Characterization of COVID-19-Related Lung Involvement in Patients Undergoing Magnetic Resonance T1 and T2 Mapping Imaging: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Arcari, L.; Ciolina, F.; Cacciotti, L.; Danti, M.; Camastra, G.; Manzo, D.; Musarò, S.; Pironi, B.; Marazzi, G.; Santini, C.; et al. Semiquantitative Chest CT Severity Score Predicts Failure of Noninvasive Positive-Pressure Ventilation in Patients Hospitalized for COVID-19 Pneumonia. J. Cardiothorac. Vasc. Anesth. 2021, 36, 2278–2286. [Google Scholar] [CrossRef] [PubMed]
- Gargani, L.; Bruni, C.; De Marchi, D.; Romei, C.; Guiducci, S.; Bellando-Randone, S.; Aquaro, G.D.; Pepe, A.; Neri, E.; Colagrande, S.; et al. Lung magnetic resonance imaging in systemic sclerosis: A new promising approach to evaluate pulmonary involvement and progression. Clin. Rheumatol. 2020, 40, 1903–1912. [Google Scholar] [CrossRef] [PubMed]
- Neemuchwala, F.; Mahani, M.G.; Pang, Y.; Lee, E.; Johnson, T.D.; Galbán, C.J.; Fortuna, A.B.; Sanchez-Jacob, R.; Flask, C.A.; Nasr, S.Z. Lung T1 mapping magnetic resonance imaging in the assessment of pulmonary disease in children with cystic fibrosis: A pilot study. Pediatr. Radiol. 2020, 50, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Camastra, G.; Ciolina, F.; Arcari, L.; Danti, M.; Cacciotti, L. Heart and lung involvement detected by native T1 and T2 mapping magnetic resonance imaging in a patient with coronavirus disease-19. Eur. Heart J.—Cardiovasc. Imaging 2021, 22, e90. [Google Scholar] [CrossRef] [PubMed]
- Arcari, L.; Luciani, M.; Cacciotti, L.; Pucci, M.; Musumeci, M.B.; Pietropaolo, L.; Spuntarelli, V.; Negro, A.; Camastra, G.; Bentivegna, E.; et al. Coronavirus disease 2019 in patients with cardiovascular disease: Clinical features and implications on cardiac biomarkers assessment. J. Cardiovasc. Med. 2021, 22, 832–839. [Google Scholar] [CrossRef] [PubMed]
- de Leuw, P.; Arendt, C.T.; Haberl, A.E.; Froadinadl, D.; Kann, G.; Wolf, T.; Stephan, C.; Schuettfort, G.; Vasquez, M.; Arcari, L.; et al. Myocardial Fibrosis and Inflammation by CMR Predict Cardiovascular Outcome in People Living with HIV. JACC Cardiovasc. Imaging 2021, 14, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Arcari, L.; Camastra, G.; Ciolina, F.; Danti, M.; Cacciotti, L. T1 and T2 Mapping in Uremic Cardiomyopathy: An Update. Card. Fail. Rev. 2022, 8, e02. [Google Scholar] [CrossRef] [PubMed]
- Winau, L.; Baydes, R.H.; Braner, A.; Drott, U.; Burkhardt, H.; Sangle, S.; D’Cruz, D.P.; Carr-White, G.; Marber, M.; Schnoes, K.; et al. High-sensitive troponin is associated with subclinical imaging biosignature of inflammatory cardiovascular involvement in systemic lupus erythematosus. Ann. Rheum. Dis. 2018, 77, 1590–1598. [Google Scholar] [CrossRef] [PubMed]
- Puntmann, V.O.; Carerj, M.L.; Wieters, I.; Fahim, M.; Arendt, C.; Hoffmann, J.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A.M.; et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 1265. [Google Scholar] [CrossRef] [PubMed]
- Arcari, L.; Engel, J.; Freiwald, T.; Zhou, H.; Zainal, H.; Gawor, M.; Buettner, S.; Geiger, H.; Hauser, I.; Nagel, E.; et al. Cardiac biomarkers in chronic kidney disease are independently associated with myocardial edema and diffuse fibrosis by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2021, 23, 71. [Google Scholar] [CrossRef] [PubMed]
- Abani, O.; Abbas, A.; Abbas, F.; Abbas, M.; Abbasi, S.; Abbass, H.; Abbott, A.; Abdallah, N.; Abdelaziz, A.; Abdelfattah, M.; et al. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 1637–1645. [Google Scholar] [CrossRef]
- Puntmann, V.O.; Valbuena, S.; Hinojar, R.; Petersen, S.E.; Greenwood, J.P.; Kramer, C.M.; Kwong, R.Y.; McCann, G.P.; Berry, C.; Nagel, E. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: Part I—Analytical validation and clinical qualification. J. Cardiovasc. Magn. Reson. 2018, 20, 67. [Google Scholar] [CrossRef] [PubMed]
- McGroder, C.F.; Zhang, D.; Choudhury, M.A.; Salvatore, M.M.; D’Souza, B.M.; Hoffman, E.A.; Wei, Y.; Baldwin, M.R.; Garcia, C.K. Pulmonary fibrosis 4 months after COVID-19 is associated with severity of illness and blood leucocyte telomere length. Thorax 2021, 76, 1242–1245. [Google Scholar] [CrossRef]
- Nagel, E.; Kwong, R.Y.; Chandrashekhar, Y. CMR in Nonischemic Myocardial Inflammation: Solving the Problem of Diagnosing Myocarditis or Still Diagnostic Ambiguity? JACC Cardiovasc. Imaging 2020, 13, 163–166. [Google Scholar] [CrossRef] [PubMed]
Variable | COVID-19 (n = 11) | Controls (n = 11) | p |
---|---|---|---|
Age (year old) | 55 (46, 76) | 53 (44, 77) | >0.99 |
Male sex (%) | 7 (64) | 7 (64) | >0.99 |
Coexistent Conditions | |||
Hypertension (%) | 2 (18) | - | - |
Dyslipidemia (%) | 2 (18) | - | - |
Diabetes (%) | 1 (9) | - | - |
COPD (%) | 1 (9) | - | - |
Previous CVD * (%) | 0 (0) | - | - |
Laboratory Tests | |||
Hb (g/dL) | 13.7 (11.8, 14,2) | - | - |
Lymphocyte (per µ109/L) | 1.2 (0.9, 1.8) | - | - |
Creatinine (mg/dL) | 0.9 (0.6, 1) | - | - |
CRP (mg/dL) | 3.6 (0.4, 14) | - | - |
D-dimer (ng/mL FEU) | 1027 (434, 1679) | - | - |
Hs-Troponin (pg/mL) | 11 (6, 135) | - | - |
Blood Gas Analysis | |||
PaO2/FIO2 | 346 (251, 415) | - | - |
MRI findings | |||
LVEF | 60 (56, 63) | 61 (59, 65) | 0.332 |
T1 myocardium (mid-septum) | 1028 (972, 1058) | 985 (962, 993) | 0.05 |
T2 myocardium (mid-septum) | 45 (43, 48) | 45 (44, 47) | 0.949 |
Lung T1 mapping | |||
Global | 1278 (1238, 1313) | 1149 (1107, 1249) | 0.003 |
Remote | 1238 (1165, 1337) | 1152 (1114, 1249) | 0.088 |
Affected | 1375 (1220, 1580) | 1201 (1130, 1270) | 0.016 |
Lung T2 mapping | |||
Global | 38 (36, 49) | 34 (28,39) | 0.040 |
Remote | 29 (27, 35) | 33 (27, 41) | 0.797 |
Affected | 70 (55, 82) | 30 (28, 40) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camastra, G.; Arcari, L.; Ciolina, F.; Danti, M.; Ansalone, G.; Cacciotti, L.; Sbarbati, S. Characterization of COVID-19-Related Lung Involvement in Patients Undergoing Magnetic Resonance T1 and T2 Mapping Imaging: A Pilot Study. J. Imaging 2022, 8, 314. https://doi.org/10.3390/jimaging8120314
Camastra G, Arcari L, Ciolina F, Danti M, Ansalone G, Cacciotti L, Sbarbati S. Characterization of COVID-19-Related Lung Involvement in Patients Undergoing Magnetic Resonance T1 and T2 Mapping Imaging: A Pilot Study. Journal of Imaging. 2022; 8(12):314. https://doi.org/10.3390/jimaging8120314
Chicago/Turabian StyleCamastra, Giovanni, Luca Arcari, Federica Ciolina, Massimiliano Danti, Gerardo Ansalone, Luca Cacciotti, and Stefano Sbarbati. 2022. "Characterization of COVID-19-Related Lung Involvement in Patients Undergoing Magnetic Resonance T1 and T2 Mapping Imaging: A Pilot Study" Journal of Imaging 8, no. 12: 314. https://doi.org/10.3390/jimaging8120314
APA StyleCamastra, G., Arcari, L., Ciolina, F., Danti, M., Ansalone, G., Cacciotti, L., & Sbarbati, S. (2022). Characterization of COVID-19-Related Lung Involvement in Patients Undergoing Magnetic Resonance T1 and T2 Mapping Imaging: A Pilot Study. Journal of Imaging, 8(12), 314. https://doi.org/10.3390/jimaging8120314