The Spine: A Strong, Stable, and Flexible Structure with Biomimetics Potential
Abstract
:1. Introduction
Vertebral Anatomy
2. A Biomechanical Perspective on Spine Evolution
2.1. Jawless Fish
2.2. Jawed Fish
2.3. Tetrapods
2.4. Spine Regionalization and Specialization
2.5. Bipedalism
3. Embryology and Development of the Spine
4. Discussion and Implications for Biomimetics
Author Contributions
Funding
Conflicts of Interest
References
- Baillie, J.; Hilton-Taylor, C.; Stuart, S.N. 2004 IUCN Red List of Threatened Species: A Global Species Assessment. Available online: https://portals.iucn.org/library/node/9830 (accessed on 26 August 2019).
- Galbusera, F. The spine: its evolution, function, and shape. In Biomechanics of the Spine: Basic Concepts, Spinal Disorders and Treatments, 1st ed.; Galbusera, F., Wilke, H.-J., Eds.; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Pough, F.H.; Janis, C.M.; Heiser, J.B. Vertebrate Life, 5th ed.; Prentice Hall Upper: Saddle River, NJ, USA, 1999; Volume 733. [Google Scholar]
- Jerome, C.; Hoch, B.; Carlson, C.S. Skeletal system. In Comparative Anatomy and Histology, 2nd ed.; Treuting, P., Dintzis, S., Montine, K.S., Eds.; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Kardong, K.V. Vertebrates: Comparative Anatomy, Function, Evolution, 6th ed.; McGraw-Hill Education: New York, NY, USA, 2011. [Google Scholar]
- Owen, R. On the Archetype and Homologies of the Vertebrate Skeleton, 1st ed.; John van Voorst, Paternoster Row: London, UK, 1848. [Google Scholar]
- Parker, W.K. On the skeleton of the marsipobranch fishes. Part I. The Myxinoids (Myxine and Bdellostoma). Philos. Trans. R. Soc. Lond. 1883, 174, 373–409. [Google Scholar]
- Ota, K.G.; Oisi, Y.; Fujimoto, S.; Kuratani, S. The origin of developmental mechanisms underlying vertebral elements: Implications from hagfish evo-devo. Zoology 2014, 117, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Janvier, P. Comparative anatomy: All vertebrates do have vertebrae. Curr. Biol. 2011, 21, R661–R663. [Google Scholar] [CrossRef] [PubMed]
- Stensiö, E.A. The Downtonian and Devonian Vertebrates of Spitsbergen: Part I, Family Cephalaspidae, 1st ed.; Hos Jacob Dybwad: Oslo, Norway, 1927. [Google Scholar]
- Bardack, D.; Zangerl, R. First fossil lamprey: A record from the Pennsylvanian of Illinois. Science 1968, 162, 1265–1267. [Google Scholar] [CrossRef] [PubMed]
- Janvier, P. Early jawless vertebrates and cyclostome origins. Zool. Sci. 2008, 25, 1045–1057. [Google Scholar] [CrossRef] [PubMed]
- Heimberg, A.M.; Cowper-Sal-Lari, R.; Semon, M.; Donoghue, P.C.; Peterson, K.J. microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc. Natl. Acad. Sci. USA 2010, 107, 19379–19383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, M.E.; Chandsawangbhuwana, C. Motif analysis of amphioxus, lamprey and invertebrate estrogen receptors: Toward a better understanding of estrogen receptor evolution. Biochem. Biophys. Res. Commun. 2008, 371, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Green, S.A.; Bronner, M.E. The lamprey: A jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits. Differentiation 2014, 87, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Shimeld, S.M.; Donoghue, P.C. Evolutionary crossroads in developmental biology: Cyclostomes (lamprey and hagfish). Development 2012, 139, 2091–2099. [Google Scholar] [CrossRef]
- Martin, W.M.; Bumm, L.A.; McCauley, D.W. Development of the viscerocranial skeleton during embryogenesis of the sea lamprey, Petromyzon Marinus. Dev. Dyn. 2009, 238, 3126–3138. [Google Scholar] [CrossRef]
- Carroll, R.L. Vertebrate Paleontology and Evolution, 1st ed.; W.H. Freeman & Co: New York, NY, USA, 1987. [Google Scholar]
- Long, J.H., Jr.; Koob-Emunds, M.; Sinwell, B.; Koob, T.J. The notochord of hagfish Myxine glutinosa: Visco-elastic properties and mechanical functions during steady swimming. J. Exp. Biol. 2002, 205, 3819–3831. [Google Scholar] [PubMed]
- Williams, T.L.; Bowtell, G.; Carling, J.C.; Sigvardt, K.A.; Curtin, N.A. Interactions between muscle activation, body curvature and the water in the swimming lamprey. Symp. Soc. Exp. Biol. 1995, 49, 49–59. [Google Scholar] [PubMed]
- Zhu, M.; Yu, X.; Ahlberg, P.E.; Choo, B.; Lu, J.; Qiao, T.; Qu, Q.; Zhao, W.; Jia, L.; Blom, H.; et al. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 2013, 502, 188. [Google Scholar] [CrossRef] [PubMed]
- Shadwick, R.E.; Lauder, G.V. Fish Physiology: Fish Biomechanics, 1st ed.; Academic Press: Cambridge, MA, USA, 2006; Volume 23. [Google Scholar]
- Summers, A.P.; Long, J.H., Jr. Skin and bones, sinew and gristle: The mechanical behavior of fish skeletal tissues. Fish Physiol. 2005, 23, 141–177. [Google Scholar]
- Grotmol, S.; Kryvi, H.; Keynes, R.; Krossøy, C.; Nordvik, K.; Totland, G.K. Stepwise enforcement of the notochord and its intersection with the myoseptum: An evolutionary path leading to development of the vertebra? J. Anat. 2006, 209, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Miles, R.S. Remarks on the vertebral column and caudal fin of acanthodian fishes. Lethaia 1970, 3, 343–362. [Google Scholar] [CrossRef]
- Chevrinais, M.; Sire, J.; Cloutier, R. Unravelling the ontogeny of a Devonian early gnathostome, the “acanthodian” Triazeugacanthus affinis (eastern Canada). PeerJ 2017, 5, e3969. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, P.C.; Sansom, I.J. Origin and early evolution of vertebrate skeletonization. Microsc. Res. Tech. 2002, 59, 352–372. [Google Scholar] [CrossRef]
- Koob, T.; Long, J., Jr. The vertebrate body axis: Evolution and mechanical function. Am. Zool. 2000, 40, 1–18. [Google Scholar] [CrossRef]
- Maxwell, E.E.; Furrer, H.; Sánchez-Villagra, M.R. Exceptional fossil preservation demonstrates a new mode of axial skeleton elongation in early ray-finned fishes. Nat. Commun. 2013, 4, 2570. [Google Scholar] [CrossRef] [Green Version]
- Bird, N.C.; Mabee, P.M. Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Dev. Dyn. 2003, 228, 337–357. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, B. Osteichthyan vertebrae. Zool. J. Linn. Soc. 1967, 47, 185–195. [Google Scholar] [CrossRef]
- Clothier, C.R. A key to some southern California fishes based on vertebral characters. Fish Bull. Calif. Dept. Nat. Res. Div. Fish Game 1950, 79, 1–83. [Google Scholar]
- Long, J.A.; Gordon, M.S. The greatest step in vertebrate history: A paleobiological review of the fish-tetrapod transition. Physiol. Biochem. Zool. 2004, 77, 700–719. [Google Scholar] [CrossRef] [PubMed]
- Young, M.; Selleri, L.; Capellini, T.D. Genetics of scapula and pelvis development: an evolutionary perspective. Curr. Top. Dev. Biol. 2019, 132, 311–349. [Google Scholar]
- Shubin, N.H.; Daeschler, E.B.; Jenkins, F.A., Jr. The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature 2006, 440, 764. [Google Scholar] [CrossRef] [PubMed]
- Pierce, S.E.; Clack, J.A. Three-dimensional limb joint mobility in the early tetrapod Ichthyostega. Nature 2012, 486, 523–526. [Google Scholar] [CrossRef]
- Boisvert, C.A. The pelvic fin and girdle of Panderichthys and the origin of tetrapod locomotion. Nature 2005, 438, 1145. [Google Scholar] [CrossRef]
- Clack, J. An early tetrapod from ‘Romer’s Gap’. Nature 2002, 418, 72. [Google Scholar] [CrossRef]
- Clack, J.; Holmes, R. The braincase of the anthracosaur Archeria crassidisca with comments on the interrelationships of primitive tetrapods. Palaeontology 1988, 31, 85–107. [Google Scholar]
- Zheng, X.; Wang, X.; O’connor, J.; Zhou, Z. Insight into the early evolution of the avian sternum from juvenile enantiornithines. Nat. Commun. 2012, 3, 1116. [Google Scholar] [CrossRef] [PubMed]
- Vitt, L.J.; Caldwell, J.P. Herpetology: An Introductory Biology of Amphibians and Reptiles, 4th ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Bellairs, A.; Jenkin, C. The skeleton of birds. In Biology and Comparative Physiology of Birds, 1st ed.; Marshall, A.J., Ed.; Academic Press: Cambridge, MA, USA, 1960. [Google Scholar]
- Blob, R.W.; Espinoza, N.R.; Butcher, M.T.; Lee, A.H.; D’Amico, A.R.; Baig, F.; Sheffield, K.M. Diversity of limb-bone safety factors for locomotion in terrestrial vertebrates: Evolution and mixed chains. Integr. Comp. Biol. 2014, 54, 1058–1071. [Google Scholar] [CrossRef] [PubMed]
- Rockwell, H.; Evans, F.G.; Pheasant, H.C. The comparative morphology of the vertebrate spinal column. Its form as related to function. J. Morphol. 1938, 63, 87–117. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Duncan, N.A.; Burke, D.L. The effect of facet geometry on the axial torque-rotation response of lumbar motion segments. Spine 1990, 15, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Moon, B.R. Testing an inference of function from structure: Snake vertebrae do the twist. J. Morphol. 1999, 241, 217–225. [Google Scholar] [CrossRef]
- Carpenter, K.; Tidwell, V. Thunder-Lizards: The Sauropodomorph Dinosaurs, 1st ed.; Indiana University Press: Bloomington, IN, USA, 2005. [Google Scholar]
- Buchholtz, E.A.; Schur, S.A. Vertebral osteology in Delphinidae (cetacea). Zool. J. Linn. Soc. 2004, 140, 383–401. [Google Scholar] [CrossRef]
- Rage, J.C.; Folie, A.; Rana, R.S.; Singh, H.; Rose, K.D.; Smith, T. A diverse snake fauna from the early Eocene of Vastan Lignite Mine, Gujarat, India. Acta Paleontol. Pol. 2008, 53, 391–403. [Google Scholar] [CrossRef]
- Ward, A.B.; Brainerd, E.L. Evolution of axial patterning in elongate fishes. Biol. J. Linn. Soc. 2007, 90, 97–116. [Google Scholar] [CrossRef]
- Ahlberg, P.E.; Clack, J.A.; Blom, H. The axial skeleton of the Devonian tetrapod Ichthyostega. Nature 2005, 437, 137–140. [Google Scholar] [CrossRef]
- Ericsson, R.; Knight, R.; Johanson, Z. Evolution and development of the vertebrate neck. J. Anat. 2013, 222, 67–78. [Google Scholar] [CrossRef]
- Daeschler, E.B.; Shubin, N.H.; Jenkins, F.A., Jr. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 2006, 440, 757. [Google Scholar] [CrossRef] [PubMed]
- Burke, A.C.; Nelson, C.E.; Morgan, B.A.; Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 1995, 121, 333–346. [Google Scholar] [PubMed]
- Galis, F. Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer. J. Exp. Zool. 1999, 285, 19–26. [Google Scholar] [CrossRef]
- Sumida, S.S.; Lombard, R.E. The atlas-axis complex in the late Paleozoic genus Diadectes and the characteristics of the atlas-axis complex across the amphibian to amniote transition. J. Paleontol. 1991, 65, 973–983. [Google Scholar] [CrossRef]
- Panjabi, M.; Dvorak, J.; Duranceau, J.; Yamamoto, I.; Gerber, M.; Rauschning, W.; Bueff, H.U. Three-dimensional movements of the upper cervical spine. Spine 1988, 13, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Lovette, I.J.; Fitzpatrick, J.W. Handbook of Bird Biology, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Kambic, R.E.; Biewener, A.A.; Pierce, S.E. Experimental determination of three-dimensional cervical joint mobility in the avian neck. Front. Zool. 2017, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Warrick, D.; Bundle, M.; Dial, K. Bird maneuvering flight: Blurred bodies, clear heads. Integr. Comp. Biol. 2002, 42, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Tully, T.N.; Dorrestein, G.M.; Jones, A.K. Handbook of Avian Medicine, 2nd ed.; Saunders Ltd.: Philadelphia, PA, USA, 2009. [Google Scholar]
- Tambussi, C.P.; De Mendoza, R.; Degrange, F.J.; Picasso, M.B. Flexibility along the neck of the Neogene terror bird Andalgalornis steulleti (Aves Phorusrhacidae). PLoS ONE 2012, 7, e37701. [Google Scholar] [CrossRef]
- Jones, K.E.; Benitez, L.; Angielczyk, K.D.; Pierce, S.E. Adaptation and constraint in the evolution of the mammalian backbone. BMC Evol. Biol. 2018, 18, 172. [Google Scholar] [CrossRef]
- Schilling, N. Evolution of the axial system in craniates: Morphology and function of the perivertebral musculature. Front. Zool. 2011, 8, 4. [Google Scholar] [CrossRef]
- Narita, Y.; Kuratani, S. Evolution of the vertebral formulae in mammals: A perspective on developmental constraints. J. Exp. Zool. Part B Mol. Dev. Evol. 2005, 304, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.E.; German, R.Z. Ontogenetic allometry in the thoracolumbar spine of mammal species with differing gait use. Evol. Dev. 2014, 16, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Du Brul, E.L. The general phenomenon of bipedalism. Am. Zool. 1962, 2, 205–208. [Google Scholar] [CrossRef]
- Snyder, R.C. Bipedal locomotion of the lizard Basiliscus basiliscus. Copeia 1949, 1949, 129–137. [Google Scholar] [CrossRef]
- Bartholomew, G.A.; Caswell, H.H. Locomotion in kangaroo rats and its adaptive significance. J. Mammal. 1951, 32, 155–169. [Google Scholar] [CrossRef]
- Thompson, S.D.; MacMillen, R.E.; Burke, E.M.; Taylor, C.R. The energetic cost of bipedal hopping in small mammals. Nature 1980, 287, 223. [Google Scholar] [CrossRef] [PubMed]
- Prost, J.H. Origin of bipedalism. Am. J. Phys. Anthropol. 1980, 52, 175–189. [Google Scholar] [CrossRef]
- Le Huec, J.C.; Saddiki, R.; Franke, J.; Rigal, J.; Aunoble, S. Equilibrium of the human body and the gravity line: The basics. Eur. Spine J. 2011, 20 (Suppl. 5), 558–563. [Google Scholar] [CrossRef]
- Kubo, T.; Kubo, M.O. Associated evolution of bipedality and cursoriality among Triassic archosaurs: A phylogenetically controlled evaluation. Paleobiology 2012, 38, 474–485. [Google Scholar] [CrossRef]
- Sander, P.M.; Christian, A.; Clauss, M.; Fechner, R.; Gee, C.T.; Griebeler, E.; Gunga, H.; Hummel, J.; Mallison, H.; Perry, S.F. Biology of the sauropod dinosaurs: The evolution of gigantism. Biol. Rev. 2011, 86, 117–155. [Google Scholar] [CrossRef]
- Bonnan, M.F. The Bare Bones: An Unconventional Evolutionary History of the Skeleton; Indiana University Press: Bloomington, IN, USA, 2016. [Google Scholar]
- Jenkins, F., Jr. The postcranial skeleton of African cynodonts. Bull. Peabody Mus. Nat. Hist. 1971, 36, 1–216. [Google Scholar]
- Romer, A.S. Osteology of the Reptiles; Krieger Publishing Company: Malabar, FL, USA, 1956. [Google Scholar]
- Bates, K.; Schachner, E. Disparity and convergence in bipedal archosaur locomotion. J. R. Soc. Interface 2011, 9, 1339–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casinos, A.; Cubo, J. Avian long bones, flight and bipedalism. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2001, 131, 159–167. [Google Scholar] [CrossRef]
- Filler, A.G. Emergence and optimization of upright posture among hominiform hominoids and the evolutionary pathophysiology of back pain. Neurosurg. Focus 2007, 23, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Dreischarf, M.; Rohlmann, A.; Bergmann, G.; Zander, T. Optimised loads for the simulation of axial rotation in the lumbar spine. J. Biomech. 2011, 44, 2323–2327. [Google Scholar] [CrossRef] [PubMed]
- Rohlmann, A.; Zander, T.; Rao, M.; Bergmann, G. Applying a follower load delivers realistic results for simulating standing. J. Biomech. 2009, 42, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Wilke, H.J.; Rohlmann, A.; Neller, S.; Graichen, F.; Claes, L.; Bergmann, G. ISSLS prize winner: A novel approach to determine trunk muscle forces during flexion and extension: A comparison of data from an In Vitro experiment and In Vivo measurements. Spine 2003, 28, 2585–2593. [Google Scholar] [CrossRef]
- Reitmaier, S.; Schmidt, H.; Ihler, R.; Kocak, T.; Graf, N.; Ignatius, A.; Wilke, H. Preliminary investigations on intradiscal pressures during daily activities: An in vivo study using the merino sheep. PLoS ONE 2013, 8, e69610. [Google Scholar] [CrossRef]
- Boszczyk, B.M.; Boszczyk, A.A.; Putz, R. Comparative and functional anatomy of the mammalian lumbar spine. Anat. Rec. 2001, 264, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Sockol, M.D.; Raichlen, D.A.; Pontzer, H. Chimpanzee locomotor energetics and the origin of human bipedalism. Proc. Natl. Acad. Sci. USA 2007, 104, 12265–12269. [Google Scholar] [CrossRef] [Green Version]
- Stanford, C.B. Arboreal bipedalism in wild chimpanzees: Implications for the evolution of hominid posture and locomotion. Am. J. Phys. Anthropol. 2006, 129, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Gebo, D.L. Climbing, brachiation, and terrestrial quadrupedalism: Historical precursors of hominid bipedalism. Am. J. Phys. Anthropol. 1996, 101, 55–92. [Google Scholar] [CrossRef]
- Sibley, C.G.; Ahlquist, J.E. DNA hybridization evidence of hominoid phylogeny: Results from an expanded data set. J. Mol. Evol. 1987, 26, 99–121. [Google Scholar] [CrossRef] [PubMed]
- Sparrey, C.J.; Bailey, J.F.; Safaee, M.; Clark, A.J.; Lafage, V.; Schwab, F.; Smith, J.S.; Ames, C.P. Etiology of lumbar lordosis and its pathophysiology: A review of the evolution of lumbar lordosis, and the mechanics and biology of lumbar degeneration. Neurosurg. Focus 2014, 36, E1. [Google Scholar] [CrossRef] [PubMed]
- Been, E.; Gómez-Olivencia, A.; Kramer, P.A. Lumbar lordosis of extinct hominins. Am. J. Phys. Anthropol. 2012, 147, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Higgins, R.W.; Ruff, C.B. The effects of distal limb segment shortening on locomotor efficiency in sloped terrain: Implications for neandertal locomotor behavior. Am. J. Phys. Anthropol. 2011, 146, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Vialle, R.; Levassor, N.; Rillardon, L.; Templier, A.; Skalli, W.; Guigui, P. Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J. Bone Jt. Surg. 2005, 87, 260–267. [Google Scholar] [CrossRef]
- Mac-Thiong, J.; Berthonnaud, É.; Dimar, J.R.; Betz, R.R.; Labelle, H. Sagittal alignment of the spine and pelvis during growth. Spine 2004, 29, 1642–1647. [Google Scholar] [CrossRef]
- Been, E.; Gómez-Olivencia, A.; Kramer, P.A. Spinal Evolution. Morphology, Function, and Pathology of the Spine in Hominoid Evolution, 1st ed.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- White, A.A.; Panjabi, M.M. Clinical Biomechanics of the Spine, 2nd ed.; Lippincott Williams & Wilkins: Philadeplhia, PA, USA, 1990. [Google Scholar]
- El-Rich, M.; Shirazi-Adl, A.; Arjmand, N. Muscle activity, internal loads, and stability of the human spine in standing postures: Combined model and In Vivo studies. Spine 2004, 29, 2633–2642. [Google Scholar] [CrossRef]
- Crisco, J.J.; Panjabi, M.M. Postural biomechanical stability and gross muscular architecture in the spine. In Multiple Muscle Systems, 1st ed.; Winters, J.M., Woo, S.L.Y., Eds.; Springer: New York, NY, USA, 1990. [Google Scholar]
- Lovejoy, C.O. The natural history of human gait and posture: Part 1. Spine and pelvis. Gait Posture 2005, 21, 95–112. [Google Scholar]
- O’Rahilly, R.; Müller, F. Human Embryology & Teratology, 3rd ed.; Wiley-Liss: New York, NY, USA, 1996. [Google Scholar]
- Slack, J.M. Essential Developmental Biology, 2nd ed.; John Wiley & Sons: Philadelphia, PA, USA, 2009. [Google Scholar]
- Kaplan, K.M.; Spivak, J.M.; Bendo, J.A. Embryology of the spine and associated congenital abnormalities. Spine J. 2005, 5, 564–576. [Google Scholar] [CrossRef] [PubMed]
- Corallo, D.; Trapani, V.; Bonaldo, P. The notochord: Structure and functions. Cell Mol. Life Sci. 2015, 72, 2989–3008. [Google Scholar] [CrossRef] [PubMed]
- Nolting, D.; Hansen, B.F.; Keeling, J.; Kjær, I. Prenatal development of the normal human vertebral corpora in different segments of the spine. Spine 1998, 23, 2265–2271. [Google Scholar] [CrossRef] [PubMed]
- Lawson, L.Y.; Harfe, B.D. Developmental mechanisms of intervertebral disc and vertebral column formation. Wiley Interdiscip. Rev. Dev. Biol. 2017, 6. [Google Scholar] [CrossRef]
- Alkhatib, B.; Ban, G.I.; Williams, S.; Serra, R. IVD development: Nucleus pulposus development and sclerotome specification. Curr. Mol. Biol. Rep. 2018, 4, 132–141. [Google Scholar] [CrossRef]
- Szpinda, M.; Baumgart, M.; Szpinda, A.; Wozniak, A.; Mila-Kierzenkowska, C. Cross-sectional study of the neural ossification centers of vertebrae C1-S5 in the human fetus. Surg. Radiol. Anat. 2013, 35, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Jinkins, J.R. Atlas of Neuroradiologic Embryology, Anatomy, and Variants, 1st ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000. [Google Scholar]
- Budorick, N.E.; Pretorius, D.H.; Grafe, M.R.; Lou, K.V. Ossification of the fetal spine. Radiology 1991, 181, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Stemple, D.L. Structure and function of the notochord: An essential organ for chordate development. Development 2005, 132, 2503–2512. [Google Scholar] [CrossRef]
- Holland, L.; Laudet, V.; Schubert, M. The chordate amphioxus: An emerging model organism for developmental biology. Cell Mol. Life Sci. 2004, 61, 2290–2308. [Google Scholar] [CrossRef]
- Qian, G.; Zhu, B.; Liao, X.; Zhai, H.; Srinivasan, A.; Fritz, N.J.; Cheng, Q.; Ning, M.; Qie, B.; Li, Y. Bioinspired, Spine-Like, Flexible, Rechargeable Lithium-Ion Batteries with High Energy Density. Adv. Mater. 2018, 30, 1704947. [Google Scholar] [CrossRef]
- Bin, L.; Xuewen, R.; Yibin, L. Review and analysis of quadruped robots with articulated spine. In Proceedings of the 26th Chinese Control and Decision Conference (2014 CCDC), Changsha, China, 31 May–2 June 2014. [Google Scholar]
- Asano, Y.; Okada, K.; Inaba, M. Design principles of a human mimetic humanoid: Humanoid platform to study human intelligence and internal body system. Sci. Robot. 2017, 2, eaaq0899. [Google Scholar] [CrossRef]
- Metta, G.; Natale, L.; Nori, F.; Sandini, G.; Vernon, D.; Fadiga, L.; Von Hofsten, C.; Rosander, K.; Lopes, M.; Santos-Victor, J. The iCub humanoid robot: An open-systems platform for research in cognitive development. Neural Netw. 2010, 23, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- Bellicoso, C.D.; Bjelonic, M.; Wellhausen, L.; Holtmann, K.; Günther, F.; Tranzatto, M.; Fankhauser, P.; Hutter, M. Advances in real—World applications for legged robots. J. Field Robot. 2018, 35, 1311–1326. [Google Scholar] [CrossRef]
- Karakasiliotis, K.; Thandiackal, R.; Melo, K.; Horvat, T.; Mahabadi, N.K.; Tsitkov, S.; Cabelguen, J.; Ijspeert, A.J. From cineradiography to biorobots: An approach for designing robots to emulate and study animal locomotion. J. R. Soc. Interface 2016, 13, 20151089. [Google Scholar] [CrossRef] [PubMed]
- Nyakatura, J.A.; Melo, K.; Horvat, T.; Karakasiliotis, K.; Allen, V.R.; Andikfar, A.; Andrada, E.; Arnold, P.; Lauströer, J.; Hutchinson, J.R. Reverse-engineering the locomotion of a stem amniote. Nature 2019, 565, 351. [Google Scholar] [CrossRef] [PubMed]
- Sharabi, M.; Wertheimer, S.; Wade, K.R.; Galbusera, F.; Benayahu, D.; Wilke, H.; Haj-Ali, R. Towards intervertebral disc engineering: Bio-mimetics of form and function of the annulus fibrosus lamellae. J. Mech. Behav. Biomed. Mater. 2019, 94, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Schätz, C.; Ritter-Lang, K.; Gössel, L.; Dreßler, N. Comparison of single-level and multiple-level outcomes of total disc arthroplasty: 24-month results. Int. J. Spine Surg. 2015, 9, 14. [Google Scholar] [CrossRef]
- Thomas, S.; Willems, K.; Van den Daelen, L.; Linden, P.; Ciocci, M.C.; Bocher, P. The M6-C Cervical Disk Prosthesis: First Clinical Experience in 33 Patients. Clin. Spine Surg. 2016, 29. [Google Scholar] [CrossRef]
- Patwardhan, A.G.; Havey, R.M. Prosthesis design influences segmental contribution to total cervical motion after cervical disc arthroplasty. Eur. Spine J. 2019. [Google Scholar] [CrossRef]
- Wilke, H.; Kettler, A.; Claes, L.E. Are sheep spines a valid biomechanical model for human spines? Spine 1997, 22, 2365–2374. [Google Scholar] [CrossRef]
- Kettler, A.; Liakos, L.; Haegele, B.; Wilke, H. Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests? Eur. Spine J. 2007, 16, 2186–2192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casaroli, G.; Wade, K.; Villa, T.; Wilke, H.-J. Animal Models for Spine Biomechanics. In Biomechanics of the Spine: Basic Concepts, Spinal Disorders and Treatments, 1st ed.; Galbusera, F., Wilke, H.-J., Eds.; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Teunissen, M.; van der Veen, A.; Smit, T.; Tryfonidou, M.; Meij, B. Effect of a titanium cage as a stand-alone device on biomechanical stability in the lumbosacral spine of canine cadavers. Vet. J. 2017, 220, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.S.; Waldron, D.R.; Grant, J.W.; Shell, L.; Smith, G.; Shires, P.K. Biomechanics of the thoracolumbar vertebral column of dogs during lateral bending. Am. J. Vet. Res. 1996, 57, 1228–1232. [Google Scholar] [PubMed]
- Molnar, J.L.; Pierce, S.E.; Hutchinson, J.R. An experimental and morphometric test of the relationship between vertebral morphology and joint stiffness in Nile crocodiles (Crocodylus niloticus). J. Exp. Biol. 2014, 217, 758–768. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galbusera, F.; Bassani, T. The Spine: A Strong, Stable, and Flexible Structure with Biomimetics Potential. Biomimetics 2019, 4, 60. https://doi.org/10.3390/biomimetics4030060
Galbusera F, Bassani T. The Spine: A Strong, Stable, and Flexible Structure with Biomimetics Potential. Biomimetics. 2019; 4(3):60. https://doi.org/10.3390/biomimetics4030060
Chicago/Turabian StyleGalbusera, Fabio, and Tito Bassani. 2019. "The Spine: A Strong, Stable, and Flexible Structure with Biomimetics Potential" Biomimetics 4, no. 3: 60. https://doi.org/10.3390/biomimetics4030060
APA StyleGalbusera, F., & Bassani, T. (2019). The Spine: A Strong, Stable, and Flexible Structure with Biomimetics Potential. Biomimetics, 4(3), 60. https://doi.org/10.3390/biomimetics4030060