Role of Passengers in Single-Vehicle Drunk-Driving Crashes: An Injury-Severity Analysis
Abstract
1. Introduction
2. Background
3. Materials and Methods
3.1. Data and Empirical Setting
3.2. Latent Class Logit Model
4. Results
4.1. Crash Characteristics
4.2. Location Characteristics
4.3. Roadway/Environmental Characteristics
4.4. Vehicle Characteristics
4.5. Driver Characteristics
4.6. Temporal Characteristics
5. Discussion
6. Limitations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Status Report on Alcohol and Health 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- National Highway Traffic Safety Administration (NHTSA) Risky Driving/NHTSA. Available online: https://www.nhtsa.gov/risky-driving (accessed on 7 April 2020).
- Hingson, R.; Winter, M. Epidemiology and Consequences of Drinking and Driving. Alcohol Res. Health 2003, 27, 63–78. [Google Scholar]
- Scott, M.S.; Emerson, N.J.; Antonacci, L.B.; Plant, J.B. Drunk Driving Problem-Oriented Guides for Police Problem-Specific Guides Guides Series No. 36; Office of Community Oriented Policing Services, U.S. Department of Justice: Washington, DC, USA, 2006; ISBN 1-932582-57-6.
- National Highway Traffic Safety Administration (NHTSA). Traffic Safety Facts 2018 Data: Alcohol-Impaired Driving; NHTSA Technical Report DOT HS 812 864; NHTSA: Washington, DC, USA, 2019.
- National Highway Traffic Safety Administration (NHTSA). U.S. Transportation Secretary Elaine L. Chao Announces Further Decreases in Roadway Fatalities. Available online: https://www.nhtsa.gov/press-releases/roadway-fatalities-2018-fars (accessed on 7 April 2020).
- Blincoe, L.; Miller, T.R.; Zaloshnja, E.; Lawerence, B.A. The Economic and Societal Impact of Motor Vehicle Crashes, 2010 (Revised); NHTSA Technical Report DOT HS 812 013; NHTSA: Washington, DC, USA, 2015.
- Dabbour, E. Investigating temporal trends in the explanatory variables related to the severity of drivers’ injuries in single-vehicle collisions. J. Traffic Transp. Eng. 2017, 4, 71–79. [Google Scholar] [CrossRef]
- De Blasiis, M.R.; Ferrante, C.; Veraldi, V. Driving risk assessment under the effect of alcohol through an eye tracking system in virtual reality. In Advances in Safety Management and Human Factors; Arezes, P., Ed.; Springer: Cham, Switzerland, 2020; Volume 969, pp. 329–341. ISBN 9783030204969. [Google Scholar]
- Tavris, D.R.; Kuhn, E.M.; Layde, P.M. Age and gender patterns in motor vehicle crash injuries: Importance of type of crash and occupant role. Accid. Anal. Prev. 2001, 33, 167–172. [Google Scholar] [CrossRef]
- Abdel-Aty, M. Analysis of driver injury severity levels at multiple locations using ordered probit models. J. Saf. Res. 2003, 34, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Keall, M.D.; Frith, W.J.; Patterson, T.L. The influence of alcohol, age and number of passengers on the night-time risk of driver fatal injury in New Zealand. Accid. Anal. Prev. 2004, 36, 49–61. [Google Scholar] [CrossRef]
- Shaheed, M.S.; Gkritza, K. A latent class analysis of single-vehicle motorcycle crash severity outcomes. Anal. Methods Accid. Res. 2014, 2, 30–38. [Google Scholar] [CrossRef]
- Adanu, E.K.; Smith, R.; Powell, L.; Jones, S. Multilevel analysis of the role of human factors in regional disparities in crash outcomes. Accid. Anal. Prev. 2017, 109, 10–17. [Google Scholar] [CrossRef]
- Öström, M.; Eriksson, A. Single-vehicle crashes and alcohol: A retrospective study of passenger car fatalities in Northern Sweden. Accid. Anal. Prev. 1993, 25, 171–176. [Google Scholar] [CrossRef]
- Schneider, W.H.; Savolainen, P.T.; Zimmerman, K. Driver Injury Severity Resulting from Single-Vehicle Crashes along Horizontal Curves on Rural Two-Lane Highways. Transp. Res. Rec. J. Transp. Res. Board 2009, 2102, 85–92. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, K.; Huynh, N. Analysis of driver injury severity in rural single-vehicle crashes. Accid. Anal. Prev. 2012, 47, 36–44. [Google Scholar] [CrossRef]
- Chen, H.; Liu, P.; Lu, J.J.; Behzadi, B. Evaluating the safety impacts of the number and arrangement of lanes on freeway exit ramps. Accid. Anal. Prev. 2009, 41, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Subramanian, R. Factors Related to Fatal Single-Vehicle Run-Off-Road Crashes; NHTSA DOT HS 811 232; NHTSA: Washington, DC, USA, 2009.
- National Highway Traffic Safety Administration. 2016 Data: Alcohol-Impaired Driving; NHTSA Technical Report DOT HS 812 450; NHTSA: Washington, DC, USA, 2017.
- Eluru, N.; Paleti, R.; Pendyala, R.M.; Bhat, C.R. Modeling Injury Severity of Multiple Occupants of Vehicles. Transp. Res. Rec. 2010, 2165, 1–11. [Google Scholar] [CrossRef]
- Simons-Morton, B.G.; Ouimet, M.C.; Zhang, Z.; Klauer, S.E.; Lee, S.E.; Wang, J.; Chen, R.; Albert, P.; Dingus, T.A. The effect of passengers and risk-taking friends on risky driving and crashes/near crashes among novice teenagers. J. Adolesc. Health 2011, 49, 587–593. [Google Scholar] [CrossRef]
- Cartwright, J.; Asbridge, M. Passengers’ decisions to ride with a driver under the influence of either alcohol or cannabis. J. Stud. Alcohol Drugs 2011, 72, 86–95. [Google Scholar] [CrossRef]
- Stephens, A.N.; Bishop, C.A.; Liu, S.; Fitzharris, M. Alcohol consumption patterns and attitudes toward drink-drive behaviours and road safety enforcement strategies. Accid. Anal. Prev. 2017, 98, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Maistros, A.; Schneider, W.H.; Savolainen, P.T. A comparison of contributing factors between alcohol related single vehicle motorcycle and car crashes. J. Saf. Res. 2014, 49, e1–e135. [Google Scholar] [CrossRef] [PubMed]
- Neyens, D.M.; Boyle, L.N. The influence of driver distraction on the severity of injuries sustained by teenage drivers and their passengers. Accid. Anal. Prev. 2008, 40, 254–259. [Google Scholar] [CrossRef]
- Ahlm, K.; Eriksson, A. Driver’s Alcohol and Passenger’s Death in Motor Vehicle Crashes. Traffic Inj. Prev. 2006, 7, 219–223. [Google Scholar] [CrossRef]
- Lee, C.; Abdel-Aty, M. Presence of passengers: Does it increase or reduce driver’s crash potential? Accid. Anal. Prev. 2008, 40, 1703–1712. [Google Scholar] [CrossRef]
- The National Law Review Impact of Safety Campaigns on Reducing Drunk Driving/The National Law Review. Available online: https://www.natlawreview.com/article/impact-safety-campaigns-reducing-drunk-driving (accessed on 7 April 2020).
- NHTSA. Drive Sober or Get Pulled over This Holiday Season. Available online: https://www.nhtsa.gov/drunk-driving/drive-sober-or-get-pulled-over-holidays (accessed on 6 May 2020).
- NHTSA. U.S. Department of Transportation Launches New Ad Campaign to Stop Impaired Driving/NHTSA. Available online: https://www.nhtsa.gov/press-releases/us-department-transportation-launches-new-ad-campaign-stop-impaired-driving (accessed on 6 May 2020).
- Dumbaugh, E.; Merlin, L.; Signor, K.; Kumfer, W.; Lajeunesse, S.; Carter, D. Implementing Safe Systems in the United States: Guiding Principles and Lessons from International Practice. Collaborative Sciences Center for Road Safety Report No. CSCRS-R7; Collaborative Sciences Center for Road Safety: Chapel Hill, NC, USA, 2019. [Google Scholar]
- Highway Safety Manual; American Association of State Highway Transportation Officials (AASHTO): Washington, DC, USA, 2010.
- Morgan, A.; Mannering, F.L. The effects of road-surface conditions, age, and gender on driver-injury severities. Accid. Anal. Prev. 2011, 43, 1852–1863. [Google Scholar] [CrossRef]
- Shaheed, M.S.B.; Gkritza, K.; Zhang, W.; Hans, Z. A mixed logit analysis of two-vehicle crash severities involving a motorcycle. Accid. Anal. Prev. 2013, 61, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Farmer, C.M. Reliability of police-reported information for determining crash and injury severity. Traffic Inj. Prev. 2003, 4, 38–44. [Google Scholar] [CrossRef]
- Brubacher, J.R.; Chan, H.; Erdelyi, S. Injury severity in police collision reports correlates poorly with requirement for hospital admission. J. Transp. Health 2019, 14, 100606. [Google Scholar] [CrossRef]
- Lee, Y.M.; Platts-Mills, T.F.; MacWilliams, J.B.; Sochor, M.R.; Jones, J.S.; Domeier, R.M.; Schneider, L.W.; McLean, S.A. Descriptions of motor vehicle collisions by participants in emergency department-based studies: Are they accurate? West. J. Emerg. Med. 2012, 13, 329–334. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Abay, K.A. Investigating the nature and impact of reporting bias in road crash data. Transp. Res. Part A Policy Pract. 2015, 71, 31–45. [Google Scholar] [CrossRef]
- Imprialou, M.; Quddus, M. Crash data quality for road safety research: Current state and future directions. Accid. Anal. Prev. 2019, 130, 84–90. [Google Scholar] [CrossRef]
- Jung, S.; Qin, X.; Noyce, D.A. Rainfall effect on single-vehicle crash severities using polychotomous response models. Accid. Anal. Prev. 2010, 42, 213–224. [Google Scholar] [CrossRef]
- Savolainen, P.; Mannering, F. Probabilistic models of motorcyclists’ injury severities in single- and multi-vehicle crashes. Accid. Anal. Prev. 2007, 39, 955–963. [Google Scholar] [CrossRef]
- Islam, S.; Mannering, F. Driver aging and its effect on male and female single-vehicle accident injuries: Some additional evidence. J. Saf. Res. 2006, 37, 267–276. [Google Scholar] [CrossRef]
- Mannering, F.L.; Bhat, C.R. Analytic methods in accident research: Methodological frontier and future directions. Anal. Methods Accid. Res. 2014, 1, 1–22. [Google Scholar] [CrossRef]
- Mannering, F.L.; Shankar, V.; Bhat, C.R. Unobserved heterogeneity and the statistical analysis of highway accident data. Anal. Methods Accid. Res. 2016, 11, 1–16. [Google Scholar] [CrossRef]
- Greene, W.H.; Hensher, D.A. A latent class model for discrete choice analysis: Contrasts with mixed logit. Transp. Res. Part B Methodol. 2003, 37, 681–698. [Google Scholar] [CrossRef]
- Greene, W.H.; Hensher, D.A. Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model. Appl. Econ. 2013, 45, 1897–1902. [Google Scholar] [CrossRef]
- Bujosa, A.; Riera, A.; Hicks, R.L. Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach. Environ. Resour. Econ. 2010, 47, 477–493. [Google Scholar] [CrossRef]
- Washington, S.; Karlaftis, M.G.; Mannering, F.L. Statistical and Econometric Methods for Transportation Data Analysis, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2010; ISBN 9781420082852. [Google Scholar]
- Cook, L.J.; Knight, S.; Olson, L.M. A comparison of aggressive and DUI crashes. J. Saf. Res 2005, 36, 491–493. [Google Scholar] [CrossRef]
- Fu, J.; Anderson, C.L.; Dziura, J.D.; Crowley, M.J.; Vaca, F.E. Young unlicensed drivers and passenger safety restraint use in U.S. Fatal crashes: Concern for risk spillover effect? Ann. Adv. Automot. Med. Assoc. Adv. Automot. Med. Annu. Sci. Conf. 2012, 56, 37–43. [Google Scholar]
- Czech, S.; Shakeshaft, A.P.; Byrnes, J.M.; Doran, C.M. Comparing the cost of alcohol-related traffic crashes in rural and urban environments. Accid. Anal. Prev. 2010, 42, 1195–1198. [Google Scholar] [CrossRef]
- Yadav, A.K.; Velaga, N.R. Alcohol-impaired driving in rural and urban road environments: Effect on speeding behaviour and crash probabilities. Accid. Anal. Prev. 2020, 140, 105512. [Google Scholar] [CrossRef]
- Kim, J.K.; Ulfarsson, G.F.; Kim, S.; Shankar, V.N. Driver-injury severity in single-vehicle crashes in California: A mixed logit analysis of heterogeneity due to age and gender. Accid. Anal. Prev. 2013, 50, 1073–1081. [Google Scholar] [CrossRef]
- Rodríguez-López, J.; Rebollo-Sanz, Y.; Mesa-Ruiz, D. Hidden figures behind two-vehicle crashes: An assessment of the risk and external costs of drunk driving in Spain. Accid. Anal. Prev. 2019, 127, 42–51. [Google Scholar] [CrossRef]
- Salmon, P.M.; Read, G.J.M.; Stevens, N.; Walker, G.H.; Beanland, V.; McClure, R.; Hughes, B.; Johnston, I.R.; Stanton, N.A. Using the abstraction hierarchy to identify how the purpose and structure of road transport systems contributes to road trauma. Transp. Res. Interdiscip. Perspect. 2019, 3, 100067. [Google Scholar] [CrossRef]
- Valen, A.; Bogstrand, S.T.; Vindenes, V.; Frost, J.; Larsson, M.; Holtan, A.; Gjerde, H. Driver-related risk factors of fatal road traffic crashes associated with alcohol or drug impairment. Accid. Anal. Prev. 2019, 131, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Sagberg, F. Characteristics of fatal road crashes involving unlicensed drivers or riders: Implications for countermeasures. Accid. Anal. Prev. 2018, 117, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Barone, R.; Pelletti, G.; Garagnani, M.; Giusti, A.; Marzi, M.; Rossi, F.; Roffi, R.; Fais, P.; Pelotti, S. Alcohol and illicit drugs in drivers involved in road traffic crashes in Italy. An 8-year retrospective study. Forensic Sci. Int. 2019, 305, 110004. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Fan, W.D. Modeling single-vehicle run-off-road crash severity in rural areas: Accounting for unobserved heterogeneity and age difference. Accid. Anal. Prev. 2017, 101, 124–134. [Google Scholar] [CrossRef]
- Federal Highway Administration Highway Statistics. 2017. Available online: https://www.fhwa.dot.gov/policyinformation/statistics/2017/fi220.cfm (accessed on 17 March 2020).
- Bernat, D.H.; Dunsmuir, W.T.M.; Wagenaar, A.C. Effects of lowering the legal BAC to 0.08 on single-vehicle-nighttime fatal traffic crashes in 19 jurisdictions. Accid. Anal. Prev. 2004, 36, 1089–1097. [Google Scholar] [CrossRef]
- Jonsson, T.; Ivan, J.N.; Zhang, C. Crash Prediction Models for Intersections on Rural Multilane Highways. Transp. Res. Rec. J. Transp. Res. Board 2007, 2019, 91–98. [Google Scholar] [CrossRef]
- Donnell, E.T.; Mason, J.M. Predicting the Severity of Median-Related Crashes in Pennsylvania by Using Logistic Regression. Transp. Res. Rec. J. Transp. Res. Board 2004, 1897, 55–63. [Google Scholar] [CrossRef]
- Stamatiadis, N.; Puccini, G. Socioeconomic descriptors of fatal crash rates in the Southeast USA. Inj. Control Saf. Promot. 2000, 7, 165–173. [Google Scholar] [CrossRef]
- Yu, R.; Abdel-Aty, M. Multi-level Bayesian analyses for single- and multi-vehicle freeway crashes. Accid. Anal. Prev. 2013, 58, 97–105. [Google Scholar] [CrossRef]
- Doherty, S.T.; Andrey, J.C.; MacGregor, C. The situational risks of young drivers: The influence of passengers, time of day and day of week on accident rates. Accid. Anal. Prev. 1998, 30, 45–52. [Google Scholar] [CrossRef]
- Allen, S.; Zhu, S.; Sauter, C.; Layde, P.; Hargarten, S. A comprehensive statewide analysis of seatbelt non-use with injury and hospital admissions: New data, old problem. Acad. Emerg. Med. 2006, 13, 427–434. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gross, E.A.; Axberg, A.; Mathieson, K. Predictors of seatbelt use in American Indian motor vehicle crash trauma victims on and off the reservation. Accid. Anal. Prev. 2007, 39, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Bogstrand, S.T.; Larsson, M.; Holtan, A.; Staff, T.; Vindenes, V.; Gjerde, H. Associations between driving under the influence of alcohol or drugs, speeding and seatbelt use among fatally injured car drivers in Norway. Accid. Anal. Prev. 2015, 78, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Behnood, A.; Roshandeh, A.M.; Mannering, F.L. Latent class analysis of the effects of age, gender, and alcohol consumption on driver-injury severities. Anal. Methods Accid. Res. 2014, 3, 56–91. [Google Scholar] [CrossRef]
- Elam, C.; McKaig, R.N.; Jacobs, B.; Whitlow, M.; Gros Louis, K.R. Examining a Safe Ride Program: An Assessment of the Midnight Special Late Night Bus Service. J. Stud. Aff. Res. Pract. 2011, 43, 358–376. [Google Scholar]
- Greenwood, B.N.; Wattal, S. Show Me the Way to Go Home: An Empirical Investigation of Ride Sharing and Alcohol Related Motor Vehicle Homicide. Fox Sch. Bus. 2015. [Google Scholar] [CrossRef]
Variables | Single-Occupant | Multi-Occupant | ||
---|---|---|---|---|
Frequency (%) | Frequency (%) | |||
Dependent | Severe injury (fatal or incapacitating injury) | 405 (7.1) | 345 (20.6) | |
Minor injury (non-incapacitating or possible injury) | 1017 (17.7) | 460 (27.5) | ||
No injury (property damage only) | 4310 (75.2) | 870 (51.9) | ||
Explanatory Characteristics | Crash | Run-off road | 1368 (23.9) | 373 (22.3) |
Collision with ditch | 1187 (20.7) | 341 (20.4) | ||
Collision with tree | 661 (11.5) | 206 (12.3) | ||
Unrestrained driver | 1256 (21.9) | 442 (26.4) | ||
Roadway/Environmental | Interstate | 422 (7.4) | 161 (9.6) | |
Federal highway | 601 (10.5) | 158 (9.4) | ||
State highway | 940 (16.4) | 252 (15.0) | ||
County road | 2703 (47.2) | 761 (45.4) | ||
Municipal road | 1043 (18.2) | 334 (19.9) | ||
Wet roadway condition | 921 (16.1) | 293 (17.5) | ||
Roadway curved right | 1248 (21.8) | 383 (22.9) | ||
Roadway curved left | 708 (12.4) | 245 (14.6) | ||
Downward grade | 1258 (22.0) | 391 (23.3) | ||
Two lane highway | 4511 (78.7) | 1280 (76.4) | ||
Four lane highway | 874 (15.3) | 280 (16.7) | ||
Daylight | 1436 (25.1) | 400 (23.9) | ||
Dark and unlit roadway | 2911 (50.8) | 856 (51.1) | ||
Clear weather condition | 3961 (69.1) | 1122 (67.0) | ||
Poor visibility | 1750 (30.5) | 545 (32.5) | ||
Location | Rural area | 3768 (65.7) | 1074 (64.1) | |
Urban area | 1407 (24.6) | 601 (35.9) | ||
Crash location is open country | 3740 (65.3) | 1096 (65.4) | ||
Crash location is residential area | 1391 (24.3) | 403 (24.1) | ||
Crash location <25 mi from driver residence | 4672 (81.5) | 1348 (80.4) | ||
Crash location >25 mi from driver residence | 964 (16.8) | 301 (18.0) | ||
Crash location is an Intersection | 1423 (24.8) | 429 (25.6) | ||
Temporal | Winter (Dec-Feb) | 1431 (25.0) | 406 (24.2) | |
Spring (Mar-May) | 1413 (24.7) | 413 (24.7) | ||
Summer (Jun-Aug) | 1442 (25.1) | 414 (24.7) | ||
Autumn (Sept-Oct) | 1446 (25.2) | 442 (26.4) | ||
Weekend | 3581 (62.5) | 1108 (66.2) | ||
Between midnight and 6 a.m. | 2123 (37.0) | 627 (37.4) | ||
Between 6 p.m. and midnight | 2227 (38.9) | 684 (40.8) | ||
Vehicle | Sedan | 2805 (48.9) | 863 (51.5) | |
Pickup truck | 1614 (28.2) | 420 (25.1) | ||
SUV | 1020 (17.8) | 323 (19.3) | ||
Driver | Female | 1237 (21.58) | 421 (25.1) | |
Invalid license | 1468 (25.6) | 459 (27.4) | ||
Employed driver | 2891 (50.4) | 779 (46.5) | ||
Unemployed driver | 1749 (30.5) | 626 (37.4) | ||
Self-employed driver | 345 (6.0) | 80 (4.8) | ||
Age [Mean (Std. Dev)] | [35.5 (0.6)] | [30.2 (1.8)] |
Variable | Characteristics | Latent | Class 1 | Latent | Class 2 |
---|---|---|---|---|---|
Parameter | t-Statistic | Parameter | t-Statistic | ||
Defined for Severe injury | |||||
Collision with ditch | Crash | −0.747 | −3.66 | −0.586 | −1.36 |
Road with downward grade | Road/Environ | 0.429 | 2.53 | 0.105 | 0.31 |
Autumn months | Road/Environ | −0.369 | −1.72 | 1.191 | 3.11 |
Two lane road | Road/Environ | −0.371 | −1.66 | 0.963 | 2.53 |
Residential location | Location | −0.897 | −2.85 | 0.522 | 1.21 |
Rural area | Location | 0.159 | 0.73 | 0.599 | 1.79 |
>25 mi from driver residence | Location | −1.505 | 1.00 | 2.119 | 3.91 |
Weekend | Temporal | 0.027 | 2.17 | −0.134 | −0.46 |
Unemployed | Driver | 0.441 | 2.47 | −0.906 | −2.19 |
Invalid license | Driver | 0.103 | 0.62 | 0.497 | 2.58 |
SUV | Vehicle | 0.125 | 2.66 | −0.162 | −0.41 |
Defined for Minor injury | |||||
Constant | - | −5.649 | −3.21 | 4.436 | 5.33 |
Dark and unlit roadway | Road/Environ | 1.260 | 2.43 | −0.276 | −1.13 |
Summer month | Temporal | 1.258 | 1.76 | −0.583 | −1.91 |
Female driver | Driver | 1.530 | 2.03 | −0.097 | −0.33 |
Younger driver | Driver | −0.250 | −0.36 | 0.049 | 2.21 |
Pickup truck | Vehicle | 2.267 | 2.00 | −0.274 | −1.02 |
Defined for No injury | |||||
Run-off road | Crash | 0.966 | 3.57 | −0.540 | −0.99 |
Interstate | Road/Environ | 0.993 | 2.31 | 2.216 | 4.41 |
Wet roadway | Road/Environ | 0.022 | 0.11 | 1.079 | 2.50 |
Intersection | Location | 0.915 | 3.77 | 0.914 | 2.15 |
<25 mi from driver residence | Location | 1.730 | 7.29 | 1.965 | 2.76 |
Winter month | Temporal | 0.574 | 2.95 | 0.387 | 0.91 |
Between 6 p.m. and midnight | Temporal | 0.283 | 1.70 | −0.467 | −1.06 |
Latent class probability | 0.775 | 43.23 | 0.225 | 12.52 | |
Number of observations | 5732 | ||||
Restricted log likelihood | −6297.25 | ||||
LL at convergence | −3976.29 | ||||
McFadden Pseudo R-sq | 0.37 |
Variable | Characteristics | Latent | Class 1 | Latent | Class 2 |
---|---|---|---|---|---|
Parameter | t-Statistic | Parameter | t-Statistic | ||
Defined for Severe injury | |||||
Constant | - | −8.506 | −0.62 | −0.927 | −4.33 |
Collision with ditch | Crash | 0.463 | 0.09 | −0.571 | −2.67 |
Road with downward grade | Road/Environ | −0.301 | −0.06 | 0.465 | 2.54 |
Poor visibility | Road/Environ | 1.183 | 2.52 | −0.034 | −0.18 |
Residential location | Location | 3.241 | 2.23 | −0.217 | −1.04 |
Weekend | Temporal | 5.032 | 0.37 | 0.357 | 2.22 |
Defined for Minor injury | |||||
Unrestrained | Crash | 10.597 | 3.29 | −5.447 | −0.53 |
Dark and unlit roadway | Road/Environ | −1.112 | −1.54 | −0.337 | −1.79 |
Interstate | Road/Environ | −3.868 | −2.40 | 0.152 | 0.42 |
Four lane highway | Road/Environ | 3.598 | 2.66 | −0.539 | −1.66 |
Unemployed | Driver | 2.941 | 2.90 | −0.519 | −2.57 |
SUV | Vehicle | −1.558 | −1.69 | 0.400 | 1.75 |
Defined for No injury | |||||
Run-off road | Crash | −1.828 | −1.70 | 0.572 | 2.23 |
Wet roadway | Road/Environ | −1.406 | −1.45 | 0.789 | 2.90 |
Intersection | Location | −0.765 | −0.92 | 0.744 | 3.19 |
<25 mi from driver residence | Location | 0.622 | 0.75 | −0.380 | −1.86 |
Rural area | Location | 3.703 | 1.77 | −0.319 | −1.36 |
Winter month | Temporal | 1.261 | 1.62 | 0.486 | 2.21 |
Female driver | Driver | 0.582 | 1.72 | 0.133 | 0.59 |
Driver age | Driver | 0.120 | 2.75 | −0.033 | −3.61 |
Invalid license | Driver | 2.206 | 2.38 | −0.419 | −1.81 |
Self-employed driver | Driver | −9.587 | −3.00 | 2.728 | 4.26 |
Sedan | Vehicle | 1.033 | 2.34 | 0.245 | 1.23 |
Latent class probability | 0.405 | 14.77 | 0.595 | 21.66 | |
Number of observations | 1675 | ||||
Restricted log likelihood | −1840.18 | ||||
LL at convergence | −1585.48 | ||||
McFadden Pseudo R-sq | 0.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lidbe, A.; Adanu, E.K.; Tedla, E.; Jones, S. Role of Passengers in Single-Vehicle Drunk-Driving Crashes: An Injury-Severity Analysis. Safety 2020, 6, 30. https://doi.org/10.3390/safety6020030
Lidbe A, Adanu EK, Tedla E, Jones S. Role of Passengers in Single-Vehicle Drunk-Driving Crashes: An Injury-Severity Analysis. Safety. 2020; 6(2):30. https://doi.org/10.3390/safety6020030
Chicago/Turabian StyleLidbe, Abhay, Emmanuel Kofi Adanu, Elsa Tedla, and Steven Jones. 2020. "Role of Passengers in Single-Vehicle Drunk-Driving Crashes: An Injury-Severity Analysis" Safety 6, no. 2: 30. https://doi.org/10.3390/safety6020030
APA StyleLidbe, A., Adanu, E. K., Tedla, E., & Jones, S. (2020). Role of Passengers in Single-Vehicle Drunk-Driving Crashes: An Injury-Severity Analysis. Safety, 6(2), 30. https://doi.org/10.3390/safety6020030