, 65–77. [Google Scholar] [CrossRef]
- Jacobsen, N.B. Industrial symbiosis in Kalundborg, Denmark: A quantitative assessment of economic and environmental aspects. J. Ind. Ecol. 2006, 10, 239. [Google Scholar] [CrossRef]
- Pedersen Zari, M. Ecosystem processes for biomimetic architectural and urban design. Archit. Sci. Rev. 2015, 58, 106–119. [Google Scholar] [CrossRef]
- Birkeland, J. Design for Eco-Services Part A—Environmental Services. Environ. Design Guide 2009, DES 77, 1–12. [Google Scholar]
- Pedersen Zari, M. Ecosystem services analysis: Incorporating an understanding of ecosystem services into built environment design and materials selection. In Materials for a Healthy, Ecological and Sustainable Built Environment: Principles for Evaluation; Petrović, E.K., Vale, B., Pedersen Zari, M., Eds.; Woodhead: Duxford, UK, 2017; pp. 29–64. [Google Scholar]
- Pedersen Zari, M. Utilizing relationships between ecosystem services, built environments, and building materials. In Materials for a Healthy, Ecological and Sustainable Built Environment: Principles for Evaluation; Petrović, E.K., Vale, B., Pedersen Zari, M., Eds.; Woodhead: Duxford, UK, 2017; pp. 1–28. [Google Scholar]
- Potschin, M.; Haines-Young, R. Defining and measuring ecosystem services. In Routledge Handbook of Ecosystem Services, 1st ed.; Potschin, M., Haines-Young, R., Fish, R., Turner, R.K., Eds.; Routledge: London, UK; New York, NY, USA, 2016; pp. 25–44. [Google Scholar]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Zurek, M.B. Ecosystems and Human Well-Being: Synthesis. Millenium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Martín-López, B.; Gómez-Baggethun, E.; García-Llorente, M.; Montes, C. Trade-offs across value-domains in ecosystem services assessment. Ecol. Indic. 2014, 37, 220–228. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Elmqvist, T.; Gomez-Baggethun, E.; Langemeyer, J. Ecosystem services provided by urban green infrastructure. In Routledge Handbook of Ecosystem Services, 1st ed.; Potschin, M., Haines-Young, R., Fish, R., Turner, R.K., Eds.; Routledge: London, UK; New York, NY, USA, 2016; pp. 452–464. [Google Scholar]
- Foley, R.; Kistemann, T. Blue space geographies: Enabling health in place. Health Place 2015, 35, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Escobedo, F.J.; Giannico, V.; Jim, C.Y.; Sanesi, G.; Lafortezza, R. Urban forests, ecosystem services, green infrastructure and nature-based solutions: Nexus or evolving metaphors? Urban For. Urban Green. 2019, 37, 3–12. [Google Scholar] [CrossRef]
- Blaschke, P.; Chapman, R.; Gyde, E.; Howden-Chapman, P.; Ombler, J.; Pedersen Zari, M.; Perry, M.; Randal, E. Green Space in Wellington’s Central City: Current Provision, and Design for Future Wellbeing, in A Report for Wellington City Council; New Zealand Centre for Sustainable Cities: Wellington, New Zealand, 2019. [Google Scholar]
- O’Connell, M.; Hargreaves, R. Climate Change Adaptation Study Report No. 130; BRANZ: Wellington, New Zealand, 2004. [Google Scholar]
- Hes, D.; Bush, J. Designing for living environments using regenerative development: A case study of The Paddock. In Ecologies Design: Transforming Architecture, Landscape, and Urbanism; Pedersen Zari, M., Connolly, P., Southcombe, S., Eds.; Routledge: Oxon, UK, 2020. [Google Scholar]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Rau, A.L.; Burkhardt, V.; Dorninger, C.; Hjort, C.; Ibe, K.; Keßler, L.; Kristensen, J.A.; McRobert, A.; Sidemo-Holm, W.; Zimmermann, H.; et al. Temporal patterns in ecosystem services research: A review and three recommendations. Ambio 2019, 1–17. [Google Scholar] [CrossRef]
- Pedersen Zari, M. Ecosystem services impacts as part of building materials selection criteria. Mater. Sustain. Today 2019, 3-4, 1–10. [Google Scholar] [CrossRef]
- Lee, H.; Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 2016, 66 (Suppl. C), 340–351. [Google Scholar] [CrossRef]
- Mouchet, M.A.; Lamarque, P.; Martín-López, B.; Crouzat, E.; Gos, P.; Byczek, C.; Lavorel, S. An interdisciplinary methodological guide for quantifying associations between ecosystem services. Glob. Environ. Chang. 2014, 28 (Suppl. C), 298–308. [Google Scholar] [CrossRef]
- Howe, C.; Suich, H.; Vira, B.; Mace, G.M. Creating win-wins from trade-offs? Ecosystem services for human well-being: A meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob. Environ. Chang. 2014, 28 (Suppl. C), 263–275. [Google Scholar] [CrossRef] [Green Version]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rau, A.-L.; von Wehrden, H.; Abson, D.J. Temporal Dynamics of Ecosystem Services. Ecol. Econ. 2018, 151, 122–130. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610, 997–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauleit, S.; Zölch, T.; Hansen, R.; Randrup, T.B.; Konijnendijk van den Bosch, C. Nature-Based Solutions and Climate Change—Four Shades of Green. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 29–49. [Google Scholar] [CrossRef]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. (Eds.) Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016; p. 97. [Google Scholar] [CrossRef] [Green Version]
- Pedersen Zari, M.; Blaschke, P.M.; Livesey, C.; Martinez-Almoyna Gual, C.; Weaver, S.; Archie, K.M.; Renwick, J. Ecosystem-Based Adaptation (EbA) Project Implementation Plans, Port Vila, Vanuatu; Victoria University of Wellington: Wellington, New Zealand, 2017. [Google Scholar]
- Daniel, T.C.; Muhar, A.; Arnberger, A.; Aznar, O.; Boyd, J.W.; Chan, K.M.A.; von der Dunk, A. Contributions of cultural services to the ecosystem services agenda. Proc. Natl. Acad. Sci. USA 2012, 109, 8812–8819. [Google Scholar] [CrossRef] [Green Version]
- Suoheimo, M.; Miettinen, S. Complexity Mapping and Mess Mapping Tools for Decision-Making in Transportation and Mass Development. In Proceedings of the 21st DMI: Academic Design Management Conference, London, UK, 1–2 August 2018. [Google Scholar]
- Liebovitch, L. Automated Quantitative Visualization. In Proceedings of the Complexity Mapping in Practice and Research: Methods, Trends, and Future Directions, Honolulu, HI, USA, 20–25 July 2014; Available online: https://conflictinnovationlab.files.wordpress.com/2014/06/dst_visualization_23june2014.pdf (accessed on 11 December 2019).
- Stair, N. Bubbl. us–Web 2.0 Mind Mapping. Compass J. Learn. Teach. 2013, 8, 1–4. [Google Scholar]
- Adzic, G.; Chatley, R. Serverless computing: Economic and architectural impact. In Proceedings of the 11th Joint Meeting on Foundations of Software Engineering, Paderborn, Germany, 4–8 September 2017. [Google Scholar]
- 7Vortex. Everything is Connected. Available online: https://www.sevenvortex.com/ (accessed on 26 October 2019).
- Daily, G.C. Nature’s Services Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ESII Tool. Available online: https://www.esiitool.com/ (accessed on 26 October 2019).
- Bagstad, K.J.; Semmens, D.J.; Waage, S.; Winthrop, R. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst. Serv. 2013, 5, 27–39. [Google Scholar] [CrossRef]
Supporting Services | Habitat provision | Cultural services | Aesthetic & artistic inspiration - Aesthetic value - Artistic inspiration | ||
Nutrient cycling - Retention of nutrients - Regulation of biogeochemical cycles | Recreation and psychological wellbeing - Sport - Outdoor activities - Tourism - Socialization - Relaxation & psychological benefit | ||||
Species Maintenance | Sense of place and cultural diversity - Celebration of cultural diversity/history - Sense of place | ||||
Fixation of solar energy | Spiritual and religious inspiration | ||||
Soil building - Soil formation - Renewal of soil fertility - Soil quality control - Soil retention | Education and knowledge - Educational - Inspiration & innovation - Cognitive development - Knowledge building | ||||
Regulation Services | Disturbance prevention - Noise - Wave - Erosion - Earthquake - Drought - Flood/Storm events - Wind | Provisioning Services | Provision of fuel and energy - Water energy - Wind energy - Active/passive solar energy - Human body heat - Hydrogen energy - Biomass energy - Geothermal energy | ||
Climate regulation - UV protection - Moderation of temperature - Climate adaptation strategies - GHG mitigation | Provision of fresh water - Drinking water - Sanitation - Irrigation - Industrial processes - Recreational | ||||
Purification - Water purification - Soil purification - Air purification | Provision of food - Small to large scale urban agriculture | ||||
Decomposition - Biodegradation - Material reuse/recycling - Consumption reduction | Biochemicals - Medicine - Natural chemicals | ||||
Biological control - Control of invasive species - Disease/pest regulation | Raw materials | ||||
Pollination | Genetic resources |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedersen Zari, M.; Hecht, K. Biomimicry for Regenerative Built Environments: Mapping Design Strategies for Producing Ecosystem Services. Biomimetics 2020, 5, 18. https://doi.org/10.3390/biomimetics5020018
Pedersen Zari M, Hecht K. Biomimicry for Regenerative Built Environments: Mapping Design Strategies for Producing Ecosystem Services. Biomimetics. 2020; 5(2):18. https://doi.org/10.3390/biomimetics5020018
Chicago/Turabian StylePedersen Zari, Maibritt, and Katharina Hecht. 2020. "Biomimicry for Regenerative Built Environments: Mapping Design Strategies for Producing Ecosystem Services" Biomimetics 5, no. 2: 18. https://doi.org/10.3390/biomimetics5020018
APA StylePedersen Zari, M., & Hecht, K. (2020). Biomimicry for Regenerative Built Environments: Mapping Design Strategies for Producing Ecosystem Services. Biomimetics, 5(2), 18. https://doi.org/10.3390/biomimetics5020018