Vitamins and Antioxidants in Plants: Are They Helpful in the Management of Allergies?
Abstract
1. Introduction
2. Mechanisms of Allergies
3. Inflammation and Oxidative Stress in Allergic Reactions
4. Effects of Vitamins and Antioxidants on Allergies
4.1. Vitamins and Their Role on Immune Regulation
4.1.1. Vitamin D
4.1.2. Vitamin C
4.1.3. Vitamin E
4.1.4. Other Vitamins
4.2. Role of Antioxidants in Allergy Management
4.2.1. Flavonoids
4.2.2. Polyphenols
4.2.3. Selenium
5. Medicinal Plants for Natural Anti-Inflammatory and Antihistamine Therapies
5.1. Medicinal Plants with Natural Antihistamine Compounds
5.2. Medicinal Plants with Anti-Inflammatory Effects
5.3. Medicinal Plant Cultivation for Healthier and More Resilient Growth
5.4. Gene-Edited Plants for Allergy Management: The Role of CRISPR-Cas9
6. Conclusions and Future Perspectives on Using Vitamins and Herbal Antioxidants in the Prevention and Control of Allergies
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pawankar, R. Allergic Diseases and Asthma: A Global Public Health Concern and a Call to Action. World Allergy Organ. J. 2014, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Allergies. Available online: https://gaapp.org/diseases/allergies/ (accessed on 26 January 2025).
- Sánchez-Borges, M.; Martin, B.L.; Muraro, A.M.; Wood, R.A.; Agache, I.O.; Ansotegui, I.J.; Casale, T.B.; Fleisher, T.A.; Hellings, P.W.; Papadopoulos, N.G.; et al. The Importance of Allergic Disease in Public Health: An iCAALL Statement. World Allergy Organ. J. 2018, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Aldakheel, F.M. Allergic Diseases: A Comprehensive Review on Risk Factors, Immunological Mechanisms, Link with COVID-19, Potential Treatments, and Role of Allergen Bioinformatics. Int. J. Environ. Res. Public Health 2021, 18, 12105. [Google Scholar] [CrossRef]
- Larsen, J.N.; Broge, L.; Jacobi, H. Allergy Immunotherapy: The Future of Allergy Treatment. Drug Discov. Today 2016, 21, 26–37. [Google Scholar] [CrossRef]
- Wu, A.Y.-Y. Immunotherapy—Vaccines for Allergic Diseases. J. Thorac. Dis. 2012, 4, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Jeong, I.; Cho, J.; Shin, C.; Kim, K.-I.; Shim, B.-S.; Ko, S.-G.; Kim, B. The Natural Products Targeting on Allergic Rhinitis: From Traditional Medicine to Modern Drug Discovery. Antioxidants 2021, 10, 1524. [Google Scholar] [CrossRef]
- Rakha, A.; Umar, N.; Rabail, R.; Butt, M.S.; Kieliszek, M.; Hassoun, A.; Aadil, R.M. Anti-Inflammatory and Anti-Allergic Potential of Dietary Flavonoids: A Review. Biomed. Pharmacother. 2022, 156, 113945. [Google Scholar] [CrossRef]
- Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.-J.; Li, H.-B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Muscolo, A.; Mariateresa, O.; Giulio, T.; Mariateresa, R. Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. Int. J. Mol. Sci. 2024, 25, 3264. [Google Scholar] [CrossRef]
- Alhazmi, H.A.; Najmi, A.; Javed, S.A.; Sultana, S.; Al Bratty, M.; Makeen, H.A.; Meraya, A.M.; Ahsan, W.; Mohan, S.; Taha, M.M.E.; et al. Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Front. Immunol. 2021, 12, 637553. [Google Scholar] [CrossRef]
- Ghalibaf, M.H.E.; Kianian, F.; Beigoli, S.; Behrouz, S.; Marefati, N.; Boskabady, M.; Boskabady, M.H. The Effects of Vitamin C on Respiratory, Allergic and Immunological Diseases: An Experimental and Clinical-Based Review. Inflammopharmacology 2023, 31, 653–672. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P. The Role of Diet and Nutrition in Allergic Diseases. Nutrients 2023, 15, 3683. [Google Scholar] [CrossRef]
- Lewis, E.D.; Meydani, S.N.; Wu, D. Regulatory Role of Vitamin E in the Immune System and Inflammation. IUBMB Life 2019, 71, 487–494. [Google Scholar] [CrossRef] [PubMed]
- De Almeida Brasiel, P.G.; Guimarães, F.V.; Rodrigues, P.M.; Bou-Habib, D.C.; de Carvalho, V.F. Therapeutic Efficacy of Flavonoids in Allergies: A Systematic Review of Randomized Controlled Trials. J. Immunol. Res. 2022, 2022, 8191253. [Google Scholar] [CrossRef]
- Simões, R.; Ribeiro, A.C.; Dias, R.; Freitas, V.; Soares, S.; Pérez-Gregorio, R. Unveiling the Immunomodulatory Potential of Phenolic Compounds in Food Allergies. Nutrients 2024, 16, 551. [Google Scholar] [CrossRef]
- Galli, S.J.; Tsai, M. IgE and Mast Cells in Allergic Disease. Nat. Med. 2012, 18, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Nauta, A.J.; Engels, F.; Knippels, L.M.; Garssen, J.; Nijkamp, F.P.; Redegeld, F.A. Mechanisms of Allergy and Asthma. Eur. J. Pharmacol. 2008, 585, 354–360. [Google Scholar] [CrossRef]
- Soyer, O.U.; Akdis, M.; Ring, J.; Behrendt, H.; Crameri, R.; Lauener, R.; Akdis, C.A. Mechanisms of Peripheral Tolerance to Allergens. Allergy 2013, 68, 161–170. [Google Scholar] [CrossRef]
- León, B.; Ballesteros-Tato, A. Modulating Th2 Cell Immunity for the Treatment of Asthma. Front. Immunol. 2021, 12, 637948. [Google Scholar] [CrossRef]
- Gangwar, R.S.; Pahima, H.; Puzzovio, P.G.; Levi-Schaffer, F. Update on Eosinophil Interaction with Mast Cells: The Allergic Effector Unit. Methods Mol. Biol. 2021, 2241, 221–242. [Google Scholar] [CrossRef]
- Brough, H.A.; Nadeau, K.C.; Sindher, S.B.; Alkotob, S.S.; Chan, S.; Bahnson, H.T.; Leung, D.Y.M.; Lack, G. Epicutaneous Sensitization in the Development of Food Allergy: What Is the Evidence and How Can This Be Prevented? Allergy 2020, 75, 2185–2205. [Google Scholar] [CrossRef] [PubMed]
- Minai-Fleminger, Y.; Levi-Schaffer, F. Mast Cells and Eosinophils: The Two Key Effector Cells in Allergic Inflammation. Inflamm. Res. 2009, 58, 631–638. [Google Scholar] [CrossRef]
- Suber, J.; Zhang, Y.; Ye, P.; Guo, R.; Burks, A.W.; Kulis, M.D.; Smith, S.A.; Iweala, O.I. Novel Peanut-Specific Human IgE Monoclonal Antibodies Enable Screens for Inhibitors of the Effector Phase in Food Allergy. Front. Immunol. 2022, 13, 974374. [Google Scholar] [CrossRef]
- Rosenwasser, L. New Insights into the Pathophysiology of Allergic Rhinitis. Allergy Asthma Proc. 2007, 28, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Murrison, L.B.; Brandt, E.B.; Myers, J.B.; Hershey, G.K.K. Environmental Exposures and Mechanisms in Allergy and Asthma Development. J. Clin. Investig. 2019, 129, 1504–1515. [Google Scholar] [CrossRef]
- Krempski, J.W.; Dant, C.; Nadeau, K.C. The Origins of Allergy from a Systems Approach. Ann. Allergy Asthma Immunol. 2020, 125, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Undem, B.J.; Taylor-Clark, T. Mechanisms Underlying the Neuronal-Based Symptoms of Allergy. J. Allergy Clin. Immunol. 2014, 133, 1521–1534. [Google Scholar] [CrossRef] [PubMed]
- Bowler, R.P.; Crapo, J.D. Oxidative Stress in Allergic Respiratory Diseases. J. Allergy Clin. Immunol. 2002, 110, 349–356. [Google Scholar] [CrossRef]
- Bacsi, A.; Dharajiya, N.; Choudhury, B.K.; Sur, S.; Boldogh, I. Effect of Pollen-Mediated Oxidative Stress on Immediate Hypersensitivity Reactions and Late-Phase Inflammation in Allergic Conjunctivitis. J. Allergy Clin. Immunol. 2005, 116, 836–843. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Z.; Zhang, R.; Han, Z.; Huang, Y.; Deng, C.; Dong, W.; Zhuang, G. Effects of N-Acetylcysteine on Oxidative Stress and Inflammation Reactions in a Rat Model of Allergic Rhinitis after PM2.5 Exposure. Biochem. Biophys. Res. Commun. 2020, 533, 275–281. [Google Scholar] [CrossRef]
- Swanson, K.V.; Deng, M.; Ting, J.P.-Y. The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nat. Rev. Immunol. 2019, 19, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Lu, X.; Wang, H.; Chen, W.; Niu, B. NLRP3 Inflammasome Deficiency Alleviates Inflammation and Oxidative Stress by Promoting PINK1/Parkin-Mediated Mitophagy in Allergic Rhinitis Mice and Nasal Epithelial Cells. J. Asthma Allergy 2024, 17, 717–731. [Google Scholar] [CrossRef]
- Piao, C.H.; Fan, Y.; Nguyen, T.V.; Shin, H.S.; Kim, H.T.; Song, C.H.; Chai, O.H. PM2.5 Exacerbates Oxidative Stress and Inflammatory Response through the Nrf2/NF-κB Signaling Pathway in OVA-Induced Allergic Rhinitis Mouse Model. Int. J. Mol. Sci. 2021, 22, 8173. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Aguirre, L.; Hao, W.; Pan, L.; Li, X.; Saavedra-Molina, A.; Bacsi, A.; Radak, Z.; Sur, S.; Brasier, A.R.; Ba, X.; et al. Pollen-Induced Oxidative DNA Damage Response Regulates miRNAs Controlling Allergic Inflammation. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 313, L1058–L1068. [Google Scholar] [CrossRef] [PubMed]
- Khadim, R.M.; Al-Fartusie, F.S. Antioxidant Vitamins and Their Effect on Immune System. J. Phys. Conf. Ser. 2021, 1853, 012065. [Google Scholar] [CrossRef]
- Li, Q. Vitamin D Supplementation and Allergic Diseases during Childhood: A Systematic Review and Meta-Analysis—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/36235600/ (accessed on 23 February 2025).
- Zhang, P.; Xu, Q.; Zhu, R. Vitamin D and Allergic Diseases. Front. Immunol. 2024, 15, 1420883. [Google Scholar] [CrossRef]
- Noriega, D.B.; Savelkoul, H.F.J. Vitamin D and Allergy Susceptibility during Gestation and Early Life. Available online: https://www.mdpi.com/2072-6643/13/3/1015 (accessed on 23 February 2025).
- Zeng, R.; Li, Y.; Shen, S.; Qiu, X.; Chang, C.-L.; Koplin, J.J.; Perrett, K.P.; Dharmage, S.C.; Lodge, C.J.; Lowe, A.J. Is Antenatal or Early-Life Vitamin D Associated with Eczema or Food Allergy in Childhood? A Systematic Review. Clin. Exp. Allergy 2023, 53, 511–525. [Google Scholar] [CrossRef]
- Benson, A.A.; Toh, J.A.; Vernon, N.; Jariwala, S.P. The Role of Vitamin D in the Immunopathogenesis of Allergic Skin Diseases. Allergy 2012, 67, 296–301. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, Y.; Huang, S.; Lv, D.; Yang, F.; Lou, L.; Zheng, Y.; Zhang, J.; Liu, S.; Zhang, N.; et al. Immunomodulatory Effect of Bifidobacterium Breve on Experimental Allergic Rhinitis in BALB/c Mice. Exp. Ther. Med. 2018, 16, 3996–4004. [Google Scholar] [CrossRef]
- Wu, J.; Zhong, Y.; Shen, X.; Yang, K.; Cai, W. Maternal and Early-Life Vitamin D Deficiency Enhances Allergic Reaction in an Ovalbumin-Sensitized BALB/c Mouse Model. Food Nutr. Res. 2018, 62, 1401. [Google Scholar] [CrossRef]
- Rosendahl, J.; Pelkonen, A.S.; Helve, O.; Hauta-alus, H.; Holmlund-Suila, E.; Valkama, S.; Enlund-Cerullo, M.; Viljakainen, H.; Hytinantti, T.; Mäkitie, O.; et al. High-Dose Vitamin D Supplementation Does Not Prevent Allergic Sensitization of Infants. J. Pediatr. 2019, 209, 139–145.e1. [Google Scholar] [CrossRef]
- Bener, A.; Ehlayel, M.S.; Tulic, M.K.; Hamid, Q. Vitamin D Deficiency as a Strong Predictor of Asthma in Children. Int. Arch. Allergy Immunol. 2012, 157, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Hollams, E.M.; Hart, P.H.; Holt, B.J.; Serralha, M.; Parsons, F.; de Klerk, N.H.; Zhang, G.; Sly, P.D.; Holt, P.G. Vitamin D and Atopy and Asthma Phenotypes in Children: A Longitudinal Cohort Study. Eur. Respir. J. 2011, 38, 1320–1327. [Google Scholar] [CrossRef]
- Mullins, R.J.; Clark, S.; Katelaris, C.; Smith, V.; Solley, G.; Camargo, C.A., Jr. Season of Birth and Childhood Food Allergy in Australia. Pediatr. Allergy Immunol. 2011, 22, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.; De Koker, C.; Dziubak, R.; Skrapac, A.-K.; Godwin, H.; Reeve, K.; Chebar-Lozinsky, A.; Shah, N. A Practical Approach to Vitamin and Mineral Supplementation in Food Allergic Children. Clin. Transl. Allergy 2015, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.J.; Panjari, M.; Koplin, J.J.; Ponsonby, A.-L.; Vuillermin, P.; Gurrin, L.C.; Greaves, R.; Carvalho, N.; Dalziel, K.; Tang, M.L.K.; et al. VITALITY Trial: Protocol for a Randomised Controlled Trial to Establish the Role of Postnatal Vitamin D Supplementation in Infant Immune Health. BMJ Open 2015, 5, e009377. [Google Scholar] [CrossRef]
- Wegienka, G.; Havstad, S.; Zoratti, E.M.; Kim, H.; Ownby, D.R.; Johnson, C.C. Association between Vitamin D Levels and Allergy-Related Outcomes Vary by Race and Other Factors. J. Allergy Clin. Immunol. 2015, 136, 1309–1314.e4. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Vitamin C. EFSA J. 2013, 11, 3418. [Google Scholar] [CrossRef]
- Levine, M.; Padayatty, S.J.; Espey, M.G. Vitamin C: A Concentration-Function Approach Yields Pharmacology and Therapeutic Discoveries. Adv. Nutr. 2011, 2, 78–88. [Google Scholar] [CrossRef]
- Vollbracht, C.; Raithel, M.; Krick, B.; Kraft, K.; Hagel, A.F. Intravenous Vitamin C in the Treatment of Allergies: An Interim Subgroup Analysis of a Long-Term Observational Study. J. Int. Med. Res. 2018, 46, 3640–3655. [Google Scholar] [CrossRef]
- Han, Y.-Y.; Forno, E.; Holguin, F.; Celedón, J.C. Diet and Asthma: An Update. Curr. Opin. Allergy Clin. Immunol. 2015, 15, 369. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Han, M.; Qiao, S.; He, P.; Li, D.; Li, N.; Ma, X. Soybean Antigen Proteins and Their Intestinal Sensitization Activities. Curr. Protein Pept. Sci. 2015, 16, 613–621. [Google Scholar] [CrossRef]
- West, C.E.; Dunstan, J.; McCarthy, S.; Metcalfe, J.; D’Vaz, N.; Meldrum, S.; Oddy, W.H.; Tulic, M.K.; Prescott, S.L. Associations between Maternal Antioxidant Intakes in Pregnancy and Infant Allergic Outcomes. Nutrients 2012, 4, 1747–1758. [Google Scholar] [CrossRef] [PubMed]
- Belhadjali, H.; Giordano-Labadie, F.; Bazex, J. Contact Dermatitis from Vitamin C in a Cosmetic Anti-Aging Cream. Contact Dermat. 2001, 45, 317. [Google Scholar] [CrossRef]
- Love, M.; Imran, M.; Irum, A.; Fraga, G.; Gierer, S. Oral Vitamin C (Ascorbic Acid) Allergy and Avoidance Leading to Severe Hypovitaminosis C. Kans. J. Med. 2016, 9, 69–70. [Google Scholar] [CrossRef]
- Li, Q.; Tang, X.; Huang, L.; Wang, T.; Huang, Y.; Jiang, S. Anti-Allergic Effect of Vitamin C through Inhibiting Degranulation and Regulating T1/T2 Cell Polarization. J. Sci. Food Agric. 2024, 104, 5955–5963. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Li, D.; Dong, B.; Qiao, S.; Ma, X.; Chen, X. Vitamin C: An Immunomodulator That Attenuates Anaphylactic Reactions to Soybean Glycinin Hypersensitivity in a Swine Model. Food Chem. 2009, 113, 914–918. [Google Scholar] [CrossRef]
- Chang, H.-H.; Chen, C.-S.; Lin, J.-Y. High Dose Vitamin C Supplementation Increases the Th1/Th2 Cytokine Secretion Ratio but Decreases Eosinophilic Infiltration in Bronchoalveolar Lavage Fluid of Ovalbumin-Sensitized and Challenged Mice. J. Agric. Food Chem. 2009, 57, 10471–10476. [Google Scholar] [CrossRef]
- Kodama, M.; Kodama, T. Vitamin C and the Genesis of Autoimmune Disease and Allergy (Review). In Vivo 1995, 9, 231–238. [Google Scholar]
- Munjal, M.; Singh, A.; Khurana, A.S.; Bajwa, N.; Munjal, S.; Dhawan, N.; Waraich, G. Study of Vitamin C Therapy in Allergic Rhinitis. Int. J. Otorhinolaryngol. Head Neck Surg. 2020, 6, 1951–1955. [Google Scholar] [CrossRef]
- Shams, M.-H.; Jafari, R.; Eskandari, N.; Masjedi, M.; Kheirandish, F.; Ganjalikhani Hakemi, M.; Ghasemi, R.; Varzi, A.-M.; Sohrabi, S.-M.; Baharvand, P.A.; et al. Anti-Allergic Effects of Vitamin E in Allergic Diseases: An Updated Review. Int. Immunopharmacol. 2021, 90, 107196. [Google Scholar] [CrossRef] [PubMed]
- Velázquez, B.B.M.; Jáuregui-Renaud, K.; Arias, A.d.C.B.; Ayala, J.C.; Martínez, M.D.M.; Navarrete, R.C.; Rosalia, I.S.V.; Salazar, M.d.R.C.; Serrano, H.A.C.; Mondragón, A.O.; et al. Vitamin E Effects on Nasal Symptoms and Serum Specific IgE Levels in Patients with Perennial Allergic Rhinitis. Ann. Allergy Asthma Immunol. 2006, 96, 45–50. [Google Scholar] [CrossRef]
- Fogarty, A.; Lewis, S.; Weiss, S.; Britton, J. Dietary Vitamin E, IgE Concentrations, and Atopy. Lancet 2000, 356, 1573–1574. [Google Scholar] [CrossRef] [PubMed]
- Stanojević, S.P.; Kostić, A.Ž.; Pešić, M.B. Nutritional Behavior of Students during COVID-19 Quarantine. Hrana Ishr. 2020, 61, 36–43. [Google Scholar] [CrossRef]
- Alves, M.L.; Bento-Silva, A.; Carbas, B.; Gaspar, D.; Paulo, M.; Brites, C.; Mendes-Moreira, P.; Brites, C.M.; do Rosario Bronze, M.; Malosetti, M.; et al. Alleles to Enhance Antioxidant Content in Maize—A Genome-Wide Association Approach. J. Agric. Food Chem. 2020, 68, 4051–4061. [Google Scholar] [CrossRef]
- Matthäus, B.; Özcan, M.M. The Comparison of Properties of the Oil and Kernels of Various Hazelnuts from Germany and Turkey. Eur. J. Lipid Sci. Technol. 2012, 114, 801–806. [Google Scholar] [CrossRef]
- Raila, J.; Rohn, S.; Schweigert, F.J.; Abraham, G. Increased Antioxidant Capacity in the Plasma of Dogs after a Single Oral Dosage of Tocotrienols. Br. J. Nutr. 2011, 106, S116–S119. [Google Scholar] [CrossRef]
- Huang, J.; Zeng, Y.; Yuan, Y. Causal Role of Vitamin E in Atopic Dermatitis Risk: A Mendelian Randomization Study. Food Sci. Nutr. 2024, 12, 4981–4988. [Google Scholar] [CrossRef]
- Su, J.; Li, T.; Pan, H. Association of Vitamin A Supplementation with Immune-Related Allergic Diseases: A Meta-Analysis. Front. Nutr. 2022, 9, 984161. [Google Scholar] [CrossRef]
- Chen, Z.; Xing, Y.; Yu, X.; Dou, Y.; Ma, D. Effect of Folic Acid Intake on Infant and Child Allergic Diseases: Systematic Review and Meta-Analysis. Front. Pediatr. 2021, 8, 615406. [Google Scholar] [CrossRef]
- Moreno-Macias, H.; Romieu, I. Effects of Antioxidant Supplements and Nutrients on Patients with Asthma and Allergies. J. Allergy Clin. Immunol. 2014, 133, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Kawai, M.; Hirano, T.; Higa, S.; Arimitsu, J.; Maruta, M.; Kuwahara, Y.; Ohkawara, T.; Hagihara, K.; Yamadori, T.; Shima, Y.; et al. Flavonoids and Related Compounds as Anti-Allergic Substances. Allergol. Int. 2007, 56, 113–123. [Google Scholar] [CrossRef]
- Dębińska, A.; Sozańska, B. Dietary Polyphenols—Natural Bioactive Compounds with Potential for Preventing and Treating Some Allergic Conditions. Nutrients 2023, 15, 4823. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Kim, B.-K.; Lee, Y.-C. Antiasthmatic Effects of Hesperidin, a Potential Th2 Cytokine Antagonist, in a Mouse Model of Allergic Asthma. Mediat. Inflamm. 2011, 2011, 485402. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzade, A.; Sadeghi, O.; Naghdipour Biregani, A.; Soukhtehzari, S.; Brandt, G.S.; Esmaillzadeh, A. Immunomodulatory Effects of Flavonoids: Possible Induction of T CD4+ Regulatory Cells Through Suppression of mTOR Pathway Signaling Activity. Front. Immunol. 2019, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Siddiqui, M.A.; Gupta, A. Recent Advancement and Novel Application of Natural Polyphenols for the Treatment of Allergy Asthma: From Phytochemistry to Biological Implications. Crit. Rev. Immunol. 2023, 43, 29–41. [Google Scholar] [CrossRef]
- Gandhi, G.R.; Neta, M.T.S.L.; Sathiyabama, R.G.; Quintans, J.d.S.S.; de Oliveira e Silva, A.M.; de Araújo, A.A.S.; Narain, N.; Júnior, L.J.Q.; Gurgel, R.Q. Flavonoids as Th1/Th2 Cytokines Immunomodulators: A Systematic Review of Studies on Animal Models. Phytomedicine 2018, 44, 74–84. [Google Scholar] [CrossRef]
- Oja, A.E. The Inhibitory Effects of Flavonoids on Chemokine Function in Allergic Asthma and Food Allergy. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2014. [Google Scholar]
- Tanaka, T. Flavonoids for Allergic Diseases: Present Evidence and Future Perspective. Curr. Pharm. Des. 2014, 20, 879–885. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Gurley, E.C.; Zhou, H. Flavonoid Apigenin Inhibits Lipopolysaccharide-Induced Inflammatory Response through Multiple Mechanisms in Macrophages. PLoS ONE 2014, 9, e107072. [Google Scholar] [CrossRef]
- Singh, A.; Holvoet, S.; Mercenier, A. Dietary Polyphenols in the Prevention and Treatment of Allergic Diseases. Clin. Exp. Allergy 2011, 41, 1346–1359. [Google Scholar] [CrossRef]
- Shu, J.; Cui, X.; Liu, X.; Yu, W.; Zhang, W.; Huo, X.; Lu, C. Licochalcone A Inhibits IgE-Mediated Allergic Reaction through PLC/ERK/STAT3 Pathway. Int. J. Immunopathol. Pharmacol. 2022, 36, 03946320221135462. [Google Scholar] [CrossRef] [PubMed]
- Oršolić, N. Allergic Inflammation: Effect of Propolis and Its Flavonoids. Molecules 2022, 27, 6694. [Google Scholar] [CrossRef]
- Tanaka, T.; Takahashi, R. Flavonoids and Asthma. Nutrients 2013, 5, 2128–2143. [Google Scholar] [CrossRef] [PubMed]
- Solekha, R.; Purnobasuki, H.; Puspaningsih, N.N.T.; Setiyowati, P.A.I. Secondary Metabolites and Antioxidants Activity from Citronella Grass Extract (Cymbopogon nardus L.). Indian. J. Pharm. Educ. Res. 2024, 58, 298–305. [Google Scholar] [CrossRef]
- Feng, X.; Yan, Z.; Ren, X.; Jia, Y.; Sun, J.; Guo, J.; Gao, Z.; Li, H.; Long, F. Sea Buckthorn Flavonoid Extracted with High Hydrostatic Pressure Alleviated Shrimp Allergy in Mice through the Microbiota and Metabolism. J. Agric. Food Chem. 2024, 72, 25094–25102. [Google Scholar] [CrossRef]
- Prince, B.T.; Mandel, M.J.; Nadeau, K.; Singh, A.M. Gut Microbiome and the Development of Food Allergy and Allergic Disease. Pediatr. Clin. N. Am. 2015, 62, 1479–1492. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, C.; Zhang, K.; Xue, W. The Role of Gut Microbiota and Its Metabolites Short-Chain Fatty Acids in Food Allergy. Food Sci. Hum. Wellness 2023, 12, 702–710. [Google Scholar] [CrossRef]
- Mithul Aravind, S.; Wichienchot, S.; Tsao, R.; Ramakrishnan, S.; Chakkaravarthi, S. Role of Dietary Polyphenols on Gut Microbiota, Their Metabolites and Health Benefits. Food Res. Int. 2021, 142, 110189. [Google Scholar] [CrossRef]
- Man, A.W.C.; Zhou, Y.; Xia, N.; Li, H. Involvement of Gut Microbiota, Microbial Metabolites and Interaction with Polyphenol in Host Immunometabolism. Nutrients 2020, 12, 3054. [Google Scholar] [CrossRef]
- Januszkiewicz, E.; Mierzejewski, M.; Biniszewska, O.; Szczygieł, M.; Sepczuk, E.; Kleniewska, P.; Pawliczak, R. The Importance of the Gut Microbiome in the Development of Allergic Diseases. Alergol. Pol. Pol. J. Allergol. 2023, 10, 202–209. [Google Scholar] [CrossRef]
- Noda, S.; Tanabe, S.; Suzuki, T. Differential Effects of Flavonoids on Barrier Integrity in Human Intestinal Caco-2 Cells. J. Agric. Food Chem. 2012, 60, 4628–4633. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cano, F.J.; Massot-Cladera, M.; Rodríguez-Lagunas, M.J.; Castell, M. Flavonoids Affect Host-Microbiota Crosstalk through TLR Modulation. Antioxidants 2014, 3, 649–670. [Google Scholar] [CrossRef]
- Shaw, O.M.; Nyanhanda, T.; McGhie, T.K.; Harper, J.L.; Hurst, R.D. Blackcurrant Anthocyanins Modulate CCL11 Secretion and Suppress Allergic Airway Inflammation. Mol. Nutr. Food Res. 2017, 61, 1600868. [Google Scholar] [CrossRef]
- Sim, L.Y.; Abd Rani, N.Z.; Husain, K. Lamiaceae: An Insight on Their Anti-Allergic Potential and Its Mechanisms of Action. Front. Pharmacol. 2019, 10, 677. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-C.; Lin, Y.-R.; Liao, M.-H.; Jan, T.-R. Oral Supplementation with Areca-Derived Polyphenols Attenuates Food Allergic Responses in Ovalbumin-Sensitized Mice. BMC Complement. Altern. Med. 2013, 13, 154. [Google Scholar] [CrossRef]
- Takano, H.; Osakabe, N.; Sanbongi, C.; Yanagisawa, R.; Inoue, K.; Yasuda, A.; Natsume, M.; Baba, S.; Ichiishi, E.; Yoshikawa, T. Extract of Perilla Frutescens Enriched for Rosmarinic Acid, a Polyphenolic Phytochemical, Inhibits Seasonal Allergic Rhinoconjunctivitis in Humans. Exp. Biol. Med. 2004, 229, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Farhan, M.; Rizvi, A.; Aatif, M.; Muteeb, G.; Khan, K.; Siddiqui, F.A. Dietary Polyphenols, Plant Metabolites, and Allergic Disorders: A Comprehensive Review. Pharmaceuticals 2024, 17, 670. [Google Scholar] [CrossRef]
- Pi, X.; Sun, Y.; Cheng, J.; Fu, G.; Guo, M. A Review on Polyphenols and Their Potential Application to Reduce Food Allergenicity. Crit. Rev. Food Sci. Nutr. 2023, 63, 10014–10031. [Google Scholar] [CrossRef]
- Pérot, M.; Lupi, R.; Guyot, S.; Delayre-Orthez, C.; Gadonna-Widehem, P.; Thébaudin, J.-Y.; Bodinier, M.; Larré, C. Polyphenol Interactions Mitigate the Immunogenicity and Allergenicity of Gliadins. J. Agric. Food Chem. 2017, 65, 6442–6451. [Google Scholar] [CrossRef]
- Takemoto, K.; Ganlin, T.; Iji, M.; Narukawa, T.; Koyama, T.; Hao, L.; Watanabe, H. Vegetable Extracts as Therapeutic Agents: A Comprehensive Exploration of Anti-Allergic Effects. Nutrients 2024, 16, 693. [Google Scholar] [CrossRef] [PubMed]
- Sadler, R.A.; Mallard, B.A.; Shandilya, U.K.; Hachemi, M.A.; Karrow, N.A. The Immunomodulatory Effects of Selenium: A Journey from the Environment to the Human Immune System. Nutrients 2024, 16, 3324. [Google Scholar] [CrossRef]
- Zhu, K.; Yang, S.; Li, T.; Huang, X.; Dong, Y.; Wang, P.; Huang, J. Advances in the Study of the Mechanism by Which Selenium and Selenoproteins Boost Immunity to Prevent Food Allergies. Nutrients 2022, 14, 3133. [Google Scholar] [CrossRef]
- Zhao, X.; Thijssen, S.; Chen, H.; Garssen, J.; Knippels, L.M.J.; Hogenkamp, A. Selenium Modulates the Allergic Response to Whey Protein in a Mouse Model for Cow’s Milk Allergy. Nutrients 2021, 13, 2479. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Zeng, D.; Yang, M.; Tang, Z.; He, L.; Chen, T. Translational Selenium Nanoparticles to Attenuate Allergic Dermatitis through Nrf2-Keap1-Driven Activation of Selenoproteins. ACS Nano 2023, 17, 14053–14068. [Google Scholar] [CrossRef]
- Jiang, J.; Mehrabi Nasab, E.; Athari, S.M.; Athari, S.S. Effects of Vitamin E and Selenium on Allergic Rhinitis and Asthma Pathophysiology. Respir. Physiol. Neurobiol. 2021, 286, 103614. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.A.; Zayed, A.; Ezzat, S.M. 9—Important Antihistaminic Plants and Their Potential Role in Health. In Phytochemistry, the Military and Health; Mtewa, A.G., Egbuna, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 171–191. ISBN 978-0-12-821556-2. [Google Scholar]
- Abd Rani, N.Z.; Lam, K.W.; Jalil, J.; Mohamad, H.F.; Mat Ali, M.S.; Husain, K. Mechanistic Studies of the Antiallergic Activity of Phyllanthus Amarus Schum. & Thonn. and Its Compounds. Molecules 2021, 26, 695. [Google Scholar] [CrossRef]
- Alagar Yadav, S.; Ramalingam, S.; Jabamalai Raj, A.; Subban, R. Antihistamine from Tragia Involucrata L. Leaves. J. Complement. Integr. Med. 2015, 12, 217–226. [Google Scholar] [CrossRef]
- Rahim, N.A.; Jantan, I.; Said, M.M.; Jalil, J.; Abd Razak, A.F.; Husain, K. Anti-Allergic Rhinitis Effects of Medicinal Plants and Their Bioactive Metabolites via Suppression of the Immune System: A Mechanistic Review. Front. Pharmacol. 2021, 12, 660083. [Google Scholar] [CrossRef]
- Da Silva, E.S.; da Silva, J.F.; de Lins, S.R.O. Plantas com atividade anti-histamínica/Plants with anti-histaminic activity. Braz. J. Dev. 2020, 6, 95873–95884. [Google Scholar] [CrossRef]
- Sharma, A.; Srivastava, P.; Mavi, G.S.; Kaur, S.; Kaur, J.; Bala, R.; Singh, T.P.; Sohu, V.S.; Chhuneja, P.; Bains, N.S.; et al. Resurrection of Wheat Cultivar PBW343 Using Marker-Assisted Gene Pyramiding for Rust Resistance. Front. Plant Sci. 2021, 12, 570408. [Google Scholar] [CrossRef] [PubMed]
- Shamsa, F.; Ahmadiani, A.; Khosrokhavar, R. Antihistaminic and Anticholinergic Activity of Barberry Fruit (Berberis Vulgaris) in the Guinea-Pig Ileum. J. Ethnopharmacol. 1999, 64, 161–166. [Google Scholar] [CrossRef]
- Do Espirito Santo, B.L.S.; Santana, L.F.; Kato Junior, W.H.; de Araújo, F.O.; Bogo, D.; de Freitas, K.C.; de Guimarães, R.C.A.; Hiane, P.A.; Pott, A.; de Filiú, W.F.O.; et al. Medicinal Potential of Garcinia Species and Their Compounds. Molecules 2020, 25, 4513. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.M.; Lee, D.K.C.; Lipworth, B.J. The Effects of Butterbur on the Histamine and Allergen Cutaneous Response. Ann. Allergy Asthma Immunol. 2004, 92, 250–254. [Google Scholar] [CrossRef]
- Makino, T.; Furuta, Y.; Fujii, H.; Nakagawa, T.; Wakushima, H.; Saito, K.; Kano, Y. Effect of Oral Treatment of Perilla Frutescens and Its Constituents on Type-I Allergy in Mice. Biol. Pharm. Bull. 2001, 24, 1206–1209. [Google Scholar] [CrossRef]
- Gupta, P.; Pathak, R.; Bisht, S.; Deep, P. Natural Allergens and Herbal Remedies Possessing Antiallergic Activity. J. Mt. Res. 2023, 18, 217–224. [Google Scholar] [CrossRef]
- Shaik, A.R.; Avula, P.R.; Mamillapalli, V. Antiasthmatic Activity of 2-Piperidone by Selective Animal Models. JRP 2020, 24, 334–340. [Google Scholar] [CrossRef]
- Bival Štefan, M. Astragalus Membranaceus, Nigella Sativa, and Perilla Frutescens as Immunomodulators—Molecular Mechanisms and Clinical Effectiveness in Allergic Diseases. Curr. Issues Mol. Biol. 2024, 46, 9016–9032. [Google Scholar] [CrossRef]
- Saini, R.; Dhiman, N.K. Natural Anti-Inflammatory and Anti-Allergy Agents: Herbs and Botanical Ingredients. Antiinflamm. Antiallergy Agents Med. Chem. 2022, 21, 90–114. [Google Scholar] [CrossRef]
- Fuloria, S.; Mehta, J.; Chandel, A.; Sekar, M.; Rani, N.N.I.M.; Begum, M.Y.; Subramaniyan, V.; Chidambaram, K.; Thangavelu, L.; Nordin, R.; et al. A Comprehensive Review on the Therapeutic Potential of Curcuma Longa Linn. in Relation to Its Major Active Constituent Curcumin. Front. Pharmacol. 2022, 13, 820806. [Google Scholar] [CrossRef]
- Wu, S.Y.; Silverberg, J.I.; Joks, R.; Durkin, H.G.; Smith-Norowitz, T.A. Green Tea (Camelia Sinensis) Mediated Suppression of IgE Production by Peripheral Blood Mononuclear Cells of Allergic Asthmatic Humans. Scand. J. Immunol. 2012, 76, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Wahab, S.; Annadurai, S.; Abullais, S.S.; Das, G.; Ahmad, W.; Ahmad, M.F.; Kandasamy, G.; Vasudevan, R.; Ali, M.S.; Amir, M. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. Plants 2021, 10, 2751. [Google Scholar] [CrossRef]
- Bakhshaee, M.; Mohammad Pour, A.H.; Esmaeili, M.; Jabbari Azad, F.; Alipour Talesh, G.; Salehi, M.; Noorollahian Mohajer, M. Efficacy of Supportive Therapy of Allergic Rhinitis by Stinging Nettle (Urtica Dioica) Root Extract: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Iran. J. Pharm. Res. 2017, 16, 112–118. [Google Scholar]
- Ona, A.D.; Muntean, L.; Berindean, I.; Costin, A.D.; Racz, I.; Popa, M. Modern Insights into Breeding of Medicinal Plants for Health and Industry. Hop. Med. Plants 2024, 32, 119–138. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, Y.; Wang, X.; Guo, W.; Bi, Y.; Zhang, C.; Wang, J.; Li, M. New Insights Explain That Organic Agriculture as Sustainable Agriculture Enhances the Sustainable Development of Medicinal Plants. Front. Plant Sci. 2022, 13, 959810. [Google Scholar] [CrossRef]
- Rao, M.R.; Palada, M.C.; Becker, B.N. Medicinal and Aromatic Plants in Agroforestry Systems. Agrofor. Syst. 2004, 61, 107–122. [Google Scholar] [CrossRef]
- Atherton, H.R.; Li, P. Hydroponic Cultivation of Medicinal Plants—Plant Organs and Hydroponic Systems: Techniques and Trends. Horticulturae 2023, 9, 349. [Google Scholar] [CrossRef]
- Rizvi, A.; Ahmed, B.; Khan, M.S.; El-Beltagi, H.S.; Umar, S.; Lee, J. Bioprospecting Plant Growth Promoting Rhizobacteria for Enhancing the Biological Properties and Phytochemical Composition of Medicinally Important Crops. Molecules 2022, 27, 1407. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, J.; Fang, H.; Li, Z.; Li, M. Advances and Challenges in Medicinal Plant Breeding. Plant Sci. 2020, 298, 110573. [Google Scholar] [CrossRef]
- Bennur, P.L.; O’Brien, M.; Fernando, S.C.; Doblin, M.S. Improving Transformation and Regeneration Efficiency in Medicinal Plants: Insights from Other Recalcitrant Species. J. Exp. Bot. 2025, 76, 52–75. [Google Scholar] [CrossRef]
- Canter, P.H.; Thomas, H.; Ernst, E. Bringing Medicinal Plants into Cultivation: Opportunities and Challenges for Biotechnology. Trends Biotechnol. 2005, 23, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Assou, J.; Zhang, D.; Roth, K.D.R.; Steinke, S.; Hust, M.; Reinard, T.; Winkelmann, T.; Boch, J. Removing the Major Allergen Bra j I from Brown Mustard (Brassica Juncea) by CRISPR/Cas9. Plant J. 2022, 109, 649–663. [Google Scholar] [CrossRef] [PubMed]
- Camerlengo, F.; Frittelli, A.; Sparks, C.; Doherty, A.; Martignago, D.; Larré, C.; Lupi, R.; Sestili, F.; Masci, S. CRISPR-Cas9 Multiplex Editing of the α-Amylase/Trypsin Inhibitor Genes to Reduce Allergen Proteins in Durum Wheat. Front. Sustain. Food Syst. 2020, 4, 104. [Google Scholar] [CrossRef]
- Diretto, G.; Frusciante, S.; Fabbri, C.; Schauer, N.; Busta, L.; Wang, Z.; Matas, A.J.; Fiore, A.; Rose, J.K.C.; Fernie, A.R.; et al. Manipulation of Β-carotene Levels in Tomato Fruits Results in Increased ABA Content and Extended Shelf Life. Plant Biotechnol. J. 2019, 18, 1185–1199. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cheng, S.; Liu, X.-Q.; Kuča, K.; Hashem, A.; Al-Arjani, A.-B.F.; Almutairi, K.F.; Abd_Allah, E.F.; Wu, Q.-S.; Zou, Y.-N. Cloning of a CHS Gene of Poncirus Trifoliata and Its Expression in Response to Soil Water Deficit and Arbuscular Mycorrhizal Fungi. Front. Plant Sci. 2022, 13, 1101212. [Google Scholar] [CrossRef]
- Zheng, J.; Wu, H.; Zhao, M.; Yang, Z.; Zhou, Z.; Guo, Y.; Lin, Y.; Chen, H. OsMYB3 Is a R2R3-MYB Gene Responsible for Anthocyanin Biosynthesis in Black Rice. Mol. Breed. 2021, 41, 51. [Google Scholar] [CrossRef]
- Shi, M.; Du, Z.; Hua, Q.; Kai, G. CRISPR/Cas9-Mediated Targeted Mutagenesis of bZIP2 in Salvia miltiorrhiza Leads to Promoted Phenolic Acid Biosynthesis. Ind. Crops Prod. 2021, 167, 113560. [Google Scholar] [CrossRef]
- Lagoumintzis, G.; Afratis, N.A.; Patrinos, G.P. Editorial: Nutrigenomics and personalized nutrition: Advancing basic, clinical, and translational research. Front. Nutr. 2024, 11, 1435475. [Google Scholar] [CrossRef]
- Robinson, A. Nutrigenomics in Personalized Nutrition and Health Optimization. J. Nutraceuticals Food Sci. 2024, 9, 70. [Google Scholar]
- Koirala, P.; Bhandari, Y.; Nirmal, N. Liposome Encapsulation: Innovative Vitamin Delivery in Fortified Foods. In Fortified Foods; Sarkar, T., Ed.; Springer: New York, NY, USA, 2025; pp. 29–60. ISBN 978-1-07-164346-4. [Google Scholar]
- Murdaca, G.; Gerosa, A.; Paladin, F.; Petrocchi, L.; Banchero, S.; Gangemi, S. Vitamin D and Microbiota: Is There a Link with Allergies? Int. J. Mol. Sci. 2021, 22, 4288. [Google Scholar] [CrossRef]
- Lorenc-Kukuła, K.; Wróbel-Kwiatkowska, M.; Starzycki, M.; Szopa, J. Engineering Flax with Increased Flavonoid Content and Thus Fusarium Resistance. Physiol. Mol. Plant Pathol. 2007, 70, 38–48. [Google Scholar] [CrossRef]
- Zhu, C.; Sanahuja, G.; Yuan, D.; Farré, G.; Arjó, G.; Berman, J.; Zorrilla-López, U.; Banakar, R.; Bai, C.; Pérez-Massot, E.; et al. Biofortification of Plants with Altered Antioxidant Content and Composition: Genetic Engineering Strategies. Plant Biotechnol. J. 2013, 11, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Lin, Y.-H.; Wu, J.-C.; Hu, S.; Yang, S.; Chen, J.-L.; Chen, Y.-C.; Lo, S.-S. Use of Traditional Chinese Medicine Reduces Exposure to Corticosteroid among Atopic Dermatitis Children: A 1-Year Follow-up Cohort Study. J. Ethnopharmacol. 2015, 159, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Balkrishna, A.; Solleti, S.K.; Singh, H.; Verma, S.; Sharma, N.; Nain, P.; Varshney, A. Herbal Decoction Divya-Swasari-Kwath Attenuates Airway Inflammation and Remodeling through Nrf-2 Mediated Antioxidant Lung Defence in Mouse Model of Allergic Asthma. Phytomedicine 2020, 78, 153295. [Google Scholar] [CrossRef] [PubMed]
- Galli, S.J. Toward Precision Medicine and Health: Opportunities and Challenges in Allergic Diseases. J. Allergy Clin. Immunol. 2016, 137, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Jasemi, S.V.; Khazaei, H.; Morovati, M.R.; Joshi, T.; Aneva, I.Y.; Farzaei, M.H.; Echeverría, J. Phytochemicals as Treatment for Allergic Asthma: Therapeutic Effects and Mechanisms of Action. Phytomedicine 2024, 122, 155149. [Google Scholar] [CrossRef]
- Proper, S.P.; Azouz, N.P.; Mersha, T.B. Achieving Precision Medicine in Allergic Disease: Progress and Challenges. Front. Immunol. 2021, 12, 720746. [Google Scholar] [CrossRef]
Flavonoid/Polyphenol | Mechanism of Action | Molecular Target | Mouse Model Evidence | References |
---|---|---|---|---|
Quercetin | Mast cell stabilization, inhibition of histamine release | FcεRI, Lyn kinase, Syk kinase, PLCγ1, PKC | Reduced histamine release and airway inflammation in ovalbumin (OVA)-induced asthma model | [75] |
Luteolin | Inhibition of Th2 cytokine production | GATA3, MAPKs (ERK, JNK, p38) | Reduced IL-4, IL-5, and IL-13 levels in allergic airway inflammation model | [75] |
Epigallocatechin gallate (EGCG) | Suppression of mast cell degranulation, antioxidant activity | FcεRI, NOX, Nrf2 | Reduced IgE-mediated anaphylaxis and oxidative stress in mouse models of food allergy | [76] |
Kaempferol | Suppression of allergic inflammation, regulation of Th1/Th2 balance | STAT6, NF-κB | Reduced airway hyperresponsiveness and eosinophilic infiltration in allergic asthma model | [75] |
Resveratrol | Enhancement of regulatory T cell function, suppression of inflammatory cytokines | Foxp3, NF-κB, TLR4 | Increased Treg cells, decreased airway inflammation in allergic asthma model | [76] |
Baicalein | Inhibition of leukotriene synthesis, suppression of oxidative stress | 5-Lipoxygenase, HO-1 | Decreased eosinophilic infiltration and mucus production in asthma model | [76] |
Curcumin | Inhibition of dendritic cell maturation, modulation of cytokine signalling | TLR4, NF-κB, MAPKs | Reduced allergic sensitization and inflammatory cytokine production in contact hypersensitivity model | [76] |
Hesperidin | Inhibition of pro-inflammatory cytokine production, mast cell stabilization | MAPKs, NF-κB, IL-6, TNF-α | Attenuated airway inflammation and decreased IgE levels in OVA-induced asthma model | [77] |
Fisetin | Induction of antioxidant response, suppression of eosinophil recruitment | Nrf2, ICAM-1, VCAM-1 | Reduced eosinophilic inflammation in allergic rhinitis model | [75] |
Myricetin | Inhibition of COX and LOX pathways, suppression of histamine synthesis | COX-1, COX-2, 5-LOX, Histidine decarboxylase | Decreased prostaglandin and leukotriene levels in atopic dermatitis model | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ona, A.D. Vitamins and Antioxidants in Plants: Are They Helpful in the Management of Allergies? Allergies 2025, 5, 22. https://doi.org/10.3390/allergies5030022
Ona AD. Vitamins and Antioxidants in Plants: Are They Helpful in the Management of Allergies? Allergies. 2025; 5(3):22. https://doi.org/10.3390/allergies5030022
Chicago/Turabian StyleOna, Andreea D. 2025. "Vitamins and Antioxidants in Plants: Are They Helpful in the Management of Allergies?" Allergies 5, no. 3: 22. https://doi.org/10.3390/allergies5030022
APA StyleOna, A. D. (2025). Vitamins and Antioxidants in Plants: Are They Helpful in the Management of Allergies? Allergies, 5(3), 22. https://doi.org/10.3390/allergies5030022