On the Genesis of Artifacts in Neutron Transmission Imaging of Hydrogenous Steel Specimens
Abstract
:1. Introduction
- neutrons that did not interact with the irradiated material (transmitted intensity): Itrans,
- neutrons that interacted with the material and/or experimental set-up (e.g., the mirror) through scattering and that were detected by the scintillator (scattered intensity): Iscatt,
- neutrons that were refracted at an interface and lead to the scintillator screen: Irefract,
- photons that were induced by (optical) scattering in the scintillator: Ibacklight [22]. This yields the following equation:
2. Materials and Methods
3. Results and Discussion
3.1. Backlight Generated in Detector
3.2. Scattering Effects
3.3. Edge Effects Due to Scattering and Refraction
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Johnson, W.H. On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids. Proc. R. Soc. Lond. 1874, 23, 168–179. [Google Scholar] [CrossRef]
- Lynch, S. Hydrogen embrittlement phenomena and mechanisms. Corros. Rev. 2012, 30, 105–123. [Google Scholar] [CrossRef]
- Griesche, A.; Solórzano, E.; Beyer, K.; Kannengiesser, T. The advantage of using in-situ methods for studying hydrogen mass transport: Neutron radiography vs. carrier gas hot extraction. Int. J. Hydrog. Energy 2013, 38, 14725–14729. [Google Scholar] [CrossRef]
- Rauch, H.; Zeilinger, A. Hydrogen Transport Studies Using Neutron Radiography. Atom. Energy Rev. 1977, 15, 249–290. [Google Scholar]
- Yasuda, R.; Matsubayashi, M.; Nakata, M.; Harada, K. Application of neutron radiography for estimating concentration and distribution of hydrogen in Zircaloy cladding tubes. J. Nucl. Mater. 2002, 302, 156–164. [Google Scholar] [CrossRef]
- Grosse, M.; Lehmann, E.; Vontobel, P.; Steinbrueck, M. Quantitative determination of absorbed hydrogen in oxidised zircaloy by means of neutron radiography. Nucl. Instr. Meth. Phys. Res. 2006, 566, 739–745. [Google Scholar] [CrossRef]
- Beyer, K.; Kannengiesser, T.; Griesche, A.; Schillinger, B. Study of hydrogen effusion in austenitic stainless steel by time-resolved in-situ measurements using neutron radiography. Nucl. Instr. Meth. Phys. Res. 2011, 651, 211–215. [Google Scholar] [CrossRef]
- Beyer, K.; Kannengiesser, T.; Griesche, A.; Schillinger, B. Neutron radiography study of hydrogen desorption in technical iron. J. Mater. Sci. 2011, 46, 5171–5175. [Google Scholar] [CrossRef]
- Griesche, A.; Dabah, E.; Kannengiesser, T.; Kardjilov, N.; Hilger, A.; Manke, I. Three-dimensional imaging of hydrogen blister in iron with neutron tomography. Acta Mater. 2014, 78, 14–22. [Google Scholar] [CrossRef]
- Gorsky, W.S. Theorie der elastischen Nachwirkung in ungeordneten Mischkristallen (elastische Nachwirkung zweiter Art). Phys. Z. Sowjetunion 1935, 8, 457–471. [Google Scholar]
- Schauman, G.; Volkl, J.; Alefeld, G. Relaxation Process Due to Long-Range Diffusion of Hydrogen and Deuterium in Niobium. Phys. Rev. Lett. 1968, 21, 891–893. [Google Scholar] [CrossRef]
- Pfretzschner, B.; Schaupp, T.; Griesche, A. Hydrogen in Metals Visualized by Neutron Imaging. Corrosion 2019, 75, 903–910. [Google Scholar] [CrossRef]
- Griesche, A.; Große, M.; Schillinger, B. Neutron Imaging. In Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials; Fritzsche, H., Huot, J., Fruchart, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 193–225. ISBN 978-3-319-22792-4. [Google Scholar]
- Lehmann, E.H.; Vontobel, P.; Kardjilov, N. Hydrogen distribution measurements by neutrons. Appl. Radiat. Isot. 2004, 61, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Kardjilov, N.; De Beer, F.; Hassanein, R.; Lehmann, E.; Vontobel, P. Scattering corrections in neutron radiography using point scattered functions. Nucl. Instr. Meth. Phys. Res. 2005, 542, 336–341. [Google Scholar] [CrossRef]
- Hassanein, R.; Lehmann, E.; Vontobel, P. Methods of scattering corrections for quantitative neutron radiography. Nucl. Instr. Meth. Phys. Res. 2005, 542, 353–360. [Google Scholar] [CrossRef]
- Pleinert, H.; Lehmann, E. Determination of hydrogenous distributions by neutron transmission analysis. Physica B 1997, 234, 1030–1032. [Google Scholar] [CrossRef]
- Boillat, P.; Carminati, C.; Schmid, F.; Grunzweig, C.; Hovind, J.; Kaestner, A.; Mannes, D.; Morgano, M.; Siegwart, M.; Trtik, P.; et al. Chasing quantitative biases in neutron imaging with scintillator-camera detectors: A practical method with black body grids. Opt. Express 2018, 26, 15769–15784. [Google Scholar] [CrossRef]
- Carminati, C.; Boillat, P.; Schmid, F.; Vontobel, P.; Hovind, J.; Morgano, M.; Raventos, M.; Siegwart, M.; Mannes, D.; Gruenzweig, C.; et al. Implementation and assessment of the black body bias correction in quantitative neutron imaging. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.Q.; Bucherl, T.; Zou, Y.B.; Wang, S.; Lu, Y.R.; Guo, Z.Y. Study on scattering correction in fast neutron tomography at NECTAR facility. Sci. China Phys. Mech. 2014, 57, 244–250. [Google Scholar] [CrossRef]
- Börries, S.; Metz, O.; Pranzas, P.K.; Bücherl, T.; Sollradl, S.; Dornheim, M.; Klassen, T.; Schreyer, A. Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen distribution in metal hydrides. Nucl. Instr. Meth. Phys. Res. 2015, 797, 158–164. [Google Scholar] [CrossRef]
- Müller, B.R.; Lange, A.; Hentschel, M.P.; Kupsch, A. A comfortable procedure for correcting X-ray detector backlight. J. Phys. Conf. Ser. 2013, 425, 192015. [Google Scholar] [CrossRef] [Green Version]
- Sastri, V.S. Methods for determining hydrogen in steels. Talanta 1987, 34, 489–493. [Google Scholar] [CrossRef]
- Schulz, M.; Schillinger, B. ANTARES: Cold neutron radiography and tomography facility. J. Large-scale Res. Facil. 2015. [Google Scholar] [CrossRef] [Green Version]
- Rinard, P. Neutron Interactions with Matter. In Passive Nondestructive Assay of Nuclear Materials; Nuclear Regulatory Commission: Rockville, MD, USA, 1991; pp. 357–377. Available online: http://www.fas.org/sgp/othergov/doe/lanl/lib-www/la-pubs/00326407.pdf (accessed on 14 November 2019).
- Li, H.; Schillinger, B.; Calzada, E.; Yinong, L.; Muehlbauer, M. An adaptive algorithm for gamma spots removal in CCD-based neutron radiography and tomography. Nucl. Instr. Meth. Phys. Res. 2006, 564, 405–413. [Google Scholar] [CrossRef]
- Wyman, D.R.; Harms, A.A. The radiographic edge scattering distortion. J. Nondestruct. Eval. 1984, 4, 75–88. [Google Scholar] [CrossRef]
- Goldberger, M.L.; Seitz, F. Theory of the Refraction and the Diffraction of Neutrons by Crystals. Phys. Rev. 1947, 71, 294–310. [Google Scholar] [CrossRef]
- Lefmann, K.; Nielsen, K. McStas, a General Software Package for Neutron Ray-tracing Simulations. Neutron News 1999, 10, 20–23. [Google Scholar] [CrossRef]
- Willendrup, P.; Farhi, E.; Lefmann, K. McStas 1.7—A new version of the flexible Monte Carlo neutron scattering package. Physica B 2004, 350, E735–E737. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfretzschner, B.; Schaupp, T.; Hannemann, A.; Schulz, M.; Griesche, A. On the Genesis of Artifacts in Neutron Transmission Imaging of Hydrogenous Steel Specimens. J. Imaging 2020, 6, 22. https://doi.org/10.3390/jimaging6040022
Pfretzschner B, Schaupp T, Hannemann A, Schulz M, Griesche A. On the Genesis of Artifacts in Neutron Transmission Imaging of Hydrogenous Steel Specimens. Journal of Imaging. 2020; 6(4):22. https://doi.org/10.3390/jimaging6040022
Chicago/Turabian StylePfretzschner, Beate, Thomas Schaupp, Andreas Hannemann, Michael Schulz, and Axel Griesche. 2020. "On the Genesis of Artifacts in Neutron Transmission Imaging of Hydrogenous Steel Specimens" Journal of Imaging 6, no. 4: 22. https://doi.org/10.3390/jimaging6040022
APA StylePfretzschner, B., Schaupp, T., Hannemann, A., Schulz, M., & Griesche, A. (2020). On the Genesis of Artifacts in Neutron Transmission Imaging of Hydrogenous Steel Specimens. Journal of Imaging, 6(4), 22. https://doi.org/10.3390/jimaging6040022