Heart Rate Variability Monitoring in Special Emergency Response Team Anaerobic-Based Tasks and Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Statistical Analyses
3. Results
3.1. Smallest Worthwhile Change Analyses
3.2. HR, HRV, and Obstacle Course Time
4. Discussion
4.1. SWC Analyses
4.2. Regression Analyses
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilmartin, K.M. Emotional Survival for Law Enforcement: A Guide for Officers and Their Families; ES Press: Tucson, AZ, USA, 2002. [Google Scholar]
- Andrew, M.; Miller, D.; Gu, J.; Li, S.; Charles, L.; Violanti, J.; Mnatsakanova, A.; Burchfiel, C. Exposure to police work stressors and dysregulation of the stress response system: The buffalo cardio-metabolic occupational police stress study. Epidemiology 2012, 23, S202. [Google Scholar] [CrossRef]
- Battle, L. Compassion Fatigue, Compassion Satisfaction, and Burnout among Police Officers Who Have Experienced Previous Perceived Traumas; The University of Memphis: Memphis, TN, USA, 2011. [Google Scholar]
- Larsen, L.B.; Andersson, E.E.; Tranberg, R.; Ramstrand, N. Multi-site musculoskeletal pain in Swedish police: Associations with discomfort from wearing mandatory equipment and prolonged sitting. Int. Arch. Occup. Environ. Health 2018, 91, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Schram, B.; Robinson, J.; Orr, R. The physical fitness effects of a week-long specialist tactical police selection course. Int. J. Environ. Res. Public Health 2020, 17, 6782. [Google Scholar] [CrossRef] [PubMed]
- Bertilsson, J.; Niehorster, D.C.; Fredriksson, P.; Dahl, M.; Granér, S.; Fredriksson, O.; Mårtensson, J.; Magnusson, M.; Fransson, P.-A.; Nyström, M. Towards systematic and objective evaluation of police officer performance in stressful situations. Police Pract. Res. 2020, 21, 655–669. [Google Scholar] [CrossRef]
- Young, A.T.; Hennington, C.; Eggleston, D. US SWAT pro experience, personality, cognitive-emotion regulation and decision-making style. Polic. Int. J. 2018, 41, 247–261. [Google Scholar] [CrossRef]
- Marins, E.; Barbosa, O.; Machado, E.; Orr, R.; Dawes, J.; Del Vecchio, F. Profile of self-reported physical tasks and physical training in Brazilian special operations units: A web-based cross-sectional study. Int. J. Environ. Res. Public Health 2020, 17, 7135. [Google Scholar] [CrossRef]
- Blacker, S.; Carter, J.; Wilkinson, D.; Richmond, V.; Rayson, M.; Peattie, M. Physiological responses of police officers during job simulations wearing chemical, biological, radiological and nuclear personal protective equipment. Ergonomics 2013, 56, 137–147. [Google Scholar] [CrossRef]
- Keeler, J.M. The Effect of Tactical Tasks and Gear on Muscle Activation of SWAT Officers. Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2014. [Google Scholar]
- Thomas, M.; Pohl, M.B.; Shapiro, R.; Keeler, J.; Abel, M.G. Effect of load carriage on tactical performance in special weapons and tactics operators. J. Strength Cond. Res. 2018, 32, 554. [Google Scholar] [CrossRef]
- Davis, M.R.; Easter, R.L.; Carlock, J.M.; Weiss, L.W.; Longo, E.A.; Smith, L.M.; Dawes, J.J.; Schilling, B.K. Self-reported physical tasks and exercise training in special weapons and tactics (SWAT) teams. J. Strength Cond. Res. 2016, 30, 3242–3248. [Google Scholar] [CrossRef]
- McEwen, B.S.; Wingfield, J.C. The concept of allostasis in biology and biomedicine. Horm. Behav. 2003, 43, 2–15. [Google Scholar] [CrossRef]
- Seeman, T.E.; McEwen, B.S.; Rowe, J.W.; Singer, B.H. Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc. Natl. Acad. Sci. USA 2001, 98, 4770–4775. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, F.H. Cardiovascular disease and risk factors in law enforcement personnel: A comprehensive review. Cardiol. Rev. 2012, 20, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Forrester, S.N.; Leoutsakos, J.-M.; Gallo, J.J.; Thorpe, R.J.; Seeman, T.E. Association between allostatic load and health behaviours: A latent class approach. J. Epidemiol. Community Health 2019, 73, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Gay, J.L.; Salinas, J.J.; Buchner, D.M.; Mirza, S.; Kohl, H.W.; Fisher-Hoch, S.P.; McCormick, J.B. Meeting physical activity guidelines is associated with lower allostatic load and inflammation in Mexican Americans. J. Immigr. Minor. Health 2015, 17, 574–581. [Google Scholar] [CrossRef]
- Bellenger, C.R.; Fuller, J.T.; Thomson, R.L.; Davison, K.; Robertson, E.Y.; Buckley, J.D. Monitoring athletic training status through autonomic heart rate regulation: A systematic review and meta-analysis. Sports Med. 2016, 46, 1461–1486. [Google Scholar] [CrossRef]
- Gisselman, A.S.; Baxter, G.D.; Wright, A.; Hegedus, E.; Tumilty, S. Musculoskeletal overuse injuries and heart rate variability: Is there a link? Med. Hypotheses 2016, 87, 1–7. [Google Scholar] [CrossRef]
- Macartney, M.J.; Larsen, P.; Gibson, N.; Michael, S.; Drain, J.; Peoples, G.E.; Groeller, H. Overnight sleeping heart rate variability of Army recruits during a 12-week basic military training course. Eur. J. Appl. Physiol. 2022, 122, 2135–2144. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Thayer, J.F.; Ahs, F.; Fredrikson, M.; Sollers, J.J., 3rd; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef]
- Gamble, K.R.; Vettel, J.M.; Patton, D.J.; Eddy, M.D.; Caroline Davis, F.; Garcia, J.O.; Spangler, D.P.; Thayer, J.F.; Brooks, J.R. Different profiles of decision making and physiology under varying levels of stress in trained military personnel. Int. J. Psychophysiol. 2018, 131, 73–80. [Google Scholar] [CrossRef]
- Corrigan, S.L.; Roberts, S.; Warmington, S.; Drain, J.; Main, L.C. Monitoring stress and allostatic load in first responders and tactical operators using heart rate variability: A systematic review. BMC Public Health 2021, 21, 1701. [Google Scholar] [CrossRef] [PubMed]
- Addleman, J.S.; Lackey, N.S.; DeBlauw, J.A.; Hajduczok, A.G. Heart Rate Variability Applications in Strength and Conditioning: A Narrative Review. J. Funct. Morphol. Kinesiol. 2024, 9, 93. [Google Scholar] [CrossRef]
- Carrard, J.; Rigort, A.-C.; Appenzeller-Herzog, C.; Colledge, F.; Königstein, K.; Hinrichs, T.; Schmidt-Trucksäss, A. Diagnosing overtraining syndrome: A scoping review. Sports Health 2022, 14, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Heiss, S.; Vaschillo, B.; Vaschillo, E.G.; Timko, C.A.; Hormes, J.M. Heart rate variability as a biobehavioral marker of diverse psychopathologies: A review and argument for an “ideal range”. Neurosci. Biobehav. Rev. 2021, 121, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.F.A.; Morgado, J.J.M. Effects of patrol operation on hydration status and autonomic modulation of heart rate of Brazilian peacekeepers in Haiti. J. Strength Cond. Res. 2015, 29 (Suppl. S11), S82–S87. [Google Scholar] [CrossRef] [PubMed]
- LyytikÄInen, K.; Toivonen, L.; Hynynen, E.S.A.; Lindholm, H.; KyrÖLÄInen, H.; Lyytikäinen, K.; Kyröläinen, H. Recovery of rescuers from a 24-h shift and its association with aerobic fitness. Int. J. Occup. Med. Environ. Health 2017, 30, 433–444. [Google Scholar] [CrossRef]
- Porto, L.G.G.; Schmidt, A.C.B.; de Souza, J.M.; Nogueira, R.M.; Fontana, K.E.; Molina, G.E.; Korre, M.; Smith, D.L.; Junqueira, L.F.; Kales, S.N. Firefighters’ basal cardiac autonomic function and its associations with cardiorespiratory fitness. Work 2019, 62, 485–495. [Google Scholar] [CrossRef]
- Tomes, C.; Schram, B.; Orr, R. Relationships between heart rate variability, occupational performance, and fitness for tactical personnel: A systematic review. Front. Public Health 2020, 8, 583336. [Google Scholar] [CrossRef]
- Andrew, M.E.; Shengqiao, L.; Wactawski-Wende, J.; Dorn, J.P.; Mnatsakanova, A.; Charles, L.E.; Fekedulegn, D.; Miller, D.B.; Violanti, J.M.; Burchfiel, C.M.; et al. Adiposity, muscle, and physical activity: Predictors of perturbations in heart rate variability. Am. J. Hum. Biol. 2013, 25, 370–377. [Google Scholar] [CrossRef]
- Campos, F.D.S.; Borszcz, F.K.; Flores, L.J.F.; Barazetti, L.K.; Teixeira, A.S.; Hartmann Nunes, R.F.; Guglielmo, L.G.A. HIIT models in addition to training load and heart rate variability are related with physiological and performance adaptations after 10-weeks of training in young futsal players. Front. Psychol. 2021, 12, 636153. [Google Scholar] [CrossRef]
- Sax van der Weyden, M.; Black, C.D.; Larson, D.; Rollberg, B.; Campbell, J.A. Development of a fitness test battery for special weapons and tactics (SWAT) operators—A pilot study. Int. J. Environ. Res. Public Health 2021, 18, 7992. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, R.J. A descriptive analysis of foot pursuits in the Los Angeles County Sheriff’s Department. Draft Rep. 2010, 9, 1–22. [Google Scholar] [CrossRef]
- Orr, R.; Hinton, B.; Wilson, A.; Pope, R.; Dawes, J. Investigating the routine dispatch tasks performed by police officers. Safety 2020, 6, 54. [Google Scholar] [CrossRef]
- Schram, B.; Hinton, B.; Orr, R.; Pope, R.; Norris, G. The perceived effects and comfort of various body armour systems on police officers while performing occupational tasks. Ann. Occup. Environ. Med. 2018, 30, 15. [Google Scholar] [CrossRef]
- Robinson, J.; Micovic, M.; Schram, B.; Leroux, A.; Orr, R.M. The heart rates and movement speed of specialist tactical police during a multistorey active shooter training scenario. Int. J. Exerc. Sci. 2022, 16, 281–292. [Google Scholar]
- Mazer, J.P.; Thompson, B.; Cherry, J.; Russell, M.; Payne, H.J.; Kirby, E.G.; Pfohl, W. Communication in the face of a school crisis: Examining the volume and content of social media mentions during active shooter incidents. Comput. Hum. Behav. 2015, 53, 238–248. [Google Scholar] [CrossRef]
- Simas, V.; Schram, B.; Canetti, E.F.; Maupin, D.; Orr, R. Factors influencing marksmanship in police officers: A narrative review. Int. J. Environ. Res. Public Health 2022, 19, 14236. [Google Scholar] [CrossRef]
- Andersen, J.P.; Di Nota, P.M.; Beston, B.; Boychuk, E.C.; Gustafsberg, H.; Poplawski, S.; Arpaia, J. Reducing lethal force errors by modulating police physiology. J. Occup. Environ. Med. 2018, 60, 867–874. [Google Scholar] [CrossRef]
- Williams, J.R. The declaration of Helsinki and public health. Bull. World Health Organ. 2008, 86, 650–652. [Google Scholar] [CrossRef]
- Tomes, C.; Schram, B.; Orr, R. Field monitoring the effects of overnight shift work on specialist tactical police training with heart rate variability analysis. Sustainability 2021, 13, 7895. [Google Scholar] [CrossRef]
- Tomes, C.D. Exploring Heart Rate Variability as a Human Performance Optimisation Metric for Law Enforcement. Ph.D. Thesis, Bond University, Gold Coast, QLD, Australia, 2023. [Google Scholar]
- Sammito, S.; Thielmann, B.; Seibt, R.; Klussmann, A.; Weippert, M.; Böckelmann, I. Guideline for the application of heart rate and heart rate variability in occupational medicine and occupational science. ASU Int. 2015, 2015, 1–29. [Google Scholar] [CrossRef]
- Orr, R.M.; Robinson, J.; Hasanki, K.; Talaber, K.A.; Schram, B.; Roberts, A. The relationship between strength measures and task performance in specialist tactical police. J. Strength Cond. Res. 2020, 36, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Barak, O.F.; Jakovljevic, D.G.; Gacesa, J.Z.P.; Ovcin, Z.B.; Brodie, D.A.; Grujic, N.G. Heart rate variability before and after cycle exercise in relation to different body positions. J. Sports Sci. Med. 2010, 9, 176. [Google Scholar] [PubMed]
- Billman, G.E.; Huikuri, H.V.; Sacha, J.; Trimmel, K. An introduction to heart rate variability: Methodological considerations and clinical applications. Front. Physiol. 2015, 6, 55. [Google Scholar] [CrossRef]
- Buchheit, M. Magnitudes matter more than beetroot juice. Sport Perform. Sci. Rep. 2018, 15, 1–3. [Google Scholar]
- Buchheit, M.; Chivot, A.; Parouty, J.; Mercier, D.; Al Haddad, H.; Laursen, P.; Ahmaidi, S. Monitoring endurance running performance using cardiac parasympathetic function. Eur. J. Appl. Physiol. 2010, 108, 1153–1167. [Google Scholar] [CrossRef]
- Marins, E.F.; Cabistany, L.; Farias, C.; Dawes, J.; Del Vecchio, F.B. Effects of personal protective equipment on metabolism and performance during an occupational physical ability test for federal highway police officers. J. Strength Cond. Res. 2020, 34, 1093–1102. [Google Scholar] [CrossRef]
- van Paridon, K.N.; Timmis, M.A.; Nevison, C.M.; Bristow, M. The anticipatory stress response to sport competition; a systematic review with meta-analysis of cortisol reactivity. BMJ Open Sport Exerc. Med. 2017, 3, e000261. [Google Scholar] [CrossRef]
- Brosschot, J.F.; Verkuil, B.; Thayer, J.F. The default response to uncertainty and the importance of perceived safety in anxiety and stress: An evolution-theoretical perspective. J. Anxiety Disord. 2016, 41, 22–34. [Google Scholar] [CrossRef]
- Montano, N.; Porta, A.; Cogliati, C.; Costantino, G.; Tobaldini, E.; Casali, K.R.; Iellamo, F. Heart rate variability explored in the frequency domain: A tool to investigate the link between heart and behavior. Neurosci. Biobehav. Rev. 2009, 33, 71–80. [Google Scholar] [CrossRef]
- Kuusela, T. Methodological aspects of heart rate variability analysis. In Heart Rate Variability (HRV) Signal Analysis; CRC Press: Boca Raton, FL, USA, 2016; pp. 28–61. [Google Scholar]
- Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Mongin, D.; Chabert, C.; Extremera, M.G.; Hue, O.; Courvoisier, D.S.; Carpena, P.; Galvan, P.A.B. Decrease of heart rate variability during exercise: An index of cardiorespiratory fitness. PLoS ONE 2022, 17, e0273981. [Google Scholar] [CrossRef] [PubMed]
- Muirhead, H.; Orr, R.; Schram, B.; Kornhauser, C.; Holmes, R.; Dawes, J.J. The relationship between fitness and marksmanship in police officers. Safety 2019, 5, 54. [Google Scholar] [CrossRef]
- Hornsby, J.H.; Johnson, B.L.; Meckley, D.P.; Blackley, A.; Peveler, W.W.; Lowes, J.N.; Dawes, J.J. Effects of heart rate biofeedback, sleep, and alertness on marksmanship accuracy during a live-fire stress shoot. Int. J. Exerc. Sci. 2021, 14, 123. [Google Scholar]
- American Heart Association. Recommendations for Physical Activity in Adults. Available online: https://www.heart.org/HEARTORG/HealthyLiving/PhysicalActivity/FitnessBasics/American-Heart-Association-Recommendations-for-Physical-Activity-in-Adults_UCM_307976_Article.jsp?appName=WebApp (accessed on 19 April 2024).
- Haddock, C.K.; Poston, W.S.C.; Heinrich, K.M.; Jahnke, S.A.; Jitnarin, N. The benefits of high-intensity functional training fitness programs for military personnel. Mil. Med. 2016, 181, e1508–e1514. [Google Scholar] [CrossRef]
- Woodford, K.M.; Kock, M.V.; Fanno, J.D.; Webb, H.E. Shooting Accuracy and Precision after Tactical Exercises Among Special Weapons and Tactic (SWAT) Team Members. Int. J. Exerc. Sci. Conf. Proc. 2021, 2, 104. [Google Scholar]
- Sánchez-Molina, J.; Robles-Pérez, J.J.; Clemente-Suárez, V.J. Psychophysiological and specific fine motor skill modifications in a checkpoint action. J. Med. Syst. 2019, 43, 90. [Google Scholar] [CrossRef]
- Canetti, E.; Orr, R.M.; Schram, B.; Dawes, J.; Lockie, R.G.; Holmes, R.; Kornhauser, C. Aerobic conditioning is important, but anaerobic conditioning is crucial for police occupational task performance. In Proceedings of the TRANSFORM 2019 Physiotherapy Conference, Adelaide, SA, Australia, 17–19 October 2019. [Google Scholar]
- DiVencenzo, H.R.; Morgan, A.L.; Laurent, C.M.; Keylock, K.T. Metabolic demands of law enforcement personal protective equipment during exercise tasks. Ergonomics 2014, 57, 1760–1765+1766. [Google Scholar] [CrossRef]
HR (bpm) | RMSSD (ms) | SDNN (ms) | TP (ms2) | LF (ms2) | HF (ms2) | SD1 (ms) | SD2 (ms) | |
---|---|---|---|---|---|---|---|---|
Baseline (n = 15) | 115 ± 124 | 64 ± 138.97 | 86.64 ± 132.85 | 2743.27 ± 3183.60 | 1057.48 ± 763.58 | 526.39 ± 1143.90 | 20.05 ± 15.41 | 69.30 ± 28.62 |
Post-Qualification (n = 10) | 87 ± 16 | 52.68 ± 41.85 | 66.74 ± 34.57 | 3837.66 ± 4877.82 | 1188.89 ± 959.55 | 1143.05 ± 1650.94 | 37.30 ± 29.63 | 85.49 ± 41.73 |
Post-Training (n = 8) | 105 ± 20 ** | 20.72 ± 13.66 | 39.12 ± 23.96 * | 1807.66 ± 3409.85 ** | 432.13 ± 597.62 * | 73.72 ± 93.30 * | 14.66 ± 9.67 | 52.76 ± 33.55 * |
Mean HR (bpm) | RMSSD (ms) | SDNN (ms) | TP (ms2) | LF (ms2) | HF (ms2) | SD1 (ms) | SD2 (ms) | |
---|---|---|---|---|---|---|---|---|
Mean ± SD | 81.19 ± 10.60 | 30.42 ± 22.67 | 53.47 ± 23.31 | 3056.99 ± 3318.32 | 1139.82 ± 783.55 | 600.34 ± 1217.41 | 21.55 ± 16.05 | 72.24 ± 29.43 |
20% SD | 2.12 | 4.53 | 4.66 | 663.66 | 156.71 | 243.48 | 3.21 | 5.89 |
SWC Upper Bound | 83.31 | 34.96 | 58.13 | 3720.66 | 1296.53 | 843.82 | 24.76 | 78.12 |
SWC Lower Bound | 79.07 | 25.89 | 48.81 | 2393.33 | 983.11 | 356.86 | 18.34 | 66.35 |
Top 50% (n = 6) Mean ± SD | 79.22 ± 12.75 | 37.58 ± 28.58 ‡ | 61.78 ± 26.18 ‡ | 3945.74 ± 4274.96 ‡ | 1397.60 ± 918.26 ‡ | 901.76 ± 1639.37 ‡ | 26.62 ± 20.22 ‡ | 82.83 ± 32.12 ‡ |
Bottom 50% (n = 7) Mean ± SD | 83.50 ± 7.94 ‡ | 22.08 ± 9.89 ‡ | 43.78 ± 16.51 ‡ | 2020.12 ± 1449.38 ‡ | 839.07 ± 509.97 ‡ | 248.68 ± 237.40 ‡ | 15.62 ± 7.00 ‡ | 59.88 ± 22.37 ‡ |
Mean HR (bpm) | RMSSD (ms) | SDNN (ms) | TP (ms2) | LF (ms2) | HF (ms2) | SD1 (ms) | SD2 (ms) | |
---|---|---|---|---|---|---|---|---|
Mean ± SD | 85.15 ± 15.02 | 50.41 ± 43.39 | 67.68 ± 36.29 | 4101.83 ± 5058.05 | 1264.67 ± 976.15 | 1201.72 ± 1728.11 | 35.69 ± 30.72 | 87.94 ± 43.14 |
20% SD | 3.00 | 8.68 | 7.26 | 1011.61 | 195.23 | 345.62 | 6.14 | 8.63 |
SWC Upper Bound | 88.15 | 59.09 | 74.94 | 5113.44 | 1459.90 | 1547.34 | 41.83 | 96.57 |
SWC Lower Bound | 82.14 | 41.73 | 60.43 | 3090.22 | 1069.44 | 856.10 | 29.54 | 79.31 |
Top 50% (n = 5) | 84.27 ± 17.90 | 76.37 ± 47.96 ‡ | 86.986 ± 41.00 ‡ | 6470.6 ± 6432.44 ‡ | 1842.16 ± 1008.82 ‡ | 2013.26 ± 2183.81 ‡ | 54.07 ± 33.96 ‡ | 109.89 ± 48.7 ‡ |
Bottom 50% (n = 5) | 86.02 ± 13.62 | 24.45 ± 15.82 ‡ | 48.38 ± 18.71 ‡ | 1733.06 ± 1469.58 ‡ | 687.18 ± 540.83 ‡ | 390.19 ± 551.17 ‡ | 17.31 ± 11.20 ‡ | 65.99 ± 24.68 ‡ |
Mean HR (bpm) | RMSSD (ms) | SDNN (ms) | TP (ms2) | LF (ms2) | HF (ms2) | SD1 (ms) | SD2 (ms) | |
---|---|---|---|---|---|---|---|---|
Mean ± SD | 102.71 ± 19.93 | 22.32 ± 13.68 | 41.40 ± 24.55 | 2013.35 ± 3585.09 | 473.60 ± 624.88 | 82.06 ± 96.09 | 15.79 ± 9.68 | 55.72 ± 34.58 |
20% SD | 3.99 | 2.74 | 4.91 | 717.02 | 124.98 | 19.22 | 1.94 | 6.92 |
SWC Upper Bound | 106.70 | 25.05 | 46.30 | 2730.37 | 598.57 | 101.28 | 17.73 | 62.64 |
SWC Lower Bound | 98.72 | 19.58 | 36.49 | 1296.33 | 348.62 | 62.85 | 13.86 | 48.81 |
Top 50% (n = 4) | 101.52 ± 25.23 | 21.01 ± 16.97 | 46.51 ± 35.36 ‡ | 2826.98 ± 5075.67 ‡ | 454.89 ± 650.76 | 102.22 ± 131.28 | 14.87 ± 12.01 | 63.53 ± 49.52 ‡ |
Bottom 50% (n = 4) | 103.90 ± 16.93 | 23.62 ± 12.00 | 36.28 ± 9.29 ‡ | 1199.73 ± 1569.20 ‡ | 492.30 ± 697.64 | 61.91 ± 56.80 ‡ | 16.72 ± 8.50 | 47.92 ± 13.23 ‡ |
Baseline | Post-Qualification | Post-Training | |||||||
---|---|---|---|---|---|---|---|---|---|
Dependent | r2 | F | p | r2 | F | p | r2 | F | p |
HR | 0.169 | 1,12 = 2.232 | 0.163 | 0.103 | 1,8 = 0.920 | 0.366 | 0.131 | 1,8 = 0.904 | 0.378 |
RMSSD | 0.327 | 1,12 = 5.346 | 0.041 * | 0.646 | 1,18 = 14.580 | 0.005 ** | 0.021 | 1,8 = 0.131 | 0.730 |
SDNN | 0.305 | 1,12 = 4.838 | 0.050 | 0.665 | 1,8 = 15.847 | 0.004 ** | 0.395 | 1,8 = 3.909 | 0.095 |
TP | 0.267 | 1,12 = 4.017 | 0.70 | 0.658 | 1,8 = 15.423 | 0.004 ** | 0.411 | 1,8 = 4.189 | 0.087 |
LF | 0.033 | 1,12 = 0.378 | 0.551 | 0.522 | 1,8 = 8.741 | 0.018 * | 0.062 | 1,8 = 0.397 | 0.552 |
HF | 0.346 | 1,12 = 5.823 | 0.034 * | 0.634 | 1,8 = 13.87 | 0.006 ** | 0.311 | 1,8 = 2.711 | 0.151 |
SD1 | 0.328 | 1,12 = 5.363 | 0.041 * | 0.646 | 1,8 = 14.575 | 0.005 ** | 0.021 | 1,8 = 0.131 | 0.730 |
SD2 | 0.294 | 1,12 = 4.585 | 0.055 | 0.653 | 1,8 = 15.040 | 0.005 ** | 0.417 | 1,8 = 4.284 | 0.084 |
Change in HRV (Baseline to Post-Qualification) | Change in HRV (Baseline to Post-Training) | |||||
---|---|---|---|---|---|---|
Dependent | r2 | F | p | r2 | F | p |
HR | 0.024 | 1,8 = 0.194 | 0.671 | 0.002 | 1,8 = 0.000 | 0.968 |
RMSSD | 0.233 | 1,8 = 2.435 | 0.157 | 0.438 | 1,8 = 4.669 | 0.074 |
SDNN | 0.205 | 1,8 = 2.060 | 0.189 | 0.133 | 1,8 = 0.924 | 0.373 |
TP | 0.419 | 1,8 = 5.763 | 0.043 * | 0.356 | 1,8 = 3.314 | 0.119 |
LF | 0.535 | 1,8 = 9.188 | 0.016 * | 0.023 | 1,8 = 0.143 | 0.718 |
HF | 0.113 | 1,8 = 1.015 | 0.343 | 0.617 | 1,8 = 9.652 | 0.021 * |
SD1 | 0.233 | 1,8 = 2.433 | 0.157 | 0.439 | 1,8 = 4.705 | 0.073 |
SD2 | 0.183 | 1,8 = 1.796 | 0.217 | 0.211 | 1,8 = 0.279 | 0.616 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomes, C.; Schram, B.; Canetti, E.F.D.; Orr, R. Heart Rate Variability Monitoring in Special Emergency Response Team Anaerobic-Based Tasks and Training. Safety 2024, 10, 84. https://doi.org/10.3390/safety10040084
Tomes C, Schram B, Canetti EFD, Orr R. Heart Rate Variability Monitoring in Special Emergency Response Team Anaerobic-Based Tasks and Training. Safety. 2024; 10(4):84. https://doi.org/10.3390/safety10040084
Chicago/Turabian StyleTomes, Colin, Ben Schram, Elisa F. D. Canetti, and Robin Orr. 2024. "Heart Rate Variability Monitoring in Special Emergency Response Team Anaerobic-Based Tasks and Training" Safety 10, no. 4: 84. https://doi.org/10.3390/safety10040084
APA StyleTomes, C., Schram, B., Canetti, E. F. D., & Orr, R. (2024). Heart Rate Variability Monitoring in Special Emergency Response Team Anaerobic-Based Tasks and Training. Safety, 10(4), 84. https://doi.org/10.3390/safety10040084