Harnessing the Potential of Whey in the Creation of Innovative Food Products: Contributions to the Circular Economy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sensory Analysis
2.1.1. Criteria of Aggregation
2.1.2. Person Aggregation
2.2. Physico-Chemical Analyses
2.2.1. pH
2.2.2. Titratable Acidity
2.2.3. Lactose Content
2.2.4. Protein Titer
2.2.5. Total Soluble Solids Content (TSS)
3. Materials and Methods
3.1. Materials
3.1.1. Preparation of Sea Buckthorn Juice
3.1.2. Preparation of Ginger Extract
3.1.3. Preparation of Whey Beverages
3.2. Methods
3.2.1. Sensory Analysis
- Neg (Wk)—score negation of criteria k;
- k—index;
- q—scale amount.
- Vij—the score of alternative i by person j;
- Vij (ak)—the score of alternative i by person j on criteria k;
- k—1, 2, …., m.
- Qk—the score k;
- Int—integer;
- R—the number of assessors.
- Vi—the total value for alternative i;
- Qj—score j;
- j—1, 2, …, m;
- bj—order from the biggest alternative score i from alternative score j.
3.2.2. Physico-Chemical Analyses
- V = volume of 0,1 n sodium hydroxide solution, used for titration, in mL;
- 10 = volume of sample taken;
- m = mass of the analyzed sample, in g [77].
- a = the angle read at the polarimeter;
- = lactose-specific rotation, equal to +52.53;
- 2 = wavelength of the polarimetric tube, dm [78].
- V—volume of 0.143 n sodium hydroxide solution, in cm2, used in the second titration;
- f—factor of the 0.143 n sodium hydroxide solution used for titration [78].
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Obadi, M.; Ayad, H.; Pokharel, S.; Ayari, M. Perspectives on food waste management: Prevention and social innovations. Sustain. Prod. Consum. 2022, 31, 190–208. [Google Scholar] [CrossRef]
- Markina, I.; Somych, N.; Shkilniak, M.; Chykurkova, A.; Lopushynska, O. Managing Resource-Saving Development of Agri-Food Enterprises in the Context of Food Security and Sustainability: Strategic Aspects. Cent. Eur. Manag. J. 2021, 29, 114–135. [Google Scholar] [CrossRef]
- Topleva, S.; Prokopov, T. Integrated business model for sustainability of small and medium-sized enterprises in the food industry: Creating value added through ecodesign. Br. Food J. 2020, 122, 1463–1483. [Google Scholar] [CrossRef]
- Khan, S.; Amin, N.; Ansari, Z.; Majumder, D. Whey: Waste to health and wealth. Int. J. Curr. Microbiol. Appl. Sci. 2015, 2, 245–253. [Google Scholar]
- Zucchella, A.; Previtali, P. Circular business models for sustainable development: A “waste is food” restorative ecosystem. Bus. Strategy Environ. 2019, 28, 274–285. [Google Scholar] [CrossRef]
- Narasimmalu, A.; Ramasamy, R. Food Processing Industry Waste and Circular Economy. IOP Conf. Ser. Mater. Sci. Eng. 2020, 955, 012089. [Google Scholar] [CrossRef]
- Fancello, F.; Zara, G.; Hatami, F.; Scano, E.A.; Mannazzu, I. Unlocking the potential of second cheese whey: A comprehensive review on valorisation strategies. Rev. Environ. Sci. Biotechnol. 2024, 23, 411–441. [Google Scholar] [CrossRef]
- Paraskevopoulou, C.; Vlachos, D. A circular economy perspective for dairy supply chains. In Research on Interdisciplinary Approaches to Decision Making for Sustainable Supply Chains; Publisher Engineering Science Reference: Hershey, PA, USA, 2021; pp. 406–426. [Google Scholar]
- Latif, A.; Cahyandito, M.F.; Utama, G.L. Dynamic System Modeling and Sustainability Strategies for Circular Economy-Based Dairy Cow Waste Management. Sustainability 2023, 15, 3405. [Google Scholar] [CrossRef]
- Rajković, M.; Popović, M.; Milinčić, D.; Zdravković, M. Circular economy in food industry. Zastita Materijala 2020, 61, 229–250. [Google Scholar] [CrossRef]
- Ostojić, S.; Pavlović, M.; Živić, M.; Filipović, Z.; Gorjanović, S.; Hranisavljević, S.; Dojčinović, M. Processing of whey from dairy industry waste. Environ. Chem. Lett. 2005, 3, 29–32. [Google Scholar] [CrossRef]
- Zandona, E.; Blažić, M.; Režek Jambrak, A. Whey utilization: Sustainable uses and environmental approach. Food Technol. Biotechnol. 2021, 59, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Soumati, B.; Atmani, M.; Benabderrahmane, A.; Benjelloun, M. Whey Valorization-Innovative Strategies for Sustainable Development and Value-Added Product Creation. J. Ecol. Eng. 2023, 24, 86–104. [Google Scholar] [CrossRef]
- Uvarova, I.; Atstaja, D.; Grinbergs, U.; Petersons, J.; Gegere-Zetterstroma, A.; Kraze, S. Transition to the circular economy and new circular business models—An in-depth study of whey recycling. IOP Conf. Ser. Earth Environ. Sci. 2020, 578, 012019. [Google Scholar] [CrossRef]
- Adesra, A.; Srivastava, V.K.; Varjani, S. Valorization of Dairy Wastes: Integrative Approaches for Value Added Products. Indian J. Med. Microbiol. 2021, 61, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J. An integrated approach for the valorization of cheese whey. Foods 2021, 10, 564. [Google Scholar] [CrossRef] [PubMed]
- Moreira, N.L.; dos Santos, L.F.; Soccol, C.R.; Suguimoto, H.H. Dynamics of ethanol production from deproteinized whey by Kluyveromyces marxianus: An analysis about buffering capacity, thermal and nitrogen tolerance. Braz. Arch. Biol. Technol. 2015, 58, 454–461. [Google Scholar] [CrossRef]
- Tsermoula, P.; Khakimov, B.; Nielsen, J.H.; Engelsen, S. WHEY-The waste-stream that became more valuable than the food product. Trends Food Sci. Technol. 2021, 118, 230–241. [Google Scholar] [CrossRef]
- Kachrimanidou, V.; Alexandri, M.; Nascimento, M.F.; Alimpoumpa, D.; Faria, N.T.; Papadaki, A.; Ferreira, F.C.; Kopsahelis, N. Lactobacilli and Moesziomyces Biosurfactants: Toward a Closed-Loop Approach for the Dairy Industry. Fermentation 2022, 8, 517. [Google Scholar] [CrossRef]
- Gregg, J.; Jürgens, J.; Happel, M.; Strom-Andersen, N.; Tanner, A.; Bolwig, S.; Klitkou, A. Valorization of bio-residuals in the food and forestry sectors in support of a circular bioeconomy: A review. J. Clean. Prod. 2020, 267, 122093. [Google Scholar] [CrossRef]
- Toma, C.; Meleghi, E. Tehnologia laptelui și a produselor lactate; Publisher Didactică și Pedagogică: Bucharest, Romania, 1963. [Google Scholar]
- Pescuma, M.; Hébert, E.; Mozzi, F.; de Valdez, G.F. Whey fermentation by thermophilic lactic acid bacteria: Evolution of carbohydrates and protein content. Food Microbiol. 2008, 25, 442–451. [Google Scholar] [CrossRef]
- Bondoc, I. Tehnolohia și controlul calității laptelui și produselor lactate; Publisher Ion Ionescu de la Brad: Iași, Romania, 2013. [Google Scholar]
- Hanreich, L.; Zelther, E. Brânzeturi pentru casă și pentru piață 120 de rețete pentru prelucrarea laptelui; Publisher M.A.S.T.: New York, NY, USA, 2008. [Google Scholar]
- Begum, T.; Islam, Z.; Siddiki, M.; Habib, R.; Rashid, H.U. Preparation of fermented beverage from whey-based watermelon (Citrullus lanatus) juice. Asian J. Dairy Food Res. 2019, 38, 301–306. [Google Scholar] [CrossRef]
- Vivas, Y.; Morales, A.; Otálvaro, Á. Utilization of whey in the development of a refreshing beverage with natural antioxidants. Aliment. Hoy. 2017, 24, 185–199. [Google Scholar]
- Guy, A. 22 de specii de condimente care vă ocrotesc sănătatea; Publisher M.A.S.T.: New York, NY, USA, 2014. [Google Scholar]
- Macwan, S.R.; Dabhi, B.K.; Parmar, S.C.; Aparnathi, K.D. Whey and its utilization. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 134–155. [Google Scholar] [CrossRef]
- Szyba, M.; Mikulik, J. Energy production from biodegradable waste as an example of the circular economy. Energies 2022, 15, 1269. [Google Scholar] [CrossRef]
- Casallas-Ojeda, M.; Torres-Guevara, L.E.; Caicedo-Concha, D.M.; Gómez, M.F. Opportunities for waste to energy in the milk production industry: Perspectives for the circular economy. Sustainability 2021, 13, 12892. [Google Scholar] [CrossRef]
- Caltzontzin-Rabell, V.; Feregrino-Pérez, A.A.; Gutiérrez-Antonio, C. Bio-upcycling of cheese whey: Transforming waste into raw materials for biofuels and animal feed. Heliyon 2024, 10, e32700. [Google Scholar] [CrossRef]
- Ji, T.; Haque, Z.U. Cheddar whey processing and source: I. Effect on composition and functional properties of whey protein concentrates. Int. J. Food Sci. Technol. 2003, 38, 453–461. [Google Scholar] [CrossRef]
- Mistry, V.V.; Metzger, L.E.; Maubois, J.L. Use of Ultrafiltered Sweet Buttermilk in the Manufacture of Reduced Fat Cheddar Cheese. J. Dairy Sci. 1996, 79, 1137–1145. [Google Scholar] [CrossRef]
- Kenny, S.; Wehrle, K.; Auty, M.A.E.; Arendt, E.K. Influence of Sodium Caseinate and Whey Protein on Baking Properties and Rheology of Frozen Dough. Cereal Chem. 2001, 78, 458–463. [Google Scholar] [CrossRef]
- Carunchia Whetstine, M.E.; Croissant, A.E.; Drake, M.A. Characterization of Dried Whey Protein Concentrate and Isolate Flavor. J. Dairy Sci. 2005, 88, 3826–3839. [Google Scholar] [CrossRef]
- Tesfaw, A.; Oner, E.T.; Assefa, F. Evaluating crude whey for bioethanol production using non-Saccharomyces yeast, Kluyveromyces marxianus. SN Appl. Sci. 2021, 3, 42. [Google Scholar] [CrossRef]
- Vyas, S.; Chhabra, M. Assessing oil accumulation in the oleaginous yeast Cystobasidium oligophagum JRC1 using dairy waste cheese whey as a substrate. 3 Biotech 2019, 9, 173. [Google Scholar] [CrossRef] [PubMed]
- Kar, T.; Misra, A.K. Therapeutic properties of whey used as fermented drink. Rev. Microbiol. 1999, 30, 163–169. [Google Scholar] [CrossRef]
- Hippophae rhamnoides. Available online: https://en.wikipedia.org/wiki/Hippophae_rhamnoides (accessed on 18 February 2024).
- Yang, W.; Laaksonen, O.; Kallio, H.; Yang, B. Proanthocyanidins in sea buckthorn (Hippophaë rhamnoides L.) berries of different origins with special reference to the influence of genetic background and growth location. J. Agric. Food Chem. 2016, 64, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Lubbers, S.; Guichard, E. The effect of sugars and pectin on flavor release from a fruit pastille model system. Food Chem 2003, 81, 269–273. [Google Scholar] [CrossRef]
- Ginger. Available online: https://en.wikipedia.org/wiki/Ginger (accessed on 24 February 2024).
- Meysam, M.; Rahaie, M.; Ebrahimi, A.; Samiee, F. Four Matrix Metalloproteinase genes involved in murine breast cancer affected by ginger extract. Gene Rep. 2021, 25, 101332. [Google Scholar] [CrossRef]
- Aryaeian, N.; Shahram, F.; Mahmoudi, M.; Tavakoli, H.; Yousefi, B.; Arablou, T.; Jafari-Karegar, S. The effect of ginger supplementation on some immunity and inflammation intermediate genes expression in patients with active Rheumatoid Arthritis. Gene 2019, 698, 179–185. [Google Scholar] [CrossRef]
- Yang, X.; Wei, S.; Lu, X.; Qiao, X.; Simal-Gandara, J.; Capanoglu, E.; Woźniak, Ł.; Zou, L.; Cao, H.; Xiao, J.; et al. A neutral polysaccharide with a triple helix structure from ginger: Characterization and immunomodulatory activity. Food Chem. 2012, 350, 129261. [Google Scholar] [CrossRef]
- Seif, M.; El-Aziz, A.; Sayed, M.; Wang, Z. Zingiber officinale ethanolic extract attenuates oxidative stress, steroidogenic gene expression alterations, and testicular histopathology induced by sodium arsenite in male rats. Environ. Sci. Pollut. Res. 2021, 28, 19783–19798. [Google Scholar] [CrossRef]
- Abdullahi, A.; Khairulmazmi, A.; Yasmeen, S.; Ismail, I.; Norhayu, A.; Sulaiman, M.R.; Ahmed, O.H.; Ismail, M.R. Phytochemical profiling and antimicrobial activity of ginger (Zingiber officinale) essential oils against important phytopathogens. Arabian J. Chem. 2020, 13, 8012–8025. [Google Scholar] [CrossRef]
- El Gayar, M.; Aboromia, M.; Ibrahim, N.; Abdel Hafiz, M. Effects of ginger powder supplementation on glycemic status and lipid profile in newly diagnosed obese patients with type 2 diabetes mellitus. Obes. Med. 2019, 14, 100094. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, Z.; Yan, J.; Xie, J. Nutritional components, phytochemical compositions, biological properties, and potential food applications of ginger (Zingiber officinale): A comprehensive review. J. Food Compos. Anal. 2024, 128, 106057. [Google Scholar] [CrossRef]
- Cinnamon. Available online: https://en.wikipedia.org/wiki/Cinnamon (accessed on 26 February 2024).
- Arangannal, P.; Nithya, S.; Jeevarathan, J.; Rekha, V.; Krishnan, M.; Padmavathy, K. Antibacterial effectiveness of cinnamon chewing gum on Streptococcus Mutans. IJPHRD 2019, 10, 1694–1698. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Pigera, S.; Premakumara, G.A.S.; Galappaththy, P.; Constantine, G.R.; Katulanda, P. Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): A systematic review. BMC Compl. Alternative Med. 2013, 13, 275. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Abraham, T. Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chem. 2006, 94, 520–528. [Google Scholar] [CrossRef]
- Lee, H.; Ahn, Y. Growth-inhibiting effects of Cinnamomum cassia bark-derived materials on human intestinal bacteria. J. Agric. Food Chem. 1998, 46, 8–12. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.; Brooks, J.; Corke, H. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): Activity against foodborne pathogenic bacteria. J. Agric. Food Chem. 2007, 55, 5484–5490. [Google Scholar] [CrossRef]
- Spence, C. Cinnamon: The historic spice, medicinal uses, and flavour chemistry. Int. J. Gastron. Food Sci. 2024, 35, 100858. [Google Scholar] [CrossRef]
- Tanwar, T.; Wagh, R.M.; Malav, O.; Kour, S.; Kumar, P. Preparation of functional beverage from whey-based mango juice. Pharm. Innov. 2022, 11, 4710–4716. [Google Scholar]
- Ahmed, S.G.; Wafaa, H.E.; Gamal, F.M.; Ahmed, F.S. Utilization Whey in Production of Functional Healty Beverage “Whey-mango Beverages”. Am. J. Food Technol. 2013, 8, 133–148. [Google Scholar]
- Naik, B.; Kohli, D.; Walter, N.; Gupta, A.; Mishra, S.; Khan, J.M.; Saris, P.E.J.; Irfan, M.; Rustagi, S.; Kumar, V. Whey-carrot based functional beverage: Development and storage study. J. King Saud Univ. Sci. 2023, 35, 102775. [Google Scholar] [CrossRef]
- Islam, M.; Tabassum, S.; Harun-ur-Rashid, M.; Vegarud, G.; Alam, M.; Islam, M. Development of probiotic beverage using whey and pineapple (Ananas comosus) juice: Sensory and physico-chemical properties and probiotic survivability during in-vitro gastrointestinal digestion. J. Agric. Food Res. 2021, 4, 100144. [Google Scholar] [CrossRef]
- Amaral, G.; Silva, K.; Costa, A.; Alvarenga, V.; Cavalcanti, R.; Esmerino, E.A.; Guimarães, J.T.; Freitas, M.Q.; Sant’Ana, A.S.; Cunha, R.L.; et al. Whey-grape juice drink processed by supercritical carbon dioxide technology: Physical properties and sensory acceptance. LWT 2018, 92, 80–86. [Google Scholar] [CrossRef]
- Oliveira, G.A.R.; Guimaraes, J.T.; Ramos, G.L.P.A.; Esmerino, E.A.; Pimentel, T.C.; Neto, R.P.C.; Tavares, M.I.B.; Sobral, L.A.; Souto, F.; Freitas, M.Q.; et al. Benefits of thermosonication in orange juice whey drink processing. Innov. Food Sci. Emerg. Technol. 2022, 75, 102876. [Google Scholar] [CrossRef]
- Arsic, S.; Bulatovic, M.; Zaric, D.; Kokeza, G.; Subic, J.; Rakin, M. Functional fermented whey carrot beverage—Qualitative, nutritive and techno-economic analysis. Rom. Biotechnol. Lett. 2018, 23, 13496–13504. [Google Scholar]
- Soares, C.; Silveira, A.J.T.; Laurioux, B. Mesados Sentidos & Sentidos da Mesa; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2021; Volume 1, pp. 119–129. [Google Scholar]
- Królczyk, J.B.; Dawidziuk, T.; Janiszewska-Turak, E.; Sołowiej, B. Use of Whey and Whey Preparations in the Food Industry—A Review. Pol. J. Food Nutr. Sci. 2016, 66, 157–165. [Google Scholar] [CrossRef]
- de Matos Reis, S.; Mendes, G.R.L.; Mesquita, B.M.A.C.; Lima, W.J.N.; Pinheiro, C.A.F.D.; Ruas, F.A.O.; Santos, G.L.M.; Brandi, I.V. Development of milk drink with whey fermented and acceptability by children and adolescents. J. Food Sci. Technol. 2021, 58, 2847–2852. [Google Scholar] [CrossRef]
- Tkachenko, N.; Nekrasov, P.; Vikul, S.; Honcharuk, Y. Modelling formulae of strawberry whey drinks of prophylactic application. Food Sci. Technol. 2017, 11, 80–88. [Google Scholar] [CrossRef]
- Schoina, V.; Terpou, A.; Papadaki, A.; Bosnea, L.; Kopsahelis, N.; Kanellaki, M. Enhanced aromatic profile and functionality of cheese whey beverages by incorporation of probiotic cells immobilized on pistacia terebinthus resin. Foods 2020, 9, 13. [Google Scholar] [CrossRef]
- Larionov, G.; Semenov, V.; Lavrentyev, A.; Sherne, V.; Kayukova, O.; Mardaryeva, N.; Ivanova, R. Production of mint whey drink at private and collective farms and agricultural holdings. IOP Conf. Ser. Earth Environ. Sci. 2020, 604, 012042. [Google Scholar] [CrossRef]
- Yasmin, A.; Butt, M.S.; Yasin, M.; Qaisrani, T.B. Compositional analysis of developed whey based fructooligosaccharides supplemented low- calorie drink. J. Food Sci. Technol. 2015, 52, 1849–1856. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Sabuz, A.; Mohaldar, A.; Fardows, H.; Inbaraj, B.; Sharma, M.; Rana, M.R.; Sridhar, K. Development of Novel Whey-Mango Based Mixed Beverage: Effect of Storage on Physicochemical, Microbiological, and Sensory Analysis. Foods 2023, 12, 237. [Google Scholar] [CrossRef] [PubMed]
- Sady, M.; Najgebauer-Lejko, D.; Domagała, J. The suitability of different probiotic strains for the production of fruit-whey beverages. Acta Sci. Pol. Technol. Aliment. 2017, 16, 421–429. [Google Scholar]
- Divya, D.; Kumari, A. Effect of different temperatures, timings and storage periods on the physico-chemical and nutritional characteristics of whey-guava beverage. WJDFS 2009, 4, 118–122. [Google Scholar]
- Jelen, P.; Currie, R.; Kadis, V.W. Compositional Analysis of Commercial Whey Drinks. J. Dairy Sci. 1987, 70, 892–895. [Google Scholar] [CrossRef]
- Fadhil, R.; Agustina, R.; Hayati, R. Sensory Assessment of Sauerkraut Using a Non-Numeric Approach Based on Multi-Criteria and Multi-Person Aggregation. Bull. Transilv. 2020, 13, 112–118. [Google Scholar] [CrossRef]
- Thermo Scientific Oreon 2 Stars. Available online: https://www.fondriest.com/pdf/thermo_2-star_ph_spec.pdf (accessed on 15 April 2024).
- Association of Official Analytical Chemists. Official Methods of Analysis, 18th ed; Association of Official Analytical Chemists: Rockville, MD, USA, 2015. [Google Scholar]
- Tița, M. Manual de analiză și control calității în industria laptelui; “Lucian Blaga” University Sibiu: Sibiu, Romania, 2002. [Google Scholar]
- Sattar, A.; Durrani, M.; Khan, R.; Hussain, B. Effect of packaging material and fluorescent light on HTST-pasteurized orange drink. Z. Lebensm. Unters. Forch. 1998, 188, 430–433. [Google Scholar] [CrossRef]
- Minitab. Available online: https://www.minitab.com/en-us/ (accessed on 29 April 2024).
The Importance Level of the Criteria | Negating the Importance Level of the Criteria | ||
---|---|---|---|
Criterion 1 | Very high | Criterion 1 | Very low |
Criterion 2 | High | Criterion 2 | Low |
Criterion 3 | I neither like nor dislike | Criterion 3 | I neither like nor dislike |
Criterion 4 | Low | Criterion 4 | High |
Criterion 5 | Very low | Criterion 5 | Very high |
Person | Alternative | Evaluation Criteria | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Appearance | Consistency Uniformity | Color | Taste | Odor | ||||||||||||
Day 1 | Day 7 | Day 14 | Day 1 | Day 7 | Day 14 | Day 1 | Day 7 | Day 14 | Day 1 | Day 7 | Day 14 | Day 1 | Day 7 | Day 14 | ||
P1 | A1 | LM | LM | LM | LM | LS | LS | LM | LS | LM | LS | LM | LM | LS | LS | LS |
A2 | NT | LS | LS | NT | NT | NT | NT | LS | LS | NT | LS | LS | NT | LS | LS | |
A3 | LM | LM | LM | LM | LM | LM | NT | NT | LS | LS | LS | LS | NT | NT | NT | |
A4 | NT | LS | LS | DS | NT | NT | DS | NT | NT | DM | NT | NT | NT | NT | NT | |
A5 | LM | LM | LM | LS | LS | NT | LS | LM | LM | LM | LM | LM | LS | LM | LM | |
A6 | NT | LS | LS | DS | DS | NT | LS | LM | LM | NT | LS | LS | LS | LM | LM | |
P2 | A1 | LS | LS | LS | LS | LS | LS | LM | LM | LS | LS | LM | LM | NT | NT | NT |
A2 | DS | NT | NT | DS | NT | LS | LS | NT | LS | LS | LS | LM | NT | NT | NT | |
A3 | LS | LS | NT | NT | LS | LS | NT | NT | DS | DM | LS | NT | NT | LS | LS | |
A4 | NT | NT | LS | DS | NT | DS | NT | DS | DS | DM | DS | DS | DS | NT | LS | |
A5 | LM | LM | LM | LS | NT | NT | LS | LS | LM | LS | LM | LV | LS | LV | LM | |
A6 | DS | DS | NT | DS | NT | NT | LS | LS | LM | LS | LS | LM | LS | LV | LM | |
P3 | A1 | LM | LM | LM | LS | LS | LS | LM | LS | LS | LS | LM | LS | LS | NT | NT |
A2 | DS | LS | LS | DS | NT | NT | NT | LS | LS | NT | LM | LS | NT | NT | NT | |
A3 | LM | LM | LM | LS | LM | LM | LS | NT | NT | LS | NT | NT | LS | LS | LS | |
A4 | DS | LS | LS | DS | NT | NT | NT | NT | LS | NT | DS | DS | NT | LS | LS | |
A5 | LM | LM | LM | DS | NT | LS | LM | LM | LM | LM | LV | LV | LS | LV | LV | |
A6 | NT | LS | LS | NT | NT | NT | LS | LM | LM | LS | LM | LM | LS | LV | LV | |
P4 | A1 | LM | LM | LM | LS | LS | LS | LS | LV | LV | LS | LS | LM | LS | LS | LS |
A2 | NT | LS | LS | DS | NT | NT | NT | LS | LS | NT | LS | LS | LS | LS | LS | |
A3 | LM | LS | LS | LS | LM | LM | NT | NT | NT | LS | NT | NT | LS | LS | LS | |
A4 | NT | NT | LS | DS | NT | NT | NT | NT | NT | NT | DS | NT | NT | NT | LS | |
A5 | LM | LS | LM | DS | LS | LS | LS | LM | LM | LM | LV | LV | LS | LV | LV | |
A6 | NT | LS | NT | NT | NT | NT | LS | LM | LM | LS | LM | LV | LS | LV | LV | |
P5 | A1 | LS | LM | LM | LM | LM | LM | LS | LS | LS | LS | LM | LM | LS | LS | LS |
A2 | LS | LS | LS | LS | NT | LS | LS | LS | LS | NT | LM | LM | LS | LS | LS | |
A3 | LS | LM | LS | NT | LM | LS | NT | NT | DS | NT | NT | NT | DS | NT | LS | |
A4 | DS | NT | NT | DS | NT | NT | NT | NT | DS | DM | DS | NT | DS | NT | LS | |
A5 | LS | LM | LM | NT | LS | NT | LS | LM | LM | LM | LV | LV | LS | LV | LV | |
A6 | NT | LS | LS | DM | DS | NT | LM | LM | LM | LS | LV | LV | LS | LV | LV |
Day of Storage | Alternative 1 | Alternative 2 | Alternative 3 | Alternative 4 | Alternative 5 | Alternative 6 |
---|---|---|---|---|---|---|
Day 1 | LS, LS, LM, LS, NT | DM, NT, NT, NT, NT | LS, NT, NT, DM, NT | NT, DS, DS, DM, DM | LM, NT, LS, LS, LS | DM, DS, LS, NT, LS |
Day 7 | LS, LS, LS, LM, NT | NT, NT, NT, LS, NT | LS, LS, NT, NT, NT | NT, NT, DM, DM, NT | LM, NT, LS, LM, LM | DM, DS, LS, LS, LM |
Day 14 | LS, LS, LS, LS, NT | NT, NT, LS, LM, NT | NT, LS, DM, NT, NT | LS, DM, DM, DM, NT | LM, NT, LM, LM, LM | NT, NT, LM, LS, LM |
The Outcome of the Person Aggregation for the Alternatives | ||||||
---|---|---|---|---|---|---|
Day of Storage | Alternative 1 | Alternative 2 | Alternative 3 | Alternative 4 | Alternative 5 | Alternative 6 |
Day 1 | LS (Like slightly) | NT (Neither like nor dislike) | LS (Like slightly) | NT (Neither like nor dislike) | LM (Like moderately) | LS (Like slightly) |
Day 7 | LS (Like slightly) | NT (Neither like nor dislike) | LS (Like slightly) | NT (Neither like nor dislike) | LM (Like moderately) | LS (Like slightly) |
Day 14 | LS (Like slightly) | LS (Like slightly) | LS (Like slightly) | LS (Like slightly) | LM (Like moderately) | LM (Like moderately) |
Item | Samples | Storage Period [Days] | ||
---|---|---|---|---|
1 | 7 | 14 | ||
Lactose [%] | DWD | 4.57 ± 0.014 c,A | 4.22 ± 0.005 b,D | 3.76 ± 0.008 a,D |
DWDg | 4.63 ± 0.013 c,B | 3.54 ± 0.007 b,B | 3.16 ± 0.008 a,A | |
DWDgc | 4.53 ± 0.015 c,A | 4.16 ± 0.008 b,C | 3.26 ± 0.016 a,B | |
WD | 4.66 ± 0.010 c,C | 4.21 ± 0.016 b,D | 3.86 ± 0.014 a,E | |
WDg | 4.64 ± 0.008 c,B | 3.66 ± 0.008 b,A | 3.16 ± 0.011 a,A | |
WDgc | 4.70 ± 0.013 c,D | 4.16 ± 0.011 b,C | 3.54 ± 0.011 a,C | |
Protein titer [%] | DWD | 2.93 ± 0.013 b,BC | 2.51 ± 0.011 a,B | 2.50 ± 0.008 a,E |
DWDg | 2.86 ± 0.011 c,B | 2.51 ± 0.008 b,B | 1.18 ± 0.008 a,A | |
DWDgc | 2.72 ± 0.013 c,A | 2.51 ± 0.008 b,B | 1.52 ± 0.015 a,E | |
WD | 3.26 ± 0.010 c,D | 2.46 ± 0.008 b,A | 2.39 ± 0.008 a,D | |
WDg | 3.01 ± 0.011 c,C | 2.53 ± 0.008 b,BC | 1.43 ± 0.007 a,B | |
WDgc | 2.90 ± 0.008 c,B | 2.52 ± 0.007 b,C | 1.57 ± 0.008 a,C | |
Total soluble solids content (TSS) [°Brix] | DWD | 11.12 ± 0.012 b,A | 11.12 ± 0.008 b,A | 11.11 ± 0.008 a,A |
DWDg | 11.25 ± 0.007 b,B | 11.25 ± 0.005 b,B | 11.24 ± 0.010 a,B | |
DWDgc | 11.76 ± 0.011 a,C | 11.76 ± 0.013 a,C | 11.76 ± 0.016 a,C | |
WD | 12.15 ± 0.008 a,D | 12.15 ± 0.008 a,D | 12.15 ± 0.005 a,D | |
WDg | 12.28 ± 0.011 b,E | 12.27 ± 0.007 a,E | 12.27 ± 0.010 a,E | |
WDgc | 12.58 ± 0.013 b,F | 12.57 ± 0.008 a,F | 12.57 ± 0.010 a,F |
Sample Code | Whey [%] | Deproteinized Whey [%] | Sea Buckthorn Juice [%] | Ginger Juice [g/100 g] | Cinnamon Powder [g/100 g] |
---|---|---|---|---|---|
WD | 75 | - | 25 | - | - |
WDg | 75 | - | 25 | 0.75 | - |
WDgc | 75 | - | 25 | 0.75 | 0.2 |
DWD | - | 75 | 25 | - | - |
DWDg | - | 75 | 25 | 0.75 | - |
DWDgc | - | 75 | 25 | 0.75 | 0.2 |
Scale | Description | Abbreviation |
---|---|---|
1 | Like very much | LV |
2 | Like moderately | LM |
3 | Like slightly | LS |
4 | I neither like nor dislike | NT |
5 | Dislike slightly | DS |
6 | Dislike moderately | DS |
7 | Dislike very much | DV |
Scale | Description | Abbreviation |
---|---|---|
1 | Very high | LV |
2 | High | LM |
3 | I neither like nor dislike | NT |
4 | Low | DM |
5 | Very low | DV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tița, M.A.; Moga, V.-M.; Constantinescu, M.A.; Bătușaru, C.M.; Tița, O. Harnessing the Potential of Whey in the Creation of Innovative Food Products: Contributions to the Circular Economy. Recycling 2024, 9, 79. https://doi.org/10.3390/recycling9050079
Tița MA, Moga V-M, Constantinescu MA, Bătușaru CM, Tița O. Harnessing the Potential of Whey in the Creation of Innovative Food Products: Contributions to the Circular Economy. Recycling. 2024; 9(5):79. https://doi.org/10.3390/recycling9050079
Chicago/Turabian StyleTița, Mihaela Adriana, Valentina-Mădălina Moga, Maria Adelina Constantinescu, Cristina Maria Bătușaru, and Ovidiu Tița. 2024. "Harnessing the Potential of Whey in the Creation of Innovative Food Products: Contributions to the Circular Economy" Recycling 9, no. 5: 79. https://doi.org/10.3390/recycling9050079
APA StyleTița, M. A., Moga, V. -M., Constantinescu, M. A., Bătușaru, C. M., & Tița, O. (2024). Harnessing the Potential of Whey in the Creation of Innovative Food Products: Contributions to the Circular Economy. Recycling, 9(5), 79. https://doi.org/10.3390/recycling9050079